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Abstract We introduce and study a number of new spaces of ultradifferentiable func-
tions and ultradistributions and we apply our results to the study of the convolution of
ultradistributions. The spaces of convolutors OZ (R?) for tempered ultradistributions
are analyzed via the duality with respect to the test function spaces Og (R4) introduced
in this article. We also study ultradistribution spaces associated to translation-invariant
Banach spaces of tempered ultradistributions and use their properties to provide a full
characterization of the general convolution of Roumieu ultradistributions via the space
of integrable ultradistributions. We show that the convolution of two Roumieu ultra-
distributions T, § € D'{Mp} (R?) exists if and only if (¢ * §)T € D/L{IMP} (R?) for every
pe D{A{P}(Rd).

1. Introduction

This article is devoted to the study of various problems concerning convolution
in the setting of ultradistributions. A detailed study of some of these problems
has been lacking in the theory of ultradistributions for more than 30 years. In
addition, we introduce new spaces of ultradifferentiable functions and ultradistri-
butions associated to a class of translation-invariant Banach spaces as an essential
tool in this work.

In the first part of the article we analyze the space of convolutors—called
ultratempered convolutors here—for the space of tempered ultradistributions.
Naturally, such an investigation would be of general interest as being part of the
modern theory of multipliers. In the case of tempered distributions, the space of
convolutors was introduced by Schwartz [27] and its full topological characteri-
zation was given years later in Horvath’s [7] book (see also [18]). The space of
ultratempered convolutors OF (R?) was recently studied in [6]. Our first impor-
tant result is the description of O (R?) through duality with respect to the test
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function space O (R?) constructed in this article. The treatment of the Roumieu
case is considerably more elaborate than the Beurling one, as it involves the use
of dual Mittag—Lefller lemma arguments for establishing the sought duality.
The second important achievement of the article is related to the existence of
the general convolution of ultradistributions of Roumieu type. After the introduc-
tion of Schwartz’s conditions for the general convolvability of distributions, many
authors gave alternative definitions and established their equivalence. Notably,
Shiraishi [28] found out that the convolution of two distributions S, T € D'(R?)
exists if and only if (¢ * S)T € D}, (R?) for every ¢ € D(RY). The existence of
the convolution for Beurling ultradistributions can be treated (see [8], [9], [20])
analogously as that for Schwartz distributions. In contrast, corresponding char-
acterizations for the convolution of Roumieu ultradistributions have been a long-
standing open question in the area. It was only recently (see [22]) that progress

in this direction was made through the study of e tensor products of B{*»} and
locally convex spaces. The following characterization of convolvability was shown
in [22]: the convolution of two ultradistributions 7', S € D'{Mr}(RY) exists if and
only if (p*S)T € ﬁ’g/[p}(Rd) for every ¢ € DIMr}(RY) and, for every compact
subset K of R?, (¢,x) — ((p*T)S,x), D}M’J} x BIM»} 5 C is a continuous
bilinear mapping. The spaces B{M»} and D’ {L%}(Rd) were introduced in [21].
In this article we shall make a significant improvement to this result, namely,
we shall show the following more transparent version of Shiarishi’s result for
Roumieu ultradistributions: the convolution of T, S € D'tM»}(R?) exists if and
only if (¢ * S)T € D/L{lMp}(]Rd) for every o € DIMp}(R?),

Our proof of the above-mentioned result about the general convolvability of
Roumieu ultradistributions is postponed to the last section of the article and
it is based upon establishing the topological equality D’ {LJYP} = D’{L]y”}. This
and other topological properties of the spaces of integrable ultradistributions
can be better understood from a rather broader perspective. In this article we
introduce and study new classes of translation-invariant ultradistribution spaces
which are natural generalizations of the weighted D}, -spaces (see [1], [3]). In
the distribution setting, the recent work [4] extends that of Schwartz on the
D ,-spaces and that of Ortner and Wagner [17], [30] on their weighted versions;
recent applications of those ideas to the study of boundary values of holomorphic
functions and solutions to the heat equation can be found in [5]. The theory we
present here is a generalization of that given in [4] for distributions. Although
some results are analogous to those for distributions, it should be remarked that
their proofs turn out to be much more complicated since they demand the use
of more sophisticated techniques and new ideas adapted to the ultradistribution
setting—especially in the Roumieu case.

The article is organized into eight sections. In Section 3 we characterize the
spaces of tempered ultradistributions S’*(R?) in terms of growth estimates for
convolution averages of their elements, thus extending an important structural
theorem of Schwartz [27, Theorem VI, p. 239]. Using Komatsu’s [11] approach
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to ultradistribution theory, we define the test function spaces Of(R?) whose
strong duals are algebraically isomorphic to the ultratempered convolutor spaces
O (R4). We also obtain there structural theorems for O (R?).

Section 4 is dedicated to the analysis of translation-invariant Banach spaces
of tempered ultradistributions. We are interested in the class of Banach spaces of
ultradistributions that satisfy the ensuing three conditions: (I) D*(RY) < E <
D*(RY), (I) E is translation-invariant, and (III) the function w(h) := ||T_||
has at most ultrapolynomial growth. Such an E becomes a Banach module over
the Beurling algebra L}, and has nice approximation properties with respect to
the translation group. In particular, we show that the translation group on F is
a Cp-semigroup (i.e., limy, o ||Thg — g|lz =0 for each g € E). Using duality, we
obtain some results concerning E’ which also turns out to be a Banach module
over the Beurling algebra L}, but E’ may fail to have many of the properties that
E enjoys. That motivates the introduction of a closed subspace E. of E’ that
satisfies the axioms (II) and (III) and it is characterized as the biggest subspace
of E’ for which limp,_o ||Thf — f||g» = 0 for all its elements.

In Section 5 we define our new test spaces D(EM") and D}{EM"} of Beurling and
Roumieu type, respectively. In the Roumieu case we also consider another space
@J{EMP } (in connection to it, see [13] for related spaces). We show that the elements
of all these test spaces are in fact ultradifferentiable functions and the continuous
and dense embeddings S*(R?) < D} — E < S"*(R?) hold. We also prove that
the D%’s are topological modules over the Beurling algebra L1 . The spaces D%
are continuously and densely embedded into the spaces Og(Rd) introduced in
Section 3.

In Section 6 we investigate the topological and structural properties of the
strong dual of D3, denoted as D%, . A structural theorem for D, is given;
there, we characterize its elements in terms of convolution averages and also via
representations as finite sums of actions of ultradifferential operators on elements
from E’. Our results enable us to embed the spaces D}, into the spaces of E-
valued tempered ultradistributions S’*(R?, E”). We prove that the spaces DEMP}
and b}{EM”} are topologically isomorphic. When F is reflexive, we show that D;:Mp)

and DE{,M"} are (F'S*)-spaces, while D{EMP} and DgMp) are (DF'S*)-spaces.
Section 7 is devoted to the weighted spaces ng and ng, which we treat

here as examples of the spaces D}, and D%, . This approach allows us to prove

the topological identification of D*c,, with the spaces B,j‘, and lgj‘,, which actually
leads to the topological equality D! {lewp} = D’{Ljyp} and additional topological
information about D7} .

Finally, Section 8 deals with applications to the study of the convolution of
ultradistributions. We provide there the announced improvement to the result
from [22] for the existence of the general convolution of Roumieu ultradistribu-
tions. We also obtain in this section results concerning convolution and multi-

plicative products on the spaces D}, , generalizing distribution analogues from [4].
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2. Preliminaries

As usual in this theory, M,, p € N, My =1, denotes a sequence of positive num-
bers for which we assume (see [11]): (M.1) M2 < M, 1M1, p € Zy; (M.2) M, <
coHP ming<g<p{Mp-¢My}, p,q €N, for some co, H > 1; (M.3) 3°° 1 M1/
M, < coqMy/Myi1, q € Z. For a multi-index a € N%, M, means M),|. The asso-
ciated function of the sequence M, is given by the function M(p) =
Sup,en Int ]\’jl—z;, p > 0. It is a nonnegative, continuous, monotonically increasing
function, vanishes for sufficiently small p > 0, and increases more rapidly than
Inp? as p tends to infinity, for any p € N (see [11, p. 48]).

Let U CR? be an open set, and let K € U be a compact subset. (We will
always use this notation for a compact subset of an open set.) Recall that
EMpbh(K) stands for the Banach space (from now on abbreviated as (B)-

space) of all ¢ € C°°(U) which satisfy px n(¢) = Sup,ene SUPex \I}’LZ«JOM(?I < 0,

and DE(IVZ”} stands for its subspace consisting of elements supported by K. Then

EM)(U) = lim lim EMPH(K),  eWHU) = lim lim EPMPH(K),
— — — —

KeU h—0 KeU h—oo
M, . M, ; L M,
D) = D, DU (0) = iy D
h—0 KeU
Di" = tim DY, DM (U) = tim DI
h—o0 KeU

The spaces of ultradistributions and compactly supported ultradistributions
of Beurling and Roumieu type are defined as the strong duals of D(MP)(U) and
EMp) (1), and DIMr}H(U) and EIMr} (1), respectively. We refer to [11], [12], and
[13] for the properties of these spaces. In keeping with Komatsu [11], the common
notation for (M,) and {M,} will be *. In the definitions and statements where
we consider the (M) and {M,} cases simultaneously, we will always first state
the assertions for the Beurling case followed by the corresponding assertion for
the Roumieu case in parentheses.

We define ultradifferential operators as in [11]. The function P(§) =
> aent Cal®, £ €RY, is called an ultrapolynomial of the class (M,) (of class
{M,}) if the coefficients c, satisfy the estimate |c,| < CLY/M,, a € N%, for
some C,L >0 (for every L >0 and a corresponding C = Cf, > 0). Then P(D) =
Yo CaD* is an ultradifferential operator of the class * and it acts continuously
on £*(U) and D*(U) and the corresponding spaces of ultradistributions £*(U)
and D™*(U).

We denote as R the set of all positive sequences which monotonically increase
to infinity. For (r;) € R, we write Ry for the product H§:1 rj and Ry = 1.
For (r,) € MR, consider the sequence Ny =1, N, = M,R,, p € Z+. Its associ-
ated function will be denoted by N, (p), that is, N, (p) = sup,cyIng #;p,
p > 0. As proved in [13, Proposition 3.5], the seminorms [¢|x ) =

SUP ,end SUP e i W;%, when K ranges over compact subsets of U and (r;)

in R, give the topology of E{Mr}(U7). Also, for K € R?, the topology of D%M’)}
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is given by the seminorms | - ||k (,,), with (r;) ranging over R. From this, it
\ (M) . {i1,} (M} . .
follows that Dy "' = hm(r}T&% Di.irs) where Di. vy 18 the (B)-space of all

C*°-functions supported by K for which the norm |- |k ;) is finite. Further-

more, for U open and r > 0 (for (r;) € R), we denote Dg{\i”) =lim — D%M’)}’T

(Déﬂffj]; = liszU D}Né’;j)) Both spaces carry natural (LB) topologies (but we
shall not need this fact).
We will often make use of the following lemma by Komatsu (see [14, p. 195]).

In the future we refer to it as the parametrix of Komatsu.

LEMMA 2.1 (SEE [14])
Let K be a compact neighborhood of 0, let r >0, and let (1) € R.

(i) There are u € D}Aﬁp} and v € D%Mp) such that P(D)u = 4§ + ¢ where
P(D) is an ultradifferential operator of class (Mp).

(ii) There are u € DE(M(’;J}) and 1 € D%M”} such that

—0 as|a|—= oo and P(D)u=4+ 1,
where P(D) is an ultradifferential operator of class {M,}.

We denote as SI/7H™ (R4), m > 0, the (B)-space of all p € C°°(R%) which satisfy

lal Ml Do |l
(2.1) om(p) := sup m e #llz
aeNd Ma

9

supplied with the norm o,,. The spaces S'™»)(R%) and S'{M»}(R?) of tempered
ultradistributions of Beurling and Roumieu type are defined as the strong duals
of SM(RY) =lim — SUFM(RY) and SVHHRY) = lim — SUTH(RY),
respectively. For the properties of these spaces, we refer to [3], [19], and [21].
It is proved in [3, p. 34] and [21, Lemma 4] that S{M}(R9) =

3 Mp Mp i
o e Ser(o R, where S5 (R = {p € CCRY [lellry) (s) <

OO} and ”QD” rp),(84) — SUPqeNd le & el
(rp)(sq) ac M, HLZ\I rp

We denote as OF(R?) the space of convolutors of S*(R?), that is, the sub-
space of all f € &*(R?) such that f x p € S*(R?) for all ¢ € S*(RY) and the
mapping ¢+ f * ¢, S*(R?) — S*(R?) is continuous. We refer to [6] for its prop-
erties.

