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Abstract Let L be a closed manifold of dimension n ≥ 2 which admits a totally real

embedding intoCn. LetST ∗Lbe the space of rays of the cotangent bundleT ∗L ofL, and

let DT ∗L be the unit disk bundle of T ∗L defined by any Riemannian metric on L. We

observe thatST ∗L endowedwith its standard contact structure admitsweak symplectic

fillings W which are diffeomorphic to DT ∗L and for which any closed Lagrangian sub-

manifoldN ⊂W has the property that the mapH1(N,R)→H1(W,R) has a nontrivial

kernel. This relies on a variation on a theorem by Laudenbach and Sikorav.

1. Introduction

A field of hyperplanes ξ on a manifold M is a contact structure if one can

locally find a 1-form α such that ξ = Ker(α) and such that dα restricted to ξ

is everywhere nondegenerate. This implies that M is odd-dimensional; we write

dimM = 2n−1. We always assume that the manifolds and contact structures we

consider are compatibly oriented. This means that ξ can be globally defined by a

1-form α such that α∧ (dα)n−1 defines the positive orientation of M and (dα)n−1

defines the positive orientation of ξ. The restriction of dα to ξ is a symplectic

form whose conformal class depends only on ξ; we denote this conformal class

by CSξ.

There exist many notions of symplectic (or holomorphic) fillings of a contact

manifold (M,ξ). They are motivated by the fact that many examples of contact

manifolds appear as boundaries of complex or symplectic manifolds with suitable

convexity properties, although not all contact manifolds appear in this way. We

start with an informal definition. A filling of (M,ξ) is a compact symplectic

manifold with boundary (W,ω) such that the oriented boundary ofW is identified

with M and such that the symplectic form ω is compatible with ξ near the

boundary of W . Depending on the additional properties one asks on (W,ω) and

on the exact compatibility condition required between ω and ξ, one obtains many

notions of fillings: weak fillings, strong fillings, exact fillings, Stein fillings, and

so on. We refer the reader to [6] for the beginning of the theory of fillings of

contact manifolds and to [4], [5], [7], [8], [12], [13], and [19] for more recent

references. Here, we will simply use the following definition, which is classical
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when M has dimension 3 and due to Massot, Niederkrüger, and Wendl [12] in

higher dimensions.

DEFINITION 1.1

We say that (W,ω) is a weak filling of (M,ξ) if the restriction ωξ of ω to the

distribution ξ is symplectic and if each element in the ray ωξ+CSξ is symplectic.

WhenM has dimension 3, this definition reduces to the fact that ωξ is everywhere

nondegenerate and defines the positive orientation of ξ. We refer the reader to

[12] for some motivations for this definition and for more history on fillability

problems in contact geometry. Here, the main observation that we will need is

the following.

If M bounds a smooth strictly pseudoconvex domain W in a Kähler manifold

(X,ω), then (W,ω) is a weak filling of (M,ξ), where ξ is the contact structure

given by the complex tangencies.

We shall use this observation to produce exotic examples of weak fillings. The

idea of considering open sets in Kähler manifolds which are strictly pseudoconvex

but not symplectically convex is actually not new. It was used by Eliashberg and

Gromov 25 years ago to motivate the various definitions of convexity in complex

and symplectic geometry (see [6, Section 3.1.3]).

Consider now a manifold L and its cotangent bundle T ∗L, endowed with its

Liouville form λ = pdq. Let Y be the Liouville vector field of T ∗L whose flow

is given by (q, p) �→ (q, etp). The space ST ∗L of rays of T ∗L carries a canonical

contact structure ξst which can be defined as follows. Identify ST ∗L with a

hypersurface of T ∗L transverse to Y , and take the kernel of the restriction of

the Liouville form to ST ∗L. The resulting hyperplane field does not depend on

this identification. Finally, we will denote by DT ∗L the unit disk bundle inside

T ∗L for an auxiliary Riemannian metric on L. We assume that dimL= n≥ 2.

We will prove the following result.