Finally, we need the following technical result (see [23, Lemma 2.4]). See [11,
p. 53] for the definition of subordinate function.

LEMMA 2.2 (SEE [23])

Let g:[0,00) — [0,00) be an increasing function that satisfies the following esti-
mate: for every L >0 there exists C > 0 such that g(p) < M(Lp) +InC. Then,
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there exists subordinate function e(p) such that g(p) < M(e(p)) +InC’, for some
constant C' > 1.

3. On the space of ultratempered convolutors

Our goal in this section is to construct a test function space whose dual is alge-
braically isomorphic to O (R?). (We refer to [6] for properties of the latter space.)
We start with an important characterization of tempered ultradistributions in
terms of growth properties of convolution averages; an analogue to this result for
S’(RY) was obtained long ago by Schwartz (see [27, Theorem VI, p. 239]).

PROPOSITION 3.1
Let f € D'*(RY). Then, f belongs to S"*(R?) if and only if there exists A\ > 0
(there exists (1,) € R) such that for every ¢ € D*(R?)

(3.1) sup e_M(’\";l)|(f * cp)(ac)| < o0 (sup e_va(‘wD‘(f * @)(m)| < oo).
zER4 z€ERY

Proof

Observe that if f € S™*(R?), then (3.1) obviously holds. (One just needs to apply
the representation theorem for the elements of S’*(R?) (see [3, Theorem 2.6.1, p.
38]).) We prove the converse part only in the {M),} case; the (M) case is similar.
Let Q be an open bounded subset of R? which contains 0 and is symmetric (i.e.,
—Q =), and denote Q2 = K. Let B; be the unit ball in the weighted (B)-space
Léxp(sz(\-l))‘ Fix ¢ € D{M”} For every ¢ € B; N DMp}(R?), (3.1) implies |(f *

o) = 1f * @, < e MUV (f )| 01l < Cp. We obtain that

exp(Ny, (1) —
{f*¢|¢e B NDM}IRY)} is weakly bounded and, hence, equicontinuous in
D/IEM’)} (D}M”} is barreled). Hence, there exist (k,) € R and ¢ > 0 such that |(f *
Y, d)| < 1forall g € Vi, (e) = {n€ DY | 0]l < e} and ¢ € BnDIEHRY),
Let r, = kp_1/H, for pe N, p>2, and set 11 = min{1,73}. Then (r,) €
R. Let ¢ € ng(jﬁj), and choose Cy such that [|v/Cyllk ) < €/2. Let §; €
DM} (RY) such that 6; >0, suppdy C {z € R | |z| <1}, and [p,61(z) dz = 1.
Set §;(x) = j461(jz), for j €N, j > 2. Observe that for j large enough w *0; €
D{Mp} Also
Paah

0% (4 % 6;) y</yaa (x — ) — ()| 6;(t) dt

Using the Taylor expansion of the function 9% at the point & — ¢, we obtain

(0o~ vt =) < 311 [ oo+ (1 o) ) s
|ﬁ| 1
|ae]+1
§C|t|M|aH_1 H 7.

i=1
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So, for j large enough, keeping in mind the definition of (r,) and by using (M.2)
for M, we have

‘8("((w*5j)(x) )’ < — Mgy H 7“1/

||

Cl

—L gl i, T (ki H) < —M k;.
j H / 11
Hence, C’;lw *0; € Vig,)(€) for all large enough j. We obtain |(f * (1 x 0;), ¢)| <
Cy and after passing to the limit |(f * ¢, ¢)| < Cy. From the arbitrariness of
we have that for every ¢ € Dg\?fj) there exists Cy > 0 such that |(f 1, ¢)| <
Cylléll 2 for all ¢ € DIM»}(R?). The density of DMr}(R?) in

exp(N, (121))
Léxp(N ) implies that, for every fixed ¢ € Dé]}f:j), f * 1 is a continuous
functional on Lexp(Nl (i hence, [[exp(=Ni, (|- [))(f % ¥)[[ee < C2y. From the
parametrix of Komatsu, for the sequence (r;,) there are u € D{N(I }) x € DiMp} (Q),
and an ultradifferential operator of {M,,} type such that f = P(D)(ux f)+x* f.
Thus f € 8" (R9). O

Our next concern is to define the test function spaces O%(R?) corresponding to
the spaces O (R?). We first define for every m,h >0 the (B)-spaces

M,
Oc: . n(R7)

2| /
= {o e 0@ el = (X D oe M O|,) " < oo},

a€EeNd

Observe that for m; < my we have the continuous inclusion OCm h(Rd) —

Oé/{’;nl’h(Rd), and for hy < hy the inclusion OC,:n,hl(Rd) — Og{fmhz (R9) is also
continuous. As locally convex spaces (LCSs) we define

M, M, . M,
O(Ch)(Rd)_ lim Oth(Rd)a O(C )(Rd): lim O(c,h)(Rd)5

m—)oo h—o00
O (%) = 1 O, (&Y, O (&%) = m O ®)
m— —

Note that (’)(C%p)(Rd) is an (F)-space, and since all inclusions OCh (Rd)

EMp)(R?) are continuous (by the Sobolev imbedding theorem), O(CM )(Rd) is
indeed a (Hausdorff) LCS. Moreover, as an inductive limit of barreled and
bornological spaces, O(CM")(Rd) is barreled and bornological as well. Also
O{C]’\,{p}(Rd) is a (Hausdorff) LCS, since all inclusions ng L (RY) — 1Mp} (RE)
are continuous (again by the Sobolev embedding theorem). Hence, O{Mp } (RY)

is indeed a (Hausdorff) LCS. Moreover, O{c%p}(Rd) is a barreled and bornolog-
ical (DF)-space, as the inductive limit of (B)-spaces. By these considerations
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it also follows that OF(R?) is continuously injected into £(R?). One easily ver-
ifies that, for each h >0, SM»)(R?) is continuously injected into Op, M” (R%)

(StMr}(R?) is continuously injected into O{CMh }(Rd)). Moreover, one can also
prove (by using cutoff functions) that, for each h > 0, DM»)(R4) is sequentially
dense in Oéﬁ”)(Rd) (DIMr}(R?) is sequentially dense in Oéj}ip}(Rd)). Hence,
S*(RY) is continuously and densely injected into O (R?). Consequently, the dual
(OL(RY)) can be regarded as a vector subspace of &*(R?).

We will prove that the dual of OF(RY) is equal, as a set, to O (R?). (The
general idea is similar to the one used by Komatsu [11, p. 79].) To do this, we

need several additional spaces.
For m,h > 0 define

};nﬁ ::{(wa)aeNd
2lal || =MDy (12,3 1/2
Iadall,, = (5 Bty P <o),

a€eNd

e*M(h\-I)% c LQ(Rd),

One easily verifies that Y, j, is a (B)-space, with the norm || - ||y, ,-

Let U be the dibjoint union of a countable number of copies of R%, one for
each a € N, that is, U = uaeNdR Equip U with the disjoint union topology.
Then U is a Hausdorff locally compact space. Moreover, every open set in U is
o-compact. On each R% we define the Radon measure v,, by dv, = e —2M(hlz]) g,

One can define a Borel measure fi,,, on U by p,(E) =3, mML < Ve (EN Rd) for

E a Borel subset of U. It is obviously locally finite, o-finite, and i (K () < 00
for every compact subset K of U. By the properties of U described above, L, 18
regular (both inner and outer regular). We obtain that p,, is a Radon measure.
To every (1q)a € Ym,n there corresponds an element y € L2(U , ) defined by
X[re = Yo. One easily verifies that the mapping (va)a = X, Yin,n — L2(U, pim)
is an isometry, that is, Y, 5 can be identified with Lz(ﬁ , i )- Also, observe that
Oé{fmh(Rd) can be identified with a closed subspace of Y,,, , via the mapping ¢ —
((—=D)*p)q; hence, it is a reflexive space as a closed subspace of a reflexive (B)-
space. We obtain that the linking mappings in (’)(C%")(Rd) =lim — Oé/f’;n L(RY)
and O{Cj}ff}(Rd) =lim — Oé{ - , (R?) are weakly compact, whence (’)gﬁlp)(Rd) is
an (F'S*)-space and Oéj}flp}(Rd) is a (DFS*)-space. In particular, they are both

reflexive and the inductive limit Og\i”} (RY) = lim — Og/[’;n »(R?) is regular.
THEOREM 3.2
We have that T € D™*(R?) belongs to (O5(R?)) if and only if

i) in the (M,) case, for every h > 0 there exist F, 5, o € N%, with
P :
FoneMOD € L2(RY), and m > 0 such that

> M2|[FypeMtD |2,

m2|0“

(3.2) < 00

[e3



Convolution and translation-invariant spaces 409

and the restriction of T to Og%f’)(ﬂ%d) is equal to Y D“F, 1, where the series

is absolutely convergent in the strong dual of O(CJVVZP)(RUI);
(i) in the {M,} case, there exist h >0 and F,.p, a € N, with F, ,eM ') ¢
L%(RY), such that for every m >0 (5.2) holds and T is equal to ., D*Fyp,

where the series is absolutely convergent in the strong dual of OéM"}(Rd),

Proof

We will consider first the Beurling case. Let T € ((’)éMp)(Rd))’, and let h >0
be arbitrary but fixed. Denote by T} the restriction of 7' on Ogt/,[f )(Rd). By
the definition of the projective limit topology, it follows that there exists m >0
such that T} can be extended to a continuous linear functional on Oé{;’h(Rd).
Denote this extension by T}, 1. Extend T}, 1, by the Hahn-Banach theorem, to a
continuous linear functional T}, 2 on Y, 5. Since Y, j, is isometric to Lg(U,um),
there exists g € Lz(U,um) such that 75 ,((¢a)a) = fﬁ(dxa)agdum. Let Fop =
%g‘Rg6_2M(h"|), a € N?. Then, obviously eM(hH)Fa,h € L?(R?) and

M2 |[Fo,ne™ ™02,

MIJ
S, Tl — g2, ;< o0, For p € 00y (RY),

(T.¢) =Tu2(((=D)"),)
= ;/}Rd Fon(@)(—D)%p(x)dx
= (D*Fon, ).

Moreover, one easily verifies that the series ) D*F, j is absolutely convergent
in the strong dual of O(C]ﬁf)(Rd).

Conversely, let T € D'(M») (R?) be as in (i). Let h > 0 be arbitrary but fixed.
One easily verifies that T is a continuous functional on DM»)(R?) supplied with
the topology induced by (’)(C%’D)(Rd). Since DMr)(R?) is dense in O(C{\’/,[f)(Rd) we
obtain the conclusion in (i).

Next, we consider the Roumieu case. Let T' € ((’)éMp} (R%))". By the definition
of the projective limit topology it follows that there exists h > 0 such that 7' can
be extended to a continuous linear functional 77 on Og\;[l”}(Rd). For brevity in
notation, set X,, p = Og‘;mh(Rd), and set Zy, r, = Yo n/Xm,n. Since the Yy, p’s
are reflexive, so are the X,,’s and Z,, ;’s as closed subspaces and quotient
spaces of reflexive (B)-spaces, respectively. Moreover, observe that for m; < mg
we have X, n NY, n = X, n. Hence, we have the following injective inductive
sequence of short topologically exact sequences of (B)-spaces:



410 Dimovski, Pilipovi¢, Prangoski, and Vindas

0 Xin Yip Zin 0
L1,1/2

0 Xi/2,n Yijon Z1/2,n 0
L1/2,1/3

0 Xi/3,n Yi/s.n Z1/3,n 0
L1/3,1/4

where every vertical line is a weakly compact injective inductive sequence of (B)-
spaces (since X, 1, Y., Zm,n are reflexive (B)-spaces). The dual Mittag—LefHer
lemma (see [11, Lemma 1.4]) yields the short topologically exact sequence
. / . / . /
06— (lim Xy p)" ¢— (lim Yo ) ¢— (lm Zyp) «— 0.
m—0 m—0 m—0
Since (X n)m, Ym,n)m, and (Z, n)m are weakly compact injective inductive
sequences and hence regular, we have the following isomorphisms of LCSs
(limm—> Xmp) = lim X
Zm.p) = hm — Z!

m,h?

(lim — Y., 1)’ = lim — Y, ., and (lim —
m—0 ’. m, . m—0
from which we obtain the short topologlcally exact
sequence
0¢— lim X , ¢— lim Y, , «— lim Z;, , <—0.
m—0 m—0 m—0

Hence, there exists Ty € hm — Y, 1, Whose restriction to (’) }

is T1. Now observe the pl"Q]eCthQ sequence

=lim — X,
m—0 m,h

t t t
L1172 Lt1/2,1/3 L1/3,1/4
Yl/,h 1//2,h 1//3,h A
where tbl/ml/(nﬂ) is the transposed mapping of the inclusion ¢y, 1/(n+1). One
easily verifies that “u1/,1/(nt1) : Yll/(n+1), Yl/n , i given by (¢a)a
n2lel

((n+1—2\a|¢a)a. By definition, the projective limit hm — Y, h is the subspace
of [1,, Y 1/n , consisting of all elements (( o ) )k € H 1/n , such that, for all

t,5 € Zys £ < s tajuass(06)a) = (08))a (Where fu1ye1/5 = ttajuajiny 00
“uy-nay;)- Hence, if we set (da)a = (46)a, then L2(U,pyp) 3 (467 =
(k2lelpy) o for all k € Z, . In other words, we can identify lim «— Y, n with the

g2lal

space of all (¢a)a such that, for every s >0, (32, 57z lvae - h' |2 (]Rd))l/2
co. Since T € lim «— Y /m.n» there exists such (wa)a such that, for m € Z
and (Xa)a € Y1/m,n, we have To((Xa)a) = Do fRd m2, xa dpiy - Set Fop =

w"’ei;;z(hw Hence, for every s >0, (3., 21 M2||F, ,eM*l D||2 )1/2 < 00.

Moreover, for ¢ € O{M }(Rd) there exists m € Z4 such that ¢ € (’)C " m, L (RY).
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We have
T = [ Fan@)(-D)*ola) ds

=Y (D*Fon, ).

Since Oé%p}(Rd) is a (DFS*)-space its strong dual (Og,\i”}(Rd))g is complete. If

B is a bounded subset of (’){CJ’\ZP} (R9), then it must belong to some Oé{fmh(Rd) and
be bounded there. (The inductive limit Og’{"}(Rd) =lim — (’)é/[‘;l »(RY) is reg-
ular.) One easily verifies that ) sup,cp [(DYFu n, )| < oc; hence, >, DYFy p,
converges absolutely in (O{C]yiip}(Rd))g. Since OéM”}(Rd) is continuously and
densely injected into Oé{\ip}(Rd) (DM} (R?) is dense in these spaces), it follows

that the series >  D®F,, ; converges absolutely in the strong dual of OéMp} (R9).

Conversely, let T € D'{Mr}(R%) be as in (ii). Then it is easy to verify that
T is a continuous functional on DIMr}(R?) when we regard it as subspace of
(’)g’\ff}(Rd), where h is the one from the condition in (ii). Since DIM»}(R?) is
dense in Og\;[f} (R4), T is a continuous functional on Oéﬂff’ } (R%) and hence on

oM (R, O

The next theorem realizes our first goal in the article: we may identify OF(R%)
with the topological dual of OF(RY). We make use below of the following ele-
mentary inequality:

(3.3) eMPHN) < 9eM20) MY -\ > 0,
which is a consequence of the observation that

(A+p)P < 2P pb n 2P \P < M2p) 4 M2N) < 9, M(2p) M(2))
M, — M, M, — - ’

where the last inequality holds because the associated function is nonnegative.

THEOREM 3.3
The dual of O5(RY) is algebraically isomorphic to OF%(R?).

Proof

Let T € (O5(RY)) C 8™ (R?). To prove that T € OF(R%), by [6, Proposition 2],
it is enough to prove that T x p € S*(R?) for each ¢ € D*(R?). We consider first
the (M,) case. Let ¢ € DM»)(R?), and let m >0 be arbitrary but fixed. By
Theorem 3.2, for h > 2m, there exist m; >0 and F, 5, a € N9, such that (3.2)
holds. Take ms > 0 such that my > Hm and H/mg < 1/(2my). For this my there
exists C’ > 0 such that |DPp(z)| < C’Mg/mlfl. Using the inequality (3.3), for



412 Dimovski, Pilipovi¢, Prangoski, and Vindas

x,t € R? one obtains eM(m#)) < 9eM(hlz=t) eM(hIt]) Then, we have

m!Bl |DP(T s0)(ag)‘eM(mlﬂv\)
Mg

Bl M (mlz))

miflettmieh M) 08 (s — 1) e 2MOHI])
< 2 e HLQ(/W\D oo — 1) i)

m'B' M(h)|| atB oy p)|2p2M(mlal) ,—2M(hltl) g7\ />
N e
Rd

1/2

18l 1/2
< 2m7 Z ||F heM(h| N ”L2 / |Doc+[-3 |262M(h|:z:7t|) dt)

181 0 HmA 18l 1

m a+B M (h|-]) ( m)
<C ————= || Fa.ne <C — < C.
=t Za: MymloTH1A] 1 Fon e < Ca ma Z olal
Since m > 0 is arbitrary, T x ¢ € S?») (R?) and we obtain T € O (M”)(Rd) In the
{M,} case, there exist ma, C’ > 0 such that |DPy(x)| < C’Mg/mlzﬁl. Also, for T
there exist h >0 and F, ,, o € N%, such that (3.2) holds for every m; > 0. Take

m > 0 such that m < h/2 and m <mg/H, and take my > 0 such that 1/(2m;) >
m‘B‘\DB(T*AgiI)ﬁ(x)\eM("L‘ 1) < C

H/msy. Then the same calculations as above give

that is, T * p € SIMr}(R?). We obtain T € O'{M }( R9).

Conversely, let 7' € OZ(R?). In the (M,) case, by [6, Proposition 2], for
every r > 0 there exist an ultradifferential operator P(D) of class (M,) and
Fy, Fy € L>®(R?) such that T'= P(D)F} + F; and ||eMD(Fy 4+ F)|| oo ray < C.
Let h > 0 be arbitrary but fixed. Choose such a representation of T for r >
H?h. For simplicity, we assume that F» =0 and set F = F,. The general case is
proved analogously. Let P(D)=)"_ coD®. Then, there exist ¢, L > 1 such that
lca| < cLl®l/M,,. Let F, = coF. By [l1, Proposition 3.6] we have etM(*hlzl) <
C’leM(th'I') < C1eMlzl) | We obtain

M?
Z ( )2|a| H MRl l)F ”L2

M2 . M-
<1 3 gppmriealle PR e O <o

So, for the chosen h >0, (3.2) holds with m = 2L. Since T'= )" D*F,, by
Theorem 3.2 we have T € (O(M )(Rd))'. In the {M,} case there exist r >0,
an ultradifferential operator P(D) of class {M,}, and L*-functions F; and F
such that T = P(D)F; + Fy and ||eM 1D (R + Fy)[| oo (ray < C. For simplicity,
we assume that F, =0 and set F'= F;. The general case is proved analogously.
Since P(D) =", caD* is of class {M,} for every L >0 there exists ¢ > 0 such
that |co| < cLl®l/M,,. Set F,, = c,F. Take h <r/H?. Let m >0 be arbitrary
but fixed. Then there exists ¢ > 0 such that |c,| < eml®l/(21¢101,). Similarly as
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above > M2m=2el||eMtIDF |12, < 0o. Since T'=3",, D*F,, by Theorem 3.2,
we have T € (OéMp}(Rd))’. O

It would also be interesting to study the relation between the strong dual topology
on OF(R?) provided by the duality (O%(R?), 0% (R%)) and the induced one on
OF(RY) as a (closed) subspace of £,(S*(R?),S*(R%)). (The latter topology was
considered in [6].)

4. Translation-invariant Banach spaces of tempered ultradistributions

We employ the notation T}, for the translation operator Thg = g(- + h), h € R%.
The symbol “—” stands for a continuous and dense inclusion. In the rest of the
article we are interested in translation-invariant (B)-spaces of ultradistributions
satisfying the properties from the following definition.

DEFINITION 4.1
A (B)-space FE is said to be a translation-invariant (B)-space of tempered ultra-
distributions of class * if it satisfies the following three axioms.

(1) D*(R?) — E — D*(R?).

() Ty:E— E for every h € R (i.e., E is translation-invariant).

(IIT) For any g € E there exist C =Cy >0 and 7 =17, >0 (for every 7 >0
there exists C' = Cy , > 0) such that || T),g||r < CeM 1M vh e RY,

The weight function of F is the function w :R% — (0,00) given by’ w(h) :=
1Tl ey

Throughout the rest of the article we assume that E is a translation-invariant
(B)-space of tempered ultradistributions. It is clear that w(0) =1 and that Inw is
a subadditive function. We will prove that w is measurable and locally bounded;
this allows us to associate to E the Beurling algebra L. (see [2]), that is, the
Banach algebra of measurable functions u such that |[ul|1,. := [pa [u(z)|w(z) dz <
00. The next theorem collects a number of important properties of E.

THEOREM 4.2
The following properties hold for E and w.
(a) S*(R?) — E < S™*(R?).
(b) For each g € E, limp_, ||Thg — gl|lg =0. (Hence, the mapping h — Thg

is continuous.)
(¢) There are 7,C >0 (for every T >0 there is C = C; > 0) such that

w(h) <CeMUIPD - yp e RY

"By applying the closed graph theorem, the axioms (I) and (II) yield T}, € L(E) for every
h e R
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(d) E is separable and w is measurable.
(e) The convolution mapping  : S*(R?) x S*(R?) — S*(RY) extends to
LY, x E— E and E becomes a Banach module over the Beurling algebra LY, that

18,

(4.1) [uxglle <llulliolglle.

Furthermore, the bilinear mapping * : S*(R?) x E — E is continuous.
(f) Let g € E, and let p € S*(R?). Set ¢.(v) = e~ %p(x/e), and set c =
Jga (@) dx. Then, lim._,o+ [|cg — ¢ * gl|g =0.

Alternatively, in the {M,} case, the property (c) is equivalent to
(€&) there exist (I,) €M and C >0 such that w(h) < CeMN»hD vh e RY,

Proof

The property (b) follows directly from the axioms (I)—(III). For (d), notice that
(I) yields at once the separability of E. On the other hand, if D is a countable
and dense subset of the unit ball of F, then we have w(h) =sup,cp |T-rgl &,
and so (b) yields the measurability of w.

We now show (c). In the (M,,) case, consider thesets E;, ={g € E | |Thgllr <
jeM M wh e RY, j,v € Zy. Because of (), E =, ¢z, Eju. Since Ej, =
Mhera Ejvn, where Ej o ={g € E||Thg|lp < jeMWIRDY “each of these sets is
closed in E by the continuity of T}, and so are the E;,’s. Now, a classical
category argument gives the claim. In the {M,} case, for fixed 7 > 0, we consider
the sets E; = {g € E| || Thglle < jeMI"D for all h € R?}, j € Z,. Obviously E =
U ez, Ej- Again the Baire category theorem yields the claim.

Let us prove that (c¢) is equivalent to (¢). Obviously (¢) = (c). Conversely,
define F': [0,00) — [0,00) as

F(p)=sup sup Ini|Thglle-
[hI<pllgllz<1
One easily verifies that F'(p) is increasing and satisfies the conditions of Lemma 2.2.
Hence, there exist a subordinate function e(p) and C’ > 1 such that F(p) <
M(e(p)) + InC". Hence, we obtain supjg,.<; HThg~HE < C'eM (D) Now, [11,
Lemma 3.12] implies that there exists a sequence N,, which satisfies (M.1) such

that M(e(p)) < N(p) as % — 00 as p — oc. Set ), = % Take (I,) € R
such that I, <1, for all p € Z,. Then

p—1MVp

y |h|P
sup || Thgllp < VM) = ¢’ sup ——=7—
llglle<1 peN M), H§:1 ;
|h|P

< C'sup =N (D),

peN My H?:l Lj

whence (¢) follows.
We now address the property (a). We first prove the embedding S*(R%) —
E. Since D*(R?) — §*(R?), it is enough to prove that S*(R?) is continuously
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injected into E. Let ¢ € S*(R%). We use a special partition of unity
1= > d@—m), $eED}
meZd

and we get the representation () =3, s %(x —m)p(x). We estimate each
term in this sum. Because of (c), there exist constants C > 0 and 7 > 0 (for every
7 > 0 there exists C' > 0) such that

C T(m
(4.2) leT-m¥llE < m”ewj( DTl -

We need to prove that the multisequence of operators {pm + }mezd : S*(RY) —

D Jas defined as

Ff1,1
(4.3) pm,‘r(‘P) = €2M(T‘m|)me§0>

is uniformly bounded on a fixed bounded subset of S*(R%), where 7 > 0 in the
{M,} case will be chosen later. Let B be a bounded set in $*(R?). Then for each
h >0 (for some h > 0)

Rlel]eM(hl-) pa -
| ol (R4) < .