THEOREM 1.2

Let L be closed. Assume that L admits a totally real embedding into C
n. Then

there exists an exact symplectic form Ω on W = DT ∗L such that (W,Ω) is a

weak filling of (ST ∗L, ξst) and such that, for any closed Lagrangian submanifold

N ⊂W , the induced map H1(N,R)→H1(W,R) has a nontrivial kernel.

This applies for instance when L is a torus or any oriented closed 3-manifold.

See [1] for a discussion of which manifolds admit totally real embeddings into C
n

and for more examples.

When L= T 2, weak fillings of (ST ∗T 2, ξst) which are different from DT ∗T 2

with its standard symplectic structure were already known (see, e.g., [9]). How-

ever, the examples in [9] were not cohomologically exact, as opposed to the
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examples provided by Theorem 1.2. We also mention that Wendl [18] proved that

every exact filling (W,ω) of (ST ∗T 2, ξst) is symplectomorphic to a star-shaped

open set of T ∗T 2. See [18] for the definition of exact fillings. In particular, exact

fillings of (ST ∗T 2, ξst) are diffeomorphic to DT ∗T 2 � T 2 ×D2 and contain an

incompressible Lagrangian torus.

In cases where it is known that there is a unique exact filling of (ST ∗L, ξst),

the weak filling (W,Ω) appearing in Theorem 1.2 can be symplectically embedded

in T ∗L with its standard symplectic structure as a deformation of the unit disk

bundle. But the image of such an embedding will never contain the zero section

by our result. This embedding result follows from the fact that one can glue a

product to the boundary of W to obtain a manifold

W ′ =W ∪ ST ∗L× [0,1]

such that W ′ carries a symplectic structure which extends Ω and which makes

W ′ an exact filling of (ST ∗L, ξst). The proof is essentially folkloric and relies on

an argument of Eliashberg [3, Proposition 3.1] (see also [12, Section 2] for more

details).

Let us now discuss the proof of Theorem 1.2. The weak fillings that we

will consider will be small tubular neighborhoods of totally real submanifolds of

the complex Euclidean space. We thus consider the space C
n endowed with its

standard symplectic form:

ω0 =
i

2

n∑

j=1

dzj ∧ dzj .

Denote by J0 the complex structure on C
n. Fix a totally real embedding

j : L→C
n

of a closed manifold L. We assume that dimL = n ≥ 2. If j happens to be

Lagrangian, we can always perturb it to a non-Lagrangian embedding, keep-

ing it totally real. So from now on we assume that j is not Lagrangian. Let

f :Cn →R+ be the square of the distance to j(L), that is, for p ∈C
n let

f(p) = inf
q∈j(L)

d(p, q)2,

where d is the Euclidean distance in C
n. The function f is smooth and strictly

plurisubharmonic near j(L) (see [2, Section 2.7]). Let

Vε :=
{
p ∈C

n, f(p)≤ ε
}
.

In the following we will say that a submanifold N of an ambient manifold W

is H1-embedded if the map H1(N,R) → H1(W,R) induced by the inclusion is

injective. We have the following result.

THEOREM 1.3

If ε is small enough, then the symplectic manifold (Vε, ω0) does not contain any

H1-embedded closed Lagrangian submanifolds.
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This result is an immediate application or rather variation on a theorem by Lau-

denbach and Sikorav [11]. We will prove it in Section 2. To deduce Theorem 1.2

from Theorem 1.3, we simply make the following observations. Let ξε denote the

field of complex tangencies on the boundary Mε of Vε:

ξε(p) = TpMε ∩ J0TpMε.

Then, for small enough ε, (Mε, ξε) is a contact manifold, (Vε, ω0) is a weak

filling of (Mε, ξε), and Mε and Vε are, respectively, diffeomorphic to ST ∗L and

DT ∗L. The only thing left to conclude the proof of Theorem 1.2 is to observe

that (Mε, ξε) and (ST ∗L, ξst) are actually contactomorphic. This is certainly

well known to experts, but we include a proof in Section 3, due to the lack of a

convenient reference.

2. Displaceability and homologically essential Lagrangians

In the following, for each subset X ⊂ C
n and each positive number ε, we will

denote by Vε(X) the set of points of Cn at distance at most
√
ε from X .