(4.4) sup sup

p€EB qeNd Ma
By [11, Lemma 3.6] we have e2M(7Im) < ¢qeM(H7Iml) and hence
(45) eQM(Tl’"LD < 2006M(2HT|7”+1'\)e]V[(2HT|a:|) < CleM(QHT\m-&-a:D’

Vo € [-1,1]%,Vm € Z%. In the (M,) case let hy > 0 be arbitrary but fixed. Choose
h >0 such that h > 2h; and h > 2H7. For this h, (4.4) holds, and by (4.5) and
the fact that ¢ € DMe) one readily verifies that

[,1’1]013
W D2 (@) Trnip())| c’
(4.6) 1 A . < AT for all ¢ € B,m € Z°.

Hence, {pm - | m € Z} is uniformly bounded on B. In the {M,} case, there exist
h,C > 0 such that [D*(z)| < CM,/h!®l. For the h for which (4.4) holds, choose
hi > 0 such that h; < min{h/2,h/2}, and choose 7 < h/(2H). Then, by using
(4.5), similarly as in the (M,) case, we obtain (4.6), namely, {p, - | m € Z¢} is
uniformly bounded on B. By (I), the mapping DF—1,1]d — F is continuous; hence,
llpm ()|l < Ca, for all p € B, m € Z<.

In view of (4.2) and the later fact, we have that {3, <y @T-n¥}%_ is a
Cauchy sequence in E whose limit is ¢ € E; one also obtains ||¢||g < C for all
¢ € B. We have just proved that the inclusion S*(R¢) — E maps bounded sets
into bounded sets, and since S*(R?) is bornological, it is continuous.

We now address E C §*(R%) and the continuity of the inclusion mapping.
Let g € E. We employ Proposition 3.1. Let B be a bounded set in D*(R?). The
inclusion E < D™ (RY) yields the existence of a constant D = D(B) such that
l(g,9)| < D||g|| for all g € E and ¢ € B. Therefore, by (c), there exist 7,C' > 0
(for every 7> 0 there exists C' > 0) such that

(9% 9)(W)| < D||Thglls < CD|g|pe™ T,
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for all g€ E, ¢ € B, h € R%. In the (M,) case, Proposition 3.1 implies that E C
S'Mp)(R%). In the {M,} case, the property (¢), together with Proposition 3.1,
implies that F C &'1M»}(RY). Since E — D"*(R%) is continuous it has a closed
graph; hence, so does the inclusion E — §*(R%) (S"*(R?) is continuously injected
into D’*(R%)). Since S'M»)(R%) is a (DFS)-space (S"{Mr} (R9) is an (F'S)-space),
it is a Pték space (see [24, Section IV.8, p. 162]). Thus, the continuity of F —
S"*(R?) follows from the Pték closed graph theorem (see [24, Theorem 8.5, p.
166]). The proof of (a) is complete.

We now show that E is a Banach module over L}. Let ¢,v € D*(R?), and
denote K = supp . We prove that

(7) lovlle < wle | Jo@)ulz) ds
The Riemann sums

L()= e Z plen)p(- —en) = e Z o(en)T-cnyp

n€ZdeneK neZdeneK

converge to o * ¢ in S*(RY) as € — 01. By (a) they also converge in E to the
same element, that is, L. — p* 1 as e = 07 in E. Set wy(t) = || T-4¢|| . Then
wy is continuous by (b). Observe that

48) Lz < D leEpliTeylze’= Y |oley)|wsley)e?,

yeZd eye K yeLleye K

and the last term converges to [} [p(y)|wy(y)dy. Since wy(t) = |T-|p <
[l gw(t), if we let € — 0T in (4.8), then we obtain (4.7). By using (I) and a
standard density argument, the convolution can be extended to *: L, x E — E
and (4.7) leads to (4.1). The continuity of the convolution as a bilinear mapping
S*(R?) x E — E in the (M,) case is an easy consequence of (4.1). In the {M,}
case, we can conclude separate continuity from (4.1), but then, [29, Theorem 41.1,
p. 421] implies the desired continuity. This shows (e).

Finally, if g € S*(RY) and ¢ € S*(R?), then by property (a) and (4.1),
lim, o+ ||cg — @< * g||lg = 0. The general case of (f), namely, the case g € E,
can be established via a density argument. (|

As in Theorem 4.2(e), one can also extend the convolution as a mapping  :
E x L., — E and obviously u* g = g * u.

We now discuss some properties that automatically transfer to the dual
space E’ by duality. Note that Theorem 4.2(a) implies the continuous injec-
tions S*(RY) — E' — 8" (R9). Definition 4.1(II) remains valid for E’. We define
the weight function of E’ as

@(h) = Tl = 1T ey = w(=h),

where one of the equalities follows from the well-known bipolar theorem (see
[24, p. 160]). Thus, Theorems 4.2(c) and 4.2(¢) hold for the weight function @
of E’'. In particular, Definition 4.1(III) holds for E’. In general, however, E’
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may fail to be a translation-invariant (B)-space of tempered ultradistributions
because Definition 4.1(I) may no longer be true for it. Note also that E’ can be
nonseparable. In addition, Theorem 4.2(b) may also fail for E’, but on the other
hand it follows by duality that, given f € E’,

(b”) the mappings R? — E’ given by h+ T}, f are continuous for the weak*
topology.

The associated Beurling algebra to E’ is L}. We define the convolution u * f =
fruof f € E' and u € L} via transposition: (ux f,g) := (f,u*g), g € E. In view of
Theorem 4.2(e), this convolution is well defined because % € LL. It readily follows
that Theorem 4.2(e) holds when E and w are replaced by E’ and w; so E’ is a
Banach module over the Beurling algebra L}, that is, |u* f||z < ||ul1.0|f]z -
Concerning Theorem 4.2(f), it may no longer be satisfied by E’.

In summary, E' might not be as rich as E. We introduce the following space
that enjoys better properties than E’ with respect to the translation group.

DEFINITION 4.3
The (B)-space E’ stands for E' = L} x E'.

Note that F. is a closed linear subspace of E’, due to the Cohen—-Hewitt factoriza-
tion theorem [10, p. 178] and the fact that L} possesses bounded approximation
unities. The ensuing theorem shows that F/ possesses many of the properties that
E' lacks. It also gives a characterization of E and tells us that Definition 4.1(I)
holds for E’ when F is reflexive.

THEOREM 4.4
The (B)-space E!, satisfies the following.

(i) S*(RY) — E.— 8™ (R?) and E’, is a Banach module over L} .

(ii) Definition 4.1(I1) and Theorems /.2(b) and J.2(f) are valid when E is
replaced by E,.

(i) E,={f€E |limp—o ||[Tnf — fllz =0}.

(iv) If E is reflexive, then E, = E' and E' is also a translation-invariant
(B)-space of tempered ultradistributions of class *.

Proof

Except for the inclusion S*(R?) C E’, the rest of the assertions can be proved
in exactly the same way as for the distribution case; we therefore omit details
and refer to [4, Section 3]. To show the inclusion S*(R%) C E’, note that S*(R?) =
span(S*(R4) x S*(R4)) where the closure is taken in S* (R?). (This follows because
@ *d; — p in S*(R?), where the sequence {07132, can be taken as in the proof
of Proposition 3.1.) Hence, S*(R?) is a subset of the closure of span(S*(R?) *
S*(R%)) in E’, and so the inclusion $*(R¢) C E/ must hold. O
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It is worth noticing that E’ carries another useful convolution structure. In fact,
we can define the convolution mapping *: E' x E — L by

(f = g)(@) = (f(t),9(x — 1)) = (f(t), T-24(1)),

where E = {g € S"(RY) | g € E} with norm |g| z := ||gllz and L is the dual
of the Beurling algebra L, that is, the (B)-space of all measurable functions
satisfying ||u]/ec,w = esssup,cpa |g(2)]/w(z) < co. We consider the following two
closed subspaces of L :

UC,={ue Ly | im |Thu —ullocw =0}  and
—

lim M%) :o}.

|| — o0 w(x)

4.9
(49 Co = {u € C(RY)

The first part of the next proposition is a direct consequence of Theorem 4.2(b).
The range refinement in the reflexive case follows from the density of S*(R?) in
E' (Theorem 4.4(iv)).

PROPOSITION 4.5
We have that E'« E CUC.,, and % : E' x E — UC.,, is continuous. If E is reflezive,
then E' x E CC,,.

5. The test function space Dy,

In this section we define and study the test function space Dy, whose construction
is based on the (B)-space E. Let

m « DOL
Dy = {90 €L ’ D% € E,Ya e N, |||l g.m = sup w < OO}'
aeNd a

It is a (B)-space with the norm | - || g,m. One easily verifies that none of these
spaces is trivial; indeed, they contain D*(R9). Also, D%M”}’ml - DEMP}’mQ for
ma < mq with continuous inclusion mapping. As LCSs we define

'DE?MP) _ 1(&1 D;{EMp}vm, D{EMP} — ILH} ’DéMp}ml.
m—oo m—0

Since D}{EMP}’m is continuously injected in E for each m > 0, D}{EM"} is indeed a

(Hausdorff) LCS. Moreover, D}{EM”} is a barreled, bornological (DF')-space as an
inductive limit of (B)-spaces. Obviously, D%M") is an (F')-space. Of course D3, is
continuously injected into FE.

Additionally, in the {M,} case, for each fixed (r,) € R we define the (B)-

space
r D«
DJ{EM”}’( v = {go €er ‘ D%p € E,Va € N, lell e, ) = sup _D%lls T;IJE < oo},
« Ma Hj:lrj

with norm || - |[g,(,,)- Since, for k>0 and (r,,) € R, there exists C' > 0 such that
Elel > C’/(]_[‘]a:l1 i), D}{EMP}’k is continuously injected into D}{EM”}’(T‘“). Define as
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LCS @EM‘"} = lim(r?m D}{EM‘”}’(T”). Then Yi}gMp} is a complete LCS and D}{EMP}
P

is continuously injected into it.

PROPOSITION 5.1
The space DEM”} 18 regular, namely, every bounded set B in D}{EMP

in some DEMP}’m. In addition D{EM’J} is complete.

} is bounded

Proof
For (r,) € R denote by R, the product Hlf‘:‘l rj. Let B be a bounded set in

DEM”}. Then B is bounded in ﬁ%M”}; hence, for each (r,) € R there exists

C(r,) > 0 such that sup, HR]?Q]@“E < C,), for all p € B. By [13, Lemma 3.4]

lal | He
we obtain that there exist m,Cs > 0 such that sup, %ﬂ“’”bﬂ < (s, Yy € B,
DM}

e

which proves the regularity of
Vis a (DF)-space it is
enough to prove that it is quasicomplete (see [16, Theorem 3, p. 402]). Let ¢, be a

It remains to prove the completeness. Since D}{EM’”

bounded Cauchy net in D}{EM”}. Hence, there exist m,C' > 0 such that ||, || gm <

D}{EMP} — D){EM”}’(TP) are continuous it follows that

C, and since the inclusions
¢, 1s a Cauchy net in D}{EM’”}’(TP) for each (r,) € M. It is obvious that without
losing generality we can assume that m < 1. Fix m; <m. Let € > 0. There exists
po € Z4 such that (mq/m)P <e/(2C) for all p > py, p € N. Let 7, = p. Obviously
(rp) € M. Since ¢, is a Cauchy net in DEM‘?}’(T”), there exists vy such that for all

v, A > vy we have |, — @illg, ) < €/(po!). Hence, for |a| < po

mi™ D, — Dy | D%y = D%osle _
M, - M, N
and for |a| > pg

a
my |||D“¢AV4; N SQC(%)M ..
We obtain that, for v, A > vy, ||¢, — @allEm, <&, that is, ¢, is a Cauchy net in
the (B)-space D}{EM”}’ml; hence, it converges to ¢ € D}{EM”}’ml in it and thus also
in pMP). O

Similarly as in the first part of the proof of this proposition one can prove, by
using [13, Lemma 3.4], that D}{EM‘“} and ﬁ{EMp} are equal as sets, that is, the
canonical inclusion DfEMp} — ﬁEMP} is surjective. We will actually show later
(see Theorem 6.7) that the equality ﬁ}{EM” - DEMP} also holds topologically;
however, we need to study intrinsic properties of their duals in Section 6 in order

to reach such a result.

PROPOSITION 5.2
The following dense inclusions hold: S*(R?) — D} — E — S8™*(R?), and D}
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is a topological module over the Beurling algebra LY, that is, the convolution  :
LY x Dy — Dy, is continuous. Moreover, in the (M,) case the following estimate:

(5.1) lux ellem < lullwllelzm, m>0,

holds. In the {M,} case, for each m >0 the convolution is also a continuous
bilinear mapping L}, x DEMP}’M — DEM”}’m and (5.1) holds.