We start by recalling the theorem by Laudenbach and Sikorav [11] alluded

to earlier. Let P be a closed manifold. Then we have the following result.

THEOREM 2.1 ([11])

If a sequence of smooth Lagrangian embeddings ϕ� : P → C
n C0-converges to a

smooth embedding ϕ∞ : P →Cn, then ϕ∞(P ) is still Lagrangian.

This can be seen as a generalization of the famous result by Eliashberg and

Gromov about C0-limits of symplectic diffeomorphisms; it also holds in more

general symplectic manifolds under an additional hypothesis (see [11]). Now let ϕ�

and ϕ∞ be embeddings as in the statement of the theorem. The C0-convergence

of ϕ� to ϕ∞ implies that, for ε small enough and for � large enough, the inclusion

ϕ�(P ) ↪→ Vε

(
ϕ∞(P )

)

induces an isomorphism on fundamental groups. In particular, it induces an injec-

tion on the first homology groups. We will see by closely inspecting Laudenbach

and Sikorav’s proof that this property, namely, the presence of H1-embedded

Lagrangians in arbitrarily small neighborhoods of ϕ∞(P ) is sufficient to imply

that ϕ∞(P ) is itself Lagrangian. It is not even necessary to assume that these

Lagrangians are diffeomorphic to P . In other words, we will prove the following.

PROPOSITION 2.2

Let P ⊂C
n be a closed submanifold of real dimension n. Assume that there exists

a sequence (εk) of positive numbers converging to 0 such that, for all k, Vεk(P )

contains a closed H1-embedded Lagrangian submanifold. Then P is Lagrangian.

It is clear that this proposition implies Theorem 1.3 since the embedding j from

the previous section was assumed to be totally real but not Lagrangian.
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We now turn to the proof of Proposition 2.2. We follow the proof of Lauden-

bach and Sikorav and check that it still applies under our hypothesis. We will

use the following result of Gromov [10] (see also [17, Proposition 1.2]).

If a closed Lagrangian submanifold N ⊂Cn is contained in Cn−1×B(α), then

there exists a nonconstant holomorphic disk with boundary on N of area smaller

than πα2. In particular, there is a loop γ in N such that 0< 〈[λ0], γ〉< πα2 where

[λ0] is the Liouville class of N . Here B(α) stands for the ball of radius α in the

complex plane.

We argue by contradiction and assume that P is not Lagrangian. Exactly

as in [11], we can assume that the normal bundle of P in C
n has a nowhere-

vanishing section (up to replacing P by P × S1 in C
n+1). We can also assume

that the sequence (εk) is decreasing. Let Lk be a closed H1-embedded Lagrangian

submanifold of Vεk(P ). By [11, Theorem 1] (see also [16]), there exists a Hamil-

tonian function H with flow φt
H such that φt

H(P )∩P is empty for all t ∈ (0, δ) for

some positive number δ. We fix a sequence t� of positive real numbers converging

to 0 and for each � we choose εk�
> 0 such that

(2.i) φt�
H

(
Vεk�

(P )
)
∩ Vεk�

(P ) = ∅.

In particular, the isotopy (φt
H)0≤t≤t� displaces the Lagrangian submanifold Lk�

.

By reparameterizing it, one can find a Hamiltonian isotopy (ϕt)0≤t≤t� which still

satisfies (2.i) and which has the additional property that it is constant equal to

the identity (resp., ϕt�) for t close to 0 (resp., close to t�). From this fact, one

can construct a particular Lagrangian embedding of Lk�
× S1 in Cn+1; namely,

we have the following result.

PROPOSITION 2.3

Identify the circle S
1 with R/2Z. There exists a Lagrangian embedding Φ� : Lk�

×
S
1 →C

n ×C with the following properties.

(1) The Liouville class of Φ� is of the form ([λ�],0) ∈H1(Lk�
× S

1,R).

(2) If π denotes the natural projection Cn ×C→Cn, then the map π ◦Φ� :

Lk�
× S

1 → C
n is given by π ◦Φ�(x, t) = ϕt·t�(x) for t ∈ [0,1] and π ◦ Φ�(x, t) =

ϕ(2−t)·t�(x) for t ∈ [1,2].