Proof

Clearly Dy, is continuously injected into E. We will consider the {M,} case.
We will prove that, for every h > 0, SioM”}’h(Rd) is continuously injected into
DiENIp}’h/ # . From this it readily follows that S{M»}(R?) is continuously injected
into DL} Denote by o, the norm in SL7 1" (RY) (see (2.1)). Since STM»}(RY) —
E, it follows that SioM”}’h/H(Rd) — E. Hence, there exists C; > 0 such that
lelle < Cionu(p), Ve € SioM”}’h/H(Rd). Let ¢ € SioM”}’h(Rd). It is easy to ver-
ify that, for every g € N¢, DPy € SioM’)}’h/H(Rd). We have

WDyl _ bl BPeM D Dty o)
el M, = ‘e, V5P HFIM;

plal+8] ||eM(h\'|)Da+6w||Lm(
Matp

< ¢oCysup R) < coCron(v),
B

which proves the continuity of the inclusion SiMphh (RY) — D){EM”}’h/ "

. The proof
that S(»)(R9) is continuously injected into D(EM") is similar and we omit it. We
have shown that $*(RY) — D% — E < 8™ (R%). To prove that D} is a module
over the Beurling algebra L] we first consider the (M,,) case. For u € DM»)(R?),

pE DEM"), and m > 0 we have

ml7!
M,

=|jus 07| < luloli¢lzam.

By a density argument, the same inequality holds true for u € L. and ¢ € D(EM”).
After taking the supremum over v € N¢, we obtain (5.1). In the {M,} case,
by a similar calculation as above, we again obtain (5.1) for ¢ € DI{EMP}’m and

u € L}. Hence, the convolution is a continuous bilinear mapping L., x DEM” bm_,

DEM”}’m. From this we obtain that the convolution is a separately continuous
mapping L} x D}[EM"} — D}{EMP}, and since L} and DEMP} are barreled (DF)-
spaces, it follows that it is continuous (see [16, Theorem 11, p. 161]).

It remains to prove the density of the injection S*(R?) < D%. Let ¢ € D.
Pick then ¢ € D*(R?Y) with support in the unit ball of R? with center at the
origin such that ¢(z) >0 and [;, ¢(z)dz =1, and set ¢;(z) = j%¢(jz). We only
consider the {M,} case; the (M,) case is similar. There exists m > 0 such that
b, p € DEMP}’m and |D¢(z)| < CM,/ml!, for some C' > 0. Let 0 < m; <m be
arbitrary but fixed. We will prove that || — ¢ * ¢;||g,m, — 0. Let € > 0. Observe
that there exists C; > 1 such that ||¢;|[1,w < C1, Vj € Z, and ||¢]1. < Ci.
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Choose pg € Z4 such that (mi/m)P < e/(2C3) for all p > py, p € N, where
Cy =Ci(1+ ||¢|lg,m) > 1. By Theorem 4.2(f) we can choose jo € Z4 such that

|

\
%HD“@ — D% ¢j||g < e for all |a| <py and all j > jo, j € N. Observe that

if |a| > po; then we have

|ex] lex] lex]

my e} « my « my «
_ . < 1 1 )
1D = D0 % dylle <TI0l + T ID°¢llElle;

1w

mq la ma la
< (Z2) lellzm +C1 (5 ) lelzm <e.
m m

Hence, for j > jo, [l¢ — ¢ * ¢}l Em, <€, 50 p*¢; = ¢ in D}{EMP}’ml and conse-
quently also in D}{EM” ) Let V bea neighborhood of 0 in DEM” }. Choose a neigh-
borhood of 0 in D}{EMP} such that W+ W CV. Then W,,, =Wn D}{EM”}’ml is a
neighborhood of 0 in DgEMP}’ml; hence, there exists j; € Z, such that p*¢;, —¢p €
Wi, € W. Choose mq > 0 such that my < my/j1. Then W,,,, = I/I/'FWDJ{EM"}’M2 is
a neighborhood of 0 in DEM”}’nw. So there exists € > 0 such that {y € D}{EM”}’m2 |
X[ Emy < €} C Win,. Since jima < m, |DY(x)| < CM,/(j1m2)1®l. Pick ¢ €
StMp} such that || — ||z < e/(CC") where C' = SUp ez, J, <) w(@/5) dz, which
is finite by the growth estimate for w. Now we have

|D°‘¢(jlx)|w(x) dx

o d( |
7;\1472QH(80 — )« D%, || p <l 71/)”E/Rd h(]#j)

< éngo—wnE/ w(a/in)dz <e.
|z]<1

We obtain that ¢ * ¢;, — @ * ¢;, € W,,, € W. Hence, ¥ * ¢j, — @ =1 * ¢pj, —
px¢j Foxp, —p €W+ W CV. Since ¢ x ¢, € SMp}(R?) we conclude that
STMp}(R?) is dense in DEM"}. O

Let P(D) be an ultradifferential operator of * type. Via standard arguments, one
can prove that P(D): D}, — D}, is continuous.

In order to prove that ultradifferential operators of class {M,} act contin-
uously on ﬁEM”}, we need the following technical result (see [23, Lemma 2.3]).

Let (k,) € R. There exists (k) € R such that &, <k, and

p+q P q
(5.2) [1% <2t K [k, forallpqez,.
j=1 j=1 j=1

PROPOSITION 5.3
Every ultradifferential operator of class {Mp} acts continuously on ﬁéMp}.

Proof

Since P(D) =" coD® is of class {M,,}, for every L > 0 there exists C' > 0 such
that |c,| < CLI®l/M,,. Now, [13, Lemma 3.4] implies that there exist (r,) € R
and C > 0 such that |c,| < C1 /(M H‘ql ;). Let (I,) € R be arbitrary but fixed.

Jj=1
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Define k;, = min{r,,l,}, p € Z. Then (k;) € R, and for this (k,) we take (k) € R
asin (5.2). Then, there exists €’ > 0 such that | P(D)¢||5,q,) < C'llell &k, /(am))

for p € @{Mp } , which implies the continuity of P(D). Indeed, for all 3 € N%,

| DP P(D)gl| < Z Dol g
Mﬁn\m l M MBH|0‘| TJHW l

HIHIBl| DatB ||
o Mois T B T2 B

< Callel (xy amy) 224“‘ < C'lellws sy

<(C;

O

Interestingly, all the elements of our test space D}, are ultradifferentiable func-
tions of class *. To establish this fact we need the following lemma.

LEMMA 5.4
Let K CR? be compact. There exists m >0 (there exists (I,) € R) such that
{M 4 CENE!, (D{M v} C ENE.). Moreover, the inclusion mappings Dgfi} —

E and Di{xz} — E! (D}{(M(’l”}) — E and DEZ’}) — E. ) are continuous.

Proof

We will give the proof in the Roumieu case; the Beurling case is similar. Let
U be a bounded open subset of R? such that K € U, and set K; = U. Since

the inclusion D}M”} — FE is continuous and ’DE(M"} =lim +«— DéM”} there
1 1 (rp)em ~ K1,(rp)

exist C' >0 and (r,) € R such that ||¢l|r < Cll¢llk, (r,)- Let xm, m € Zy, be
a d-sequence from DIMr} such that diam(supp x,,) < dist(K,0U)/2, for m €
Zy. Take l, =r,_1/(2H), p > 2, and take l; =r1/(2H). Then (l,) € R. Let
P e D}ggl }) Then ¥ * xpm € Dg\;f”} and one easily obtains that ¥ * x,,, — ¢ in
Dg\f(i ) We have || * xm|lg < Oy * Xm”Kl,(rp); hence, ¥ * x,, is a Cauchy
sequence in F, so it converges. Since v * X, — 1p in D{Mr}(R?) and E is con-
tinuously injected into D'tMr}(R9), the limit of ¢ * x,,, in E must be 1. If we

let m — oo in the last inequality, then we have |[¢||g < C[|¢|k, (). Observe
that ||¢HK1 (rp) < ”wHK . (Since ¢ € DK (l})7 suppy C K) Hence, ”"/’HE <

Cll¥ k,q,)> which gives the desired continuity of the inclusion D{ ("}) — E. Sim-

ilarly, one obtains the continuous inclusion D; (’l’,}) — E! possibly with another

(I,) € M. The conclusion of the lemma now follows with (I,) € R defined as
ZP = mln{lp7 lp}a JAS Z+' U

PROPOSITION 5.5
The embedding Dy — O%L(RY) holds. Furthermore, for ¢ € Dk, D*p € Cy for
all a € N? and they satisfy the following growth condition: for every m >0 (for
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some m>0)

5.3
>3 o

(PHLOO(]Rd) < 00.

Proof
Let U be the open unit ball in R? with center at 0, and let K =U. Let r > 0 (let

(rp) € R) be as in Lemma 5.4; that is, Dg{p} CENE, (D{Mp} C FNE,) and the

inclusion mappings D" — E and DI — B (D}M(g}) — B and D)

E!) are continuous. By the parametrix of Komatsu, there exist u € D(M ), (NS

DWMp)(U7), and P(D) of type (M,) (u€ Dl{] (f}) satisfying M — 0 when
la| = o0, ¥ € DIMp}(U), and P(D) of type {M,}) such that P( )u =d—+1. Let
f€D%. Then f=wuxP(D)f —1* f. Observe that ¢ x f € £*(R?). For 8 € N4,
DPP(D)f € Dj. By Lemma 5.4, @t € ) (”}) C E' and so u € (E'Y= E'. Hence,
by the discussion before Proposition 4.5, all ultradistributional derivatives of
u* P(D)f are continuous functions on R?. From this we obtain that u* P(D)f €
C>(R%). Indeed, this result is of a local nature, so it is enough to use the Sobolev
embedding theorem on an open disk V of an arbitrary point z € R? and the
fact that D*(V) is dense in D(V) Hence f € C®°(R?). For 3 € N DA f(z) =
ux DPP(D)f(x) —* DP f(z) = F(x) — F»(z). By the above discussion, the last
equality, and Proposition 4.5, it follows that D f € UC,. To prove the inclusion
D% — OL(R?), we consider first the (M,) case. Let m > 0 be arbitrary but
fixed. Since P(D) =" coD® is of (M,) type, there exist m;,C’ > 0 such that
lcal < C”mlla‘/Ma. Let mz = 4max{m, m; }. For Fy, since P(D) acts continuously
on Dy, we have

Msg

|Fy(2)] < [lull || D P(D) f (2) || po(—2) SCzw(—x)l\ﬂllE'||fHE,m2HW

and, similarly,
Mg

| Fa()] < Csw(—2)|[¢]| & 2m)IAl"

M;
2 )IBI<C3°J( Pl I fll2mat 55

Hence

(2m) 71| DP f ()|

(5.4) Myw(—2)

<" (|lul| g + ||TLHE/) | fll 2,mom -

Since there exist 7,C"" > 0 such that w(z) < C"”eM 12l by using [11, Proposi-
tion 3.6], we obtain w(—xz)eMl*) < CyeMTHIzl)  Hence,

2|e| 1/2 2laly paf o2\ 1/2
(20; Trzlwg ||Daf67M(TH|I)||%2> < (s (za:njlw—(% w—(_J.C)HLOO>

< C(lalle + 1) 1 1l ma

which proves the continuity of the inclusion D(A RN O(Cl\ip% (R9) and hence also

the continuity of the inclusion DJ(E ») O(M )(Rd)
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In order to prove that the inclusion DEMP} — OéMp}(Rd) is continuous it

is enough to prove that, for each h > 0, DEM’)} — O{C%”}(Rd) is a continuous
inclusion. And in order to prove this, it is enough to prove that for every m >
0 there exists m’ > 0 such that we have the continuous inclusion D{EMP}’m —
Ogvfrf,},h(Rd). So, let h,m >0 be arbitrary but fixed. Take m’ < m/(4H). For

fe DEM‘“}’M, using the same technique as above, we have
(2m")PI|DP f(x)]

Mpw(—x)
For the fixed h take 7 > 0 such that 7H < h. Then there exists C"" > 0 such that
w(z) < ™M) and by using [11, Proposition 3.6] we obtain w(z)eM (712D <
CeM(THlz]) Similarly as above, we have

(5:5) <C"(laller + 1 )1 f |l 2,m-

2|

1/2 .
(3“1 fe MR ) < Ol + 1602l m,

(0%

which proves the continuity of the inclusion D}{EM”}’m — O{C{\if,}: L(RY).

Observe that (5.3) follows by (5.4) in the (M),) case and by (5.5) in the {M,}
case. It remains to prove that D*f € Cy. We will prove this in the {M,} case;
the (M,) case is similar. By using Proposition 5.3, with a similar technique to
that above, one can prove that for every (k,) € 2R there exists (I,,) € R such that

for f e D{EMP} we have

D £ ()
w(=2)Ms TT} L, k;
Let € > 0. Since DIMr}(R9) is dense in DJ{EM”} (Proposition 5.2), it is dense in

DM Pick x € DM (RY) such that [|f — x|z, < e/(C”(lille + [¢]5))-
Then, by (5.6), for x € R%\ supp x we have

(5.6)

< C"(lallpr + 121 ) I f |l 2,

|DP f ()| _ D) =x(@))] _
w=o)Ms 1 by w(=a)Ma Tk~
which proves that DP f € Cy. g

REMARK 5.6
If f € S*(RY), then by the proof of the previous proposition (and (4.1)), we have

1D fle < lulle || D P(D)f|, , + 1¥1 21 D” fll1w,

since u,¥ € E (by their choice). Also, one easily verifies that (see the proof of
Proposition 5.3) for every m > 0 there exist m > 0 and C; > 0 (for every (k) € R
there exist (I,) € R and C; > 0) such that

Al D f1.0

o DSl )

(57) Hf”E,m <Ci sup ”

(”f”E,(kp) < Cisup
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6. The ultradistribution space D7,

We denote by D7, the strong dual of Dj,. Then, Défw’)) is a complete (DF')-space
since D(EM”) is an (F)-space. Also, DE{,M s an (F)-space as the strong dual of
a (DF)-space. When FE is reflexive, we write D%, = D, in accordance with the
last assertion of Theorem 4.4. The notation D%, = (Dj)’ is motivated by the
next structural theorem.

THEOREM 6.1
Let f € D'*(R?). The following statements are equivalent.

(i) feDg.

(ii) fxv €E for all € D*(RY).

(iii) f*v € E. for all v € D*(RY).

(iv) f can be expressed as f = P(D)g+ g1, where P(D) is an ultradifferential
operator of * type with g,g1 € F'.

(v) There exist ultradifferential operators Py(D) of * type and fi € E. N
UC,, for k in a finite set J such that

(6.1) f=>_ Pu(D)fx.

Moreover, if E is reflexive, then we may choose f € E'NC,,.

REMARK 6.2
One can replace D'*(R?) and D*(R?) by & (R9) and S*(R?) in every statement
of Theorem 6.1.

Proof
We denote Br = {p € D*(RY) | |||z < 1}.

(i) = (ii). Fix first ¢ € D*(RY). By (5.1) the set ¢+ Bp = {ty*p | p € Bg} is
bounded in D%, Hence, |(f x4, ©)| = [{f, ¥ *¢)| < Cy for ¢ € Bg. So, |(f *1, )| <
Cyllelle, for all € D*(R?). Since D*(R?) is dense in E, we obtain f x1 € E,
for each 1 € D*(R?).

(ii) = (iv). Let © be a bounded open symmetric neighborhood of 0 in R,
and set K = Q. For arbitrary but fixed ¢ € D}, we have (f * 3, ) = (f*1p,p). We
obtain that the set {(f x@,1) | ¢ € Bg} is bounded in C, that is, {f*@ | p € Bg}
is weakly bounded in D% ; hence, it is equicontinuous. Using the same technique
as in the proof of Proposition 3.1, we obtain that there exists r > 0 such that

for each p € Dgt{p) there exists C, > 0 (there exists (rp) € R such that for each

pE Dg{f}j}) there exists C, > 0) satisfying |(f * p, )| < C, for all ¢ € Bg. The
density of D*(R?) in E implies that f % p € E' for each p € ’Dg{,”) (for each
pE Dg{:}j})) The parametrix of Komatsu implies the existence of u € Dé%p),
¢ € DIMp)(Q), and ultradifferential operator P(D) of class (M,) (the existence
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ofue Dg‘?ﬁp}), ¢ € DIMp}(Q), and ultradifferential operator P(D) of class {M,,})
satisfying f = P(D)(u* f) 4+ x f. This gives the desired representation.

(iv) = (i). This is obvious.

(ii) = (v). Proceed as in (ii) = (iv) to obtain f = P(D)(ux* f) 4+ ¢ * f for

some u € Dé%p), ¢ € DM»)(Q), and ultradifferential operator P(D) of class (M,,)

(for some u € Dé{‘?fj), ¢ € DM} (Q), and ultradifferential operator P(D) of class
{M,}). Moreover, by using Lemma 5.4, one can easily see from the proof of (ii) =
(iv) that we can choose r such that Dgt{,”) C E (we can choose (r,) such that
Déﬁ[f:) CFE ). Observe that the composition of ultradifferential operators of class
* is again an ultradifferential operator of class *. We obtain

f=P(D)(ux (P(D)(ux f) + ¢ )+ x (P(D)ux f) + ¢ f)
= P(D)(P(D)(ux* (ux f))) + P(D)(ux* (¢ f))
+P(D)(¢* (ux f)) +¢* (W * f)
and ux (ux* f),ux (V* f), Y (ux*xf), Y (x*f)e E,NUC, by the definition of
E! and Proposition 4.5. If F is reflexive, then all of these are in fact elements of

C,, by the same proposition.
The proofs of (v) = (i), (iv) = (iii), and (iii) = (ii) are obvious. O

PROPOSITION 6.3
Let £ : D*(R?) — D™ (R?) be linear and continuous. The following statements are
equivalent.

(i) £ commutates with every translation; that is, (f,T_pp) =Tr{f, @), for
all h e R? and p € D*(R?).

(ii) f commutates with every convolution; that is, (£,1 % p) = P x (f, ), for
all ¥, o € D*(RY).

(iii) There exists f € D™*(RY) such that (f,¢) = f * @ for every p € D*(RY).

Proof
(i) = (ii). Let o, € D*(R?), and denote K = suppt. Then the Riemann sums

L()= Y vleyel-—eyet= > ley)T oype’
yeZd eye K yeZd eye K
converge to v * ¢ in D*(R?), when ¢ — 0%. The continuity of f implies
(£.9 %) D, VEETap)e’=lm D Uy Tyl o),
yeZd eye K = yeZd eye K
in D'™*(RY). Let y € D*(R?). Then
(Bm > )Ty (E ) x) = ((E o) v ) = (D x (£,0),x)-

e—0t )
yeZd eye K

= lim
e—0t

(ii) = (iii). Let © be an arbitrary symmetric bounded open neighborhood
of 0 in R%, and set K = Q. Take d,, € D*(R?) as in the proof of Proposition 3.1.
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For every v € D*(R?) we have that v * §,, — ¢ in D*(RY) when m — co. Also,
(6.2) P x (F,0,,) = (F,1h % 0,) — (£,1h)  when m — oco.

First we will prove that the set {(f,d,,) | m € Z,} is an equicontinuous subset of
D’*(RY) or, equivalently, bounded in D’*(R%) (since D*(R?) is barreled). By (6.2),
for each fixed 1 € D*(RY), the set {1 * (f,5,,) | m € Z, } is bounded in D"*(R?).
Denote by G, the bilinear mapping (¢, %) — (£,0m) * @ * |k, G : D3 X D3 —
C(K). For fixed 9 € Dj;, the mappings Gy, defined by ¢ — (f,0,,) * o * Y|k,
Dy, — C(K) are linear and continuous, and the set {G,, | m € Z, } is pointwise
bounded in £(Dj;,C(K)). Since D}, is barreled, this set is equicontinuous. Sim-
ilarly, for each fixed ¢ € Dy, the mappings ¢ — (f,,,) * ¢ x|k, D} — C(K)

form an equicontinuous subset of L(D},,C(K)). We obtain that the set of bilin-
M,

ear mappings {G,, | m € Z} is separately equicontinuous, and since DE( ") i
an (F)-space and D}MP} is a barreled (DF)-space, it is equicontinuous (see [16,
Theorem 2, p. 158] for the case of (F')-spaces and [16, Theorem 11, p. 161] for
the case of barreled (DF)-spaces). We will continue the proof by considering
only the {M,} case; the (M),) case can be treated similarly. By the equiconti-
nuity of the mappings G,,, m € Z,, there exist C > 0 and (k,) € R such that,
for all ¢,v € Dy m € Z., we have [|Gon (0,1 = (1) < Cllell e,y 141,01,
Let rp, =kp_1/H, for pe N, p> 2, and set 7y = min{1,72}. Then (r,) € R. For
X € Dg’\?:j), for large enough j, x * §; € D%M‘”}, and by a similar technique as

in the proof of Proposition 3.1, one can prove that x *d; — x in Dg\f‘;;i), where
§; € D*(R?), j € Z, is the same sequence as that used in the proof of Proposi-

tion 3.1. Let ¢, ¢ € DS{)AE[fj), and set ¢; =@ *d;, ¥; =1 *J;. Since

HGm(ijv'(/}j) - Gm(@saws)HLw(K)
< HGm(@j,% - "/JS)HLOQ(K) + HGm(S@j - @Sv¢8)HLoo(K)

< C(llesll i,k 105 = sl i, (i) + 05 = @l ) 195l 56, (1))

it follows that, for each fixed m, G,,(p;,v¢;) is a Cauchy sequence in C(K);
hence, it must converge. On the other hand, (f,d,,) % @; % 1; — (£,0,,) * p* 1 in
D'{Mp}(R), and since C(K) is continuously injected into DIIEM"}7 it follows that
G (5,%;) converges to (f,0,,) * ¢ x|k in DIIEM”}. (Here the restriction to K
is in fact the transposed mapping of the inclusion D}Mp} — DIMp}(RY)) Thus,

G (9j,%;) = (£,0m) * ¢ * Y|k in C(K). By the arbitrariness of ¢, € Dg\é‘fj)
and by passing to the limit in the inequality ||G.(05,%;) (| L () < Cllw;ll &, k,) X
1951l k. (k,), Wwe have [[(f,0m) * ¢ x Y|kllL=x) < Cllollk k) 1Yk, k,) for all
meZy, p, € Dg\fﬁ:) For the fixed (r,) € R, by the parametrix of Komatsu,
there exist ultradifferential operator P(D) of class {My}, u € Dg\ff} and

p)’

Y € DIMp}(Q) such that (f,6,,) = P(D)((f,d,,) *u) + (f,8,,) * 1. Applying again
the parametrix we have

(£,6m) = P(D)P(D)((£,0m) * uxu) +2P(D) ((f,6m) x 0 u) + (£,0p) 1 x 1.
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Since each of the sets {(f, 0, ) xuxu|x | m € Zy }, {{f,0m) xY*xulx | m € Z; }, and
{{£,0m) x ) x|k | m € Zy } is bounded in D/}M’)} and, hence, also in D'{M»}(Q),
we obtain that {(f,d,,)|q | m € N} is bounded in D'{*»}(Q). By the arbitrariness
of Q it follows that this set is bounded in D'{Mr}(R?). Hence, it is relatively
compact (DM} (RY) is Montel); thus, there exists a subsequence (f,§,,.) which
converges to an f in D'{Mr}H(R?). Since (f,8,,. * x) = (f, 0. ) * X for each y €
DIMp}H(RY), after passing to the limit we have (f,x) = f * X.

(iii) = (i). This is obvious. O

We also have the following interesting corollary.

COROLLARY 6.4
Let f € D'*(R, E’

(B E)), that is, a continuous linear mapping f : D*(R?) —

E;(E, B If £ commutes with every translation in the sense of Proposition 6.3,
then there exists f € D, such that f is of the form

(6.3) (£,0)=f*p, peD*(RY).

Proof

Since the inclusion E;( B.p) D*(R?) is continuous (as the transposed map-
ping of D*(RY) — E), f:D*(R?) — D*(R?) is also continuous. For B bounded
in D*(RY), f(B) is bounded in D*(R?) and, hence, bounded in D’*(R?). Since
D*(R?) is bornological, f : D*(R?) — D*(R?) is continuous. Now the claim fol-
lows from Proposition 6.3 and Theorem 6.1. (|

If F is a complete LCS, then we define S’ (R?, F') = 8" (R%)eF. Since 8"*(R?) is
nuclear, it satisfies the weak approximation property and we obtain £;(S*(R%),
F) = 8™*(RY)eF =2 8™ (RY) @ F. (For the definition of the ¢ tensor product,
the definition of the weak approximation property, and their connection, we refer
to [26] and [13].)

We now embed the ultradistribution space D%, into the space of E’-valued
tempered ultradistributions as follows. Define first the continuous injection ¢ :
S (R?) — 8™ (R?, 8" (R?)), where ¢(f) = f is given by (6.3). Observe the restric-
tion of ¢ to D, , v : D, — 8™ (R4, E"). (The range of ¢ is a subset of S"*(R%, E')
by Theorem 6.1 and the remark after it.) Let By be an arbitrary bounded sub-
set of S*(R?). The set B = {¢) * ¢ | ¢ € By,||t|[r <1} is bounded in D% (by
Theorem 4.2(e)). For f € D,

sup |[(£,0) ||, = sup |[f*@ller = sup sup |(f,0 )| =sup|({f,x)|-
weB; weB; xXEB

PEB ||y||lp<1

Hence, the mapping ¢ is continuous. Furthermore, by Theorem 6.1(iii), L(Dbi) -
S*(R%, E.) and Proposition 6.3 tells us that (D, ) is precisely the subspace
of 8'(R%, E.) consisting of those f’s which commute with all translations in the
sense of Proposition 6.3. Since the translations 7}, are continuous operators on
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E!, we actually obtain that the range +(D}, ) is a closed subspace of S"*(R%, E.).
Note that we may consider D'*(R?) instead of S"*(R?) in these embeddings.