(3) The image of Φ� is contained in C
n×B(α�) where α� goes to 0 as � goes

to infinity.

This proposition is very classical; we refer the reader to [10, Section 2.3.B′
3] or

[15] for its proof. Exactly as in [11], we will now use Proposition 2.3 to finish the

proof of Proposition 2.2. According to Gromov’s result mentioned above, there

exists a nonconstant holomorphic disk g� = (g�1, g
�
2) :D→Cn ×C with boundary

contained in Φ�(Lk�
× S

1) of area at most πα2
� . Let p : Lk�

× S
1 → Lk�

be the

natural projection. The map

h� := p ◦Φ−1
� ◦ g� : ∂D→ Lk�
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represents a nontrivial homology class by Proposition 2.3(1). Recall that the

sequence (εk) is decreasing; hence, we can consider the map

i ◦ h� : ∂D→ Vε1(P ),

where i : Lk�
→ Vε1(P ) is the inclusion. It still represents a nontrivial homology

class since Lk�
is H1-embedded.

LEMMA 2.4

The maps i ◦ h� and g�1 considered as maps from ∂D to Vε1(P ) are homotopic.

Proof

Define v� : ∂D → Lk�
× S

1 by v� = Φ−1
� ◦ g�. We have i ◦ h� = i ◦ p ◦ v� and g�1 =

π ◦Φ� ◦ v�. Proposition 2.3(2) implies that the two maps

i ◦ p,π ◦Φ� : Lk�
× S

1 → Vε1(P )

are homotopic; hence, i ◦ h� and g�1 are homotopic. �

Hence, g�1(∂D) represents a nontrivial homology class in H1(Vε1(P ),R). However,

g�1(∂D) bounds the disk g�1(D) whose area is bounded above by the area of g�(D),

which goes to 0 as � goes to infinity. This gives a contradiction with the following

lemma from [11, p. 165] applied to A= Vε1(P ).

LEMMA 2.5

Let A be a compact domain in C
n. Then there exists δ(A)> 0 such that, for any

smooth map u :D→Cn with boundary contained in A and such that [u(∂D)] �= 0

in H1(A,R), one has

area(D)≥ δ(A).

This concludes the proof of Proposition 2.2 and thus of Theorem 1.3. As the

reader will have noticed, we have only repeated the proof of Laudenbach and

Sikorav [11].

3. Identification of the contact structure

Recall from the introduction that Mε is the boundary of the ε-tubular neigh-

borhood of a totally real submanifold j(L) of Cn, endowed with its canonical

contact structure ξε. We prove here the following result.

PROPOSITION 3.1

The manifold (Mε, ξε) is contactomorphic to (ST ∗L, ξst).

In what follows, we will identify L and j(L) and will not mention the map j

anymore. Hence, we will think of TL as a subbundle of L×C
n.

First, we will have to deal with the fact that the normal bundle NL of L in

C
n need not coincide with the image under J0 of its tangent bundle; indeed, L
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is not assumed to be Lagrangian. For this, we choose once and for all a smooth

map

φ : TL× [0,1]→ L×C
n

with the following properties:

• the map φ is of the form φ(x, v, t) = (x,A(x, v, t)),

• for each t, φt := φ(·, ·, t) is an isomorphism onto a rank n subbundle of

L×C
n which is transverse to TL,

• φ0(TL) =NL,

• φ1 = J0 and hence φ1(TL) = J0TL,

• the metric on TL induced by the embedding φt and by the Euclidean metric

on C
n does not depend on t; it is denoted by | · |.