COROLLARY 6.5
Let B' C D}, . The following properties are equivalent.

(i) B’ is a bounded subset of D .

(ii) (B’ is bounded in S (R%, E') (or equivalently in S™*(R, E’)).

(iii) There exist a bounded subset B of E' and an ultradifferential operator
P(D) of class * such that each f € B' can be represented as f = P(D)g+ g1 for
some g,91 € B.

(iv) There are C > 0 and a finite set J such that every f € B’ admits a repre-
sentation (6.1) with continuous functions fi € E,. NUC,, satisfying the uniform
bounds || fxllgr < C and || filloow < C. (If E is reflexive, then one may choose

eENC,.) -

Proof
(i) = (ii). This follows from the continuity of the mapping ¢.

(ii) = (iii). Let © be a bounded open symmetric neighborhood of 0 in R?, and
set K = . Let «(B’) be bounded in 8™ (R%, E') = £;,(S*(R?), E’). Then it is an
equicontinuous subset of £, (D}, E’). We will continue the proof in the {M,,} case;
the (M,) case is similar. There exist (k,) € R and C > 0 such that ||(f, )|z <
Cligllsc (s, for all £ € (B’) and € DL} that is, || £+ @l 5 < Cll@ll k. (k) for all

feB and p e ’DE(M”}. By a similar technique as in the proof of Proposition 3.1,
one obtains that there exists (r,,) € 9% such that || f* @[z < C|l¢||k,(x,) for all f €

B pe DS{)AEI&}) For the fixed (r,) € R, by the parametrix of Komatsu, there exist

an ultradifferential operator P(D) of class {M,}, u € Ds{){\{:j)’ and ¢ € DIM»}(Q)
such that f = P(D)(f xu)+ f * 1. By what we proved above, {f xu| f € B’}
and {f x| f € B’} are bounded in E" and (iii) follows.

(ii) = (iv). Proceed as in (ii) = (iii) and then use the same technique as in
the proof of (ii) = (v) of Theorem 6.1.

The proofs of (iii) = (i) and (iv) = (i) are obvious. O

COROLLARY 6.6
Let {f;}j20 € D, (or similarly, a filter with a countable or bounded basis). The
following three statements are equivalent.

(1) {fi}5%0 is (strongly) convergent in DF, .

(ii) {e(f5)}520 is convergent in S (R, E") (or equivalently in S (R, E.) ).

iii ere exist convergent sequences {g;};,{g;}; in E' and an ultradiffer-

iii) There exi g 9:}3,{3;}; in E' and an ultradi
ential operator P(D) of class * such that each f; = P(D)g; + g;.

(iv) There exist N € Z,., sequences {g§k)}j, k=1,...,N,in ELNUC,, each

convergent in E and in L°, and ultradifferential operators Py(D), k=1,...,N,

w
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of class * such that f; = Z,ivzl Pk(D)gj(-k). (If E is reflexive, then one may choose
gj(»k) eEE'NC,.)

Proof
The proof is similar to the proof of the above corollary and we omit it. O

Observe that Corollaries 6.5 and 6.6 are still valid if S*(R?) is replaced by
DI* (Rd).

At the beginning of Section 5, we defined the spaces ﬁ){EM”}’(T”)

and ﬁ{EM"}.

As we saw there, D}{EMP} and @}{EMP} are equal as sets and the former has a stronger
topology than the latter. In fact we will prove that these are also topologically
isomorphic.

THEOREM 6.7
The spaces D}[EMP} and @{EMP} are isomorphic as LCSs.

Proof
By the above considerations, it is enough to prove that the topology of ﬁEM”} is
stronger than the topology of DZ{EMP}. Let V be a neighborhood of 0 in DEMP}.
Since DEJM”} is complete and barreled, its topology is in fact the topology b(Dg,M 2

)

D}{EM‘”}). Hence, we can assume that V' = B° for bounded set B in Dg,M”} (B°is

the polar of B), that is, V ={¢ € DEM”} | supreg (T, ¢)| < 1}. By Corollary 6.5
there exists C' > 0 and a finite set J such that every T' € B admits a representation
(6.1) with continuous functions fi € E, N UC,, satisfying the uniform bounds
I fxller < C. Since the Py (D)’s are continuous on ﬁEM”} (Proposition 5.3), there
exist (rp) € R and C; > 0 such that |Py(—=D)¢|r < Cillolg, ) for all k€ J,
e DU Set N =], and let W = {p € DY | ¢l g,y < 1/(CCLN)} be
a neighborhood of 0 in ﬁJ{EMp}. If ¢ € W, then for T' € B one easily obtains
(T, )| <1, that is, ¢ € V. Hence, we obtain the desired result. O

When FE is reflexive, the space Dj, is also reflexive. Furthermore, we have the
following result.

PROPOSITION 6.8

If E is reflexive, then DJ(EM”) and Dg,M"} are (FS*)-spaces, and D,{EMP} and
DéM”) are (DFS*)-spaces. Consequently, they are reflezive. In addition, S* (R?)
is dense in D, .

Proof
Let f)}{EMp}’m be the (B)-space of all p € D*(R?) such that D% € E, Yo € N4,
and
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m2lel 1/2
Il = (3 S ID¢lE) < oo

Then we have the obvious continuous inclusions Zs{M bm D{Mp} ™ and
DiEMP}’zm — D{M }’m. Hence, D( Mp) _ hmm<:OO D{M bim and D{M}
lim ~— D}{EM‘“}’m. If I2,(E) is the (B)-space of all (¢,)aene With 1, € E and

norm ||(¢a)a||l3n(E) = (X aena ;[l;‘ Vall% )1/27 then [2,(E) is reflexive since F

is (see [15, Theorem 2, p. 360]). Observe that BEM” b isometrically injected
into a closed subspace of [2,(E) by the mapping ¢ — (D%),; hence, D{M bm
is reflexive. Thus, D(EM”) is an (FS*)-space, and DiEM”} is a (DFS*)-space. In
particular, they are reflexive, DgM”) isa (DFS*)-space, and DgM”} is an (F'S*)-
space. Now, the density of S*(R?) in D, is an easy consequence of the Hahn—
Banach theorem. ]

7. The weighted spaces sz and D’L*p

As examples, in this section we discuss the weighted spaces D% Ly and D o which
are particular examples of the spaces D}, and Dgi . They turn out to be important
in the study of properties of the general D%, and general convolution in D™ (R?)
(see Section 8). )

Let n be an ultrapolynomially bounded weight of class *, that is, a (Borel)
measurable function 7 : R — (0,00) that fulfills the requirement n(z + h) <
Cn(x)eMTIh) for some C,7 > 0 (for every 7 >0 and a corresponding C = C, >
0). An interesting nontrivial example in the (M),) case is given by the function
n(z) = eI where 7 : [0,00) = [0,00) is defined by 7(p pf MSE_,S) ds. To see
this, observe that 7 is a differentiable function with nonnegatlve monotonically

decreasing derivative. Hence, 7 is a concave monotonically increasing function
and 7(0) = 0. Also, it is easy to see that M (p) <7(p) and 7(p+ N) < 7j(p) +7(N),
for all p,A > 0. By (M.3) and [11, Proposition 4.4] there exist C,C; > 0 such
that 7(p) < M(Cp) + C4, for all p > 0. For the {M,} case take (r,) € R, and
perform the same construction with the sequence N, defined by Ny =1 and
N, =M, H§:1 rj, p € Z4, which obviously satisfies (M.1) and (M.3) since M,
does.

For 1 < p < oo we denote as L} the space of measurable functions g such that
Imgllp < oo. Clearly L} are translation-invariant spaces of tempered ultradistri-
butions for p € [1,00). In the case p = oo, we define L7° via the norm ||g/7||co;
the axiom (I) clearly fails for L;® since D*(R%) is not dense in L;°. In the next
considerations the number ¢ always stands for p~! + ¢~ ' =1 (p € [1,0]). Of
course (Lp) =L}, if 1 <p<oo and (L;)" = Ly°. In view of Proposition 4.4,
the space E! corresponding to E = Lf} _, is B = L} whenever 1 <p < oo. On
the other hand, Theorem 4.4(iii) gives that E, =UC, for E = L}], where UC), is
defined as in (4.9) with w replaced by 7. We will also consider the Banach space
Cy = {g € C(RY) [ limy o0 9(2)/n() = 0} € UC, C L.
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The weight function of L} can be explicitly determined as in [4, Proposi-
tion 10].

PROPOSITION 7.1
Let wy,(h) :=esssup,cpe n(z + h)/n(x). Then

wn(h) pre [1700)7
IT-wllzLny = ‘

wn(—h) if p=oc.
Consequently, the Beurling algebra associated to LY is Lin if p=1[1,00) and L}Dn
if p=o0.

Proof
See the proof of [4, Proposition 10]. O

Observe that, when the logarithm of 7 is a subadditive function with 7(0) =1,
one easily obtains from Proposition 7.1 that w, =7 (almost everywhere).

Consider now the spaces D; , for p € [1,00] and ﬁ?ﬁp } defined as in Section 5
n n
by taking £ = L. Once again, the case p =00 is an exception since D*(RY)
is not dense in Dj. nor in 75{]\0{’”}. Nevertheless, we can repeat the proof of
> ,

n
Proposition 5.1 to prove that D{g‘"} is regular and complete. One can show
that each ultradifferential operator of * class acts continuously on Dj .. and each
n
My}
=" (

ultradifferential operator of class { M} acts continuously on D! see the proof

of Proposition 5.3). Obviously D{Jgp Vs continuously injected into 13}1}.? }, and
n n
by using [13, Lemma 3.4] and employing a similar technique as in the proof of

Proposition 5.1, one can prove that this inclusion is in fact surjective. We will
also use the notation B} for the space D} and we denote by B} the closure of
n

D*(RY) in B;,. We denote by l’;’;{]M"} the closure of DIMr}(R?) in 252];"}. It is
important to notice that in the case =1 these spaces were considered in [21]
(see also [3]).

We immediately see that 5’7(7M") = Dg\:”). In the {M,,} case this is not trivial.
The following theorem gives that result.

THEOREM 7.2 ]
The spaces Dg:jp}, BéMp}, and BEMP} are isomorphic to each other as LCSs.

Proof
By Proposition 5.1, Dgy”

Dgyp} and l";’?gM"} are isomorphic LCSs. Observe that Dg:[”} C ﬁff.fp}. Moreover,

}

is a complete barreled (DF')-space. First we prove that

by Theorem 6.7, the topology of Dg:fp} is the same as the induced topology on

Dg:[”} by ﬁg;”}. Since DM} (RY) is dense in D{C]:[”} and lg';{,M”} is the closure of
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{Mp

DIMp}(R?) in the complete LCS D} o } , the spaces D{CJ:I”} and lg’}{,M”} are isomor-

phic LCSs and the canonical mclusmn D{i\f” . bfffp }
n

gives the isomorphism.
Now, observe that the inclusion D{CJ:I g D{ »} is continuous. Since DIMp}(RY)
is dense in D{M”} and B{Mp} D{Mp} - B{M”}

Also, since the 1nclu51on Dﬁ.ﬁ o, D{M }is continuous and DM} (R?) is dense

and the inclusion is continuous.

in B;{, and B{g , we obtain that B{M e B{M } and the inclusion is con-
tinuous. But, since we already proved that the inclusion Dé b} BgM s a

topological isomorphism onto, we obtain that the inclusion D{CJ:I"} — B,gMp Vis as
well. O

Proposition 5.5, together with the estimate (5.4) in the (M,) case and with
the estimate (5.5) in the {M,} case, implies ng — ngn for every p € [1,00). It
follows from Proposition 6.8 that Dip is reflexive when p € (1, 00).

In accordance with Section 6, the weighted spaces D, T are defined as Dfp =
(szﬁl)/ where p~! + ¢~ =1if pe (1,00]; if p=1, then D'L*’17 =(Dg,) = (B,’;) .
We write B;" = D/L*;c and B;]* for the closure of D*(R") in B;".

The dual of E = C,, is the space M}, consisting of all elements v € (Ce(RY))
which are of the form dv =n~tdu, for p € M! (i.e., a finite measure), and the
norm is [[v[[x = [|pllaer. Observe that then EI = L}. In this case, by using
Theorem 6.1, similarly as in the case of distributions (see [25, p. 99], [26, p. 196]),
one can prove that the bidual of B(M”) is isomorphic to D(Lj\;f) as LCSs and that
(MP

B'(Mp)

is a distinguished (F')-space, that is, D, "’ is barreled and bornological.

In the {M,} case, observe that D{ »} is an (F)—space as the strong dual of a

barreled (DF)-space. Moreover, we have the following theorem.

THEOREM 7.3
The bidual of BJEM‘”} 18 isomorphic to D{Jg"} as LCSs. Moreover, Dig”} and

f)?ﬁp} are isomorphic LCSs.

Proof

First note that 1 can be assumed to be continuous. (The continuous weight

N1 =n * ¢ defines equivalent norms if we choose ¢ € D(RY) to be nonnegative

with [p. () de =1.) We already saw that Dig”} and f)ﬁfp} are equal as sets.
n

;
First we prove that the bidual of BéM”} is isomorphic to DI} Gince £4Mr} (RY)
n

Mp} (

is continuously and densely injected into D{ the density can be proved

by using cutoff functions and Theorem 6.1), we have the continuous inclusion
(D Z{IM }) — EIMp}(R) (where b stands for the strong topology). Let (r,) € R,

and set R, H‘al rj. Observe the set B = {%}5%“ |a € RY o€ N4} One
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easily proves that it is a bounded subset of D}, {M ; . Hence, if ¥ € (D}, '{M })

1(B) is bounded in C and hence
|(n(a))~* D4 (a)]

., — g T .
S 7Y X sup| (@, T)] <00

b, then

We obtain that (D DM }) Dg\i”} and the inclusion (D M, }) Dixf'} is con-
7] n
tinuous.
Let ¢ € D{M Y uTe D/{M ' , then by Theorem 6.1 there exist an ultradif-

ferential operator P(D) of {Mp} class and f, fi € M, such that T = P(D) f + f1.
Let df =n~'dg and dfy =n~'dg; for g,g1 € M'. Define Sy, by

[ P(=D)y(z) P ()
Sw(T)i/Rd n(w) a9+ ra 1T )d g

Obviously, the integrals on the right-hand side are absolutely convergent. We will
prove that Sy is a well-defined element of (/")) Let P(D), f, f; € M}, be
~ ~ ~ ~ n ~
such that T = P(D)f + f1, and let df =~ dg and df; =n~'dg, for §,g; € M?'.
Let x € DIMp}(RY) be a function such that x =1 on the closed unit ball with
center at 0 and x =0 on {z € R?||z| > 2}. Set ¥, () = x(z/n)¥(z), n € Z,.
Then it is easy to verify that
P(—=D)y, P(-D n
DN g, [ PP g, [ 0y [ V),
R4 n(z) R n(z) re 1(2) ra ()
P(—D)yy, P(—D n
[ D) gy [ PEDN [ b))
R4 n(z) R4 n(z) re 1(2) ra ()

when n — oo. Also, observe that for each n € Z

P(=D)t,, n P(=D)¢(z) n
(CDWa) [ nla) [ PEDY) L [
R n(z) ra 7() R n(z) ra 1()
since both terms are equal to (T,%,) in the sense of the duality (D{Mr}(R%),
DM} (R)). Hence, Sy is a well-defined mapping D), HMe €, since it does

not depend on the representation of T. To prove that it is continuous, it is

g,

enough to prove that it maps bounded sets into bounded sets, since D, { P ¥ is an

(F)-space. Let B be a bounded set in DL{IN I}, By Corollary 6.5, there exist an
ultradifferential operator P(D) of class {M:,} and bounded subset B of M, such
that each T € B can be represented by T'= P(D)f + f; for some f, f; € By. By
the way we defined Sy, it is easy to verify that Sy (B) is bounded in C, so Sy €
(DZ{;/[”}) We obtain that (D /{f\/[ }) {M } as sets and (D} {M }) has stronger

topology than the latter. Let V = B° be a neighborhood of O in (D /L{lM”}) for

B a bounded subset of D/{ v} . By Corollary 6.5, there exist an ultradifferential
operator P(D) of class {Mp} and a bounded subset By of M, such that each
T € B can be represented by T'= P(D)f + fi for some f, fi € Bl. There exists
Cy > 1 such that ||§||M3) < C for all fe B;. Also, since P(D) =" caD® is of
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{M,} class, there exist (r,) € R and Cy > 1 such that |co| < Co/(MyRa) (see
the proof of Proposition 5.3). Observe the neighborhood of 0 defined as W =

{v e D{M”} | sup, ‘(Z\;z)ﬁ 11)(%’/(295))‘ < 2010203} in D{m"}, where we set C5 =

>, 27121, One easily verifies that W C V. We obtain that (D/{M”}) and D{ o

isa complete (DF')-space (since ’DL{1 »}is an

: o MY A (M)
(F)-space). Obviously, the identity mapping D < = DLZO

bijective. Since DM
n

are isomorphic LCSs. Hence, DM o
n
is continuous and

is a (DF)-space, to prove the continuity of the inverse
mapping it is enough to prove that its restriction to every bounded subset of
{]\i »} is continuous (see [24, Corollary 6.7, p. 155]). If B is a bounded subset

{ } ||Daw|‘L90(Wd) .
of D"’ , then for every (r,) € R, SUPye g SUP, — 5 < 0. Hence, by [13,
; B

plel HDaleLoo(Rd)
Lemma 3.4], there exists i > 0 such that supye g sup, ——;——— <00, that

is, B is bounded in Diw” b Since every bounded subset of D{w oy

bounded in Dfﬁ.ﬁp} D{Mp} and Dim”} have the same bounded sets. Let 1) be a

is obviously

bounded net in Diw 2 Wthh converges to ¢ in DM W” b Then there exist 0 < A <1

and C' > 0 such that
el | D4y || poe hlel| Dy || oo
supsup ———— 1 < d sup —————-— < C.
bgpbgp M, - o sgp M, -

Fix 0 < h; < h.Let e > 0 be arbitrary but fixed. Take py € Z such that (h; /h)1* <
e/(2C) for all |a] > pg. Since ¥y — ¢ in 15{1;["}, for the sequence 7, =p, p € Z,
n

. 1D (3 )]l oe
there exists Ao such that for all A > Ao we have sup,, —rr - < p ~=;. Then
h|0’\ D~
for || < po, we have | (J\ﬁk ez <e. For |a] > py, we have
D (7 = )l o

<< 20( L7 <e.

M, =c
It follows that ¥\ — ¢ in Dig”}’hl and hence in Dé{g”}. We obtain that the

n n

} }

is stronger than
DI} i
n

topology induced by 75}2]\;[') on every bounded subset of @{Aofp
n

the topology induced by D{M ; . Hence, the identity mapping 75]{;];{"} —
n
continuous. (]

8. Convolution of ultradistributions

We now apply our results to the study of the convolution of ultradistributions.

8.1. Convolution of Roumieu ultradistributions

As an application of Theorem 7.3 when 7 =1, we obtain a significant improve-
ment to [22, Theorem 1] for the existence of convolution of Roumieu ultradis-
tributions. For the sake of completeness, we recall the definition of the space
B{AM”} (see [22, p. 97]) involved in this result. For a > 0, we define BiMe = {pe
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BUM(R) | suppp C A}, where Ay = {(z,y) € R* | |z + y| < a}. Provided
with the family of seminorms
| D2 Dj¢(a, .
QY sup  sup @ —————————

for (r,) € R,
a,BEN (z,y)cR2d M, ot B H|a|+\5

B becomes a LCS. We define as LCS B{AM" =lim — BiMeY,

THEOREM 8.1 ([22])
Let S, T € DM} (R?). The following statements are equivalent.

(i)  The convolution of S and T exists.

(i) SeTe@BM?y,

(iii) For all p € DIMp}(RY), (pxS)T € D MY and for every compact subset
K of B, (p.x) = {(p* S)T.x), D™
mapping.

(iv) For all p € DIMp}(RY), (p+T)S € D My }, and for every compact subset
K of RY, (¢, x)— ((¢*T)S,x), DE(M v} BIMyY 5 C s a continuous bilinear

mapping.
(v) For all g, € DIM»H(RY), (o S) (¢ +T) € L' (RY).

X B{M } —5 C is a continuous bilinear

We now have the following result.

THEOREM 8.2
Let S, T € DM} (R?). Then the following conditions are equivalent.

(i)  The convolution of S and T exists.
(iii)" For all o € DIM»}(R?), (o S)T € D},
(iv)" For all p € DIMe}(RY), (p+T)S € D}y

My}
/{M }

Proof

We will prove that (iii) < (iii)’; the proof that (iv) < (iv)’ is similar. Observe
that (ili) = (iii)’ is trivial. Let (iii)’ hold. Then, by Theorem 7.2, DlL{lMp} is an
(F)-space as the strong dual of a (DF')-space. The mapping x — ((¢ * )T, x),
BiM»} — C is continuous for each fixed ¢ € DE(M"} since (p* S)T € DEIM”}. Fix
x € BIM»} Then the mapping ¢ (ST, D%Mp} — DM} (RY) is continuous;
hence, it has a closed graph. But (¢ * S)T € DIL{IM »} and DIL{IM g continuously
injected into D'1M»} (R4); hence, the mapping ¢+ (p*S)T, ’Z)}(M”} — DlL{lM”} has
a closed graph. We have that DE(M” b is barreled. (In fact, it is a (DF'S)-space.)
Since DlL{lM”} is an (F')-space it is a Ptak space; hence, this mapping is continuous
by the Ptdk closed graph theorem (see [24, Theorem 8.5, p. 166]). We obtain
that, for each fixed x € B{Mr}, the mapping ¢ — ((p * S)T, x), D;Mp} —Cis
continuous. Hence, the bilinear mapping (¢, x) — ((¢*S)T, x), DE(MP} x BIMp}
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C is separately continuous. Since DE{M”} and BM»} are barreled (DF)-spaces,
this mapping is continuous. (I

8.2. Relation between D, B}, and D, : Convolution and multiplication
We now study convolution and multlphcatlve products on D . For it, we first
need the following proposition.

PROPOSITION 8.3
The following dense and continuous inclusions hold: ’DL1 — Dy — B *, and the
inclusions D7, — D, — Bl are continuous. If E is Teﬂemwe then one has

Dfl — D — Bl
Proof

The proof follows the same lines as in the distribution case from [4, Theorem 4]
(by using the analogous results for ultradistributions); we therefore omit it. [

By the above proposition and the fact that D*(R?) < D7, (Which is easily obtain-

able by direct inspection) we have Dy = Dpp— B: and D L= DYy P B’*
for 1 <p<oo. ! !

In addition, a direct consequence of this proposition is that the spaces D3,
are never Montel spaces when w is a bounded weight. In fact, if p € D*(R?)
is nonnegative with ¢(x) =0 for |z| > 1/2 and 6 € R? is a unit vector, then

{(T-jo9)/w(j0)},=0 is a bounded sequence in Dj, and, hence, in Dj; without

any accumulation point. It is also easy to verify that B* — B* and B’* B’*
The multiplicative product mappings - : D" e X B — D and - : B, ! x D3 yp

DY, are well defined and hypocontinuous for 1 <p<oo. In partlcular f(p is

an integrable ultradistribution whenever f € B;* and ¢ € D} Ly or fe Df}] and

pe By If (1/r) = (1/p1) + (1/p2) with 1 <r,p1,ps < 0o, then it is also clear that

the multiplicative product - : D’* [ X DLP2 — D, is hypocontinuous. Clearly,
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the convolution product can always be canonlcally deﬁned as a hypocontinu-

ous mapping in the following situations: * : D’ D’L*p, 1<p<oo, and
B’ * T B’ *. Furthermore, such convolutlon products are continuous bilin-

ear mapplngs. In fact, in the Roumieu case these spaces are (F')-spaces and,
therefore, continuity is equivalent to separate continuity; for the Beurling case, it
follows from the equivalence between hypocontinuity and continuity for bilinear
mappings on (DF)-spaces (see [16, Theorem 10, p. 160]).

We can now define multiplication and convolution operations on . In the
next proposition we denote by (’)C,b(Rd) the space OF(R?) equipped w1th the
strong topology from the duality (O%(R?), O (R9)).

PROPOSITION 8.4
The convolution mappings * : Dy, x Dy — D, and x: Dy, x Oz (RY) — DY,
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are continuous. The convolution and multiplicative products are hypocontinuous
in the following cases: -: D, x D, — Dy, - :D’L*}) x Dy — Dy, and *: D, X
D} — By,. If E is reflexive, then we have *: D x Dy, — B

Proof
The proof goes along the same lines as in the distribution case from [4, Proposi-
tion 11] (again, by using the analogous results for ultradistributions). O

Note that, as a consequence of Proposition 8.4, f¢ is an integrable ultradis-
tribution (i.e., an element of D7) if f € Dy, and p € Dj, orif fe D’L*}d and
peDg.
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