It is easy to construct a map φ satisfying the first four properties, and one can

then always achieve the last one by composing with a bundle automorphism

TL→ TL depending on t. In the following we will denote by Dδ(TL) the open

disk bundle of radius δ in TL for the metric | · | induced by φ. Consider now the

maps

θt : TL→C
n

(
t ∈ [0,1]

)

defined by θt(x, v) = j(x) +A(x, v, t). There exists δ1 > 0 such that, for each t in

[0,1], the map θt is injective and a local diffeomorphism on Dδ1(TL). The open

set

θt
(
Dδ1(TL)

)
⊂C

n

is a tubular neighborhood of L modeled on a varying subbundle of L×C
n, which

is always transverse to TL. Let J t be the almost-complex structure on Dδ1(TL)

which is the pullback of J0 by θt. Now recall the following formula from [2,

Section 2.2]. If ϕ is a function defined on an open set V of Cn, if x is a point of

V , and if u ∈Cn, then we have

−ddCϕx(u,J0u) = Hessϕ,x(u) +Hessϕ,x(J0u),

where Hessϕ,x is the Hessian of ϕ at x and dCϕ= dϕ ◦J0. Let h :Dδ1(TL)→R+

be the function h(x, v) = |v|2. By applying the above formula to the functions

h ◦ θ−1
t for x ∈ L one finds

−ddCJth > 0
(
t ∈ [0,1]

)

along the zero section L⊂Dδ1(TL). Here we have used the notation

dCJth= dh ◦ J t.

This implies that there exists a positive number δ2 < δ1 such that

−ddCJth > 0

on all of Dδ2(TL) for all t in [0,1]. Fix any number ε ∈ (0, δ22), and let

Sε = {h= ε} ⊂Dδ2(TL).
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This is the sphere bundle of radius
√
ε. Let ξ(t) = TSε ∩ J tTSε be the field

of complex tangencies for J t in Sε. All the ξ(t)’s are contact structures since

h is J t-convex on Dδ2(TL). Note that ξ(0) = ξε is the contact structure that

we want to identify with the canonical contact structure on ST ∗L. By Gray’s

theorem, all the ξ(t)’s are isomorphic; hence, it is enough to prove that (Sε, ξ(1))

is contactomorphic to (ST ∗L, ξst).

Recall now that the Riemannian metric | · | on L induces a decomposition of

the tangent bundle of TL into horizontal and vertical subbundles. At each point

(x, v) ∈ TL one has a decomposition

T(x,v)TL=H(x, v)⊕ V (x, v),

where V (x, v) is the tangent space to the fiber of the projection π : TTL →
L at (x, v), and H(x, v) is the horizontal subspace defined by the Levi-Civita

connection of | · | (see [14, Section 1.3]). Both V (x, v) and H(x, v) are canonically

identified with TxL. Hence, one has an identification

T(x,v)TL� TxL× TxL,

where the first factor is horizontal and the second vertical. Let J∗ be the almost-

complex structure on TL defined by (u, v) �→ (−v,u) under the previous identi-

fication (see [14, Section 1.3.2] for more details). Let ξ∗ be the field of complex

tangencies for J∗ on Sε. Then (Sε, ξ
∗) is contactomorphic to (ST ∗L, ξst) (see

[14]).

We now want to find a path of almost-complex structures from J∗ to J1

to relate the contact structures ξ∗ and ξ(1). But along the zero section both

J1 and J∗ interchange the vertical and horizontal subbundles, and actually the

hypothesis φ1 = J0 made earlier implies that J∗ = J1 along the zero section.

Since J∗ is tamed by a symplectic form on TL, this implies that J1 and J∗ are

tamed by a common symplectic form, say, Ω, on Dδ3(TL) for δ3 ∈ (0, δ2) small

enough. Now we can find a path J(t) of almost-complex structures on Dδ3(TL)

such that J(0) = J∗ and J(1) = J1 and such that J(t) does not depend on t

along the zero section. Since

−ddCJ(t)h > 0

along the zero section for all t, we can once again shrink our neighborhood and

conclude that

−ddCJ(t)h > 0

for all t on Dδ4(TL) for some δ4 ∈ (0, δ3). Appealing to Gray’s theorem again

and shrinking ε if necessary, we conclude that (Sε, ξ(1)) and (Sε, ξ
∗) are contac-

tomorphic. This concludes the proof of Proposition 3.1.
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curves, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 801–853. MR 2931519.

[14] G. P. Paternain, Geodesic Flows, Progr. Math. 180, Birkhäuser Boston,
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67084 Strasbourg, France; ppy@math.unistra.fr
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