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Abstract Thisis the second part of our three-part study titled “A few examples of local
rings.” In the first part, we collected the basic tools and well-known important
examples. But, since almost all special formal fibers of the examples there have extremely
good properties, their derived normal rings are always Noetherian and analytically
unramified. In this paper, we develop the basic ideas of the first part and get a somewhat
improved method, which gives factorial local domains whose completion can be almost
any complete local rings.

0. Introduction

This paper is the second part of our three-part study titled “A few examples
of local rings.” In the first part [8], we collected the basic tools and well-known
important examples, that is, the fundamental technique of constructing local
rings whose generic formal fibers are bad enough that they give examples to
answer famous long-standing questions in the theory of Noetherian rings due to
C. Rotthaus [12] (cf. [1]), T. Ogoma [10], [11], and R. C. Heitmann [3]. But,
since almost all special formal fibers of the examples above have extremely good
properties, their derived normal rings are always Noetherian and analytically
unramified. On the other hand, M. Nagata has already obtained bad normal
local domains, such as a two-dimensional analytically ramified factorial local
domain of positive characteristic and a three-dimensional local domain of positive
characteristic whose derived normal ring is not Noetherian (see [6, pp. 207-208,
Examples 5, 6]; cf. [7, Examples 6.2, 6.3]).

In this intermediate part, we develop the basic ideas of the first part and
get a somewhat improved method, which gives factorial local domains whose
completion can be almost any complete local rings.” To be precise, we prove the
following result.

THEOREM 0.1
Let K be a purely transcendental extension field of countably infinite degree over
a countable field Ky, let n, r €N, and let zg, z1,...,2n be n+ 1 indeterminates

over K. Let R:= K[z0,2](z,,2), where z:= (21,...,2,), and let R denote the
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completion of R; that is, R= K{[z0,2]]. Let Ty := Ko|Z1,...,Zy] be the polyno-
mial Ting in the n variables Z, ..., Zy, with coefficients in Kq. For each j with
1<j<r,let Fj:=F;(Z) be a polynomial in Ty with zero constant term, where
Z:=(Z1,...,Zy). Suppose that (0.1.1) and (0.1.2) hold:

(0.1.1) U Ass(To/(Fr,... . F)Y) = Ass(To/(Fy,... Fy)).

v>1
For each P € Ass(To/(Fl, . 7FT)), there exists a proper subset
(012) {il, o ,it} Of {1, 2, cee ,n}, so that ‘}3 C D = (Z’L'l goeey Zif,)TO-
Then there exist:

(1) elements (1,...,¢n € R that are analytically independent over K such
that, with ¢ := (C1,...,Cn), we have K[[z0,(]] = K{[20,2]], and

(2) a factorial local domain (A, m) with m-adic completion A and a canonical
inclusion map t: R— A

such that ¢, A, A, and the map v satisfy the conditions (0.1.3)~(0.1.5) below. Set
fi = Fj(C) € Ko[[20,¢]] © K[[20,¢]] = R.
The conditions to be satisfied are as follows.

The map i: R — A induced by v is a surjection with kernel (f1,..., fr)
(0.1.3)  and the associated map T: E/(fl, e fr) = A is an isomorphism.
(0.1.4) q:=(U(Gy), - .,Z(Qt))le\ is a prime ideal of A and §N A= (0).
(0.1.5) A/p is essentially of finite type over K, for every p € Spec(A)

that has height greater than one.

This theorem gives, as direct applications, the following bad local domains. (How-
ever, the detailed discussion of these examples is given in the last part of our study

[9].)

EXAMPLE 0.2
We have a two-dimensional analytically ramified factorial local domain of arbi-
trary characteristic.

EXAMPLE 0.3

We have a two-dimensional regular local ring (A4, m) of positive characteristic
that is not Japanese but, for every height-one prime ideal p of A, A, is a Nagata
(i.e., universally Japanese) ring.

EXAMPLE 0.4
We have a three-dimensional local domain of arbitrary characteristic whose derived
normal ring is not Noetherian.
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EXAMPLE 0.5
We have a three-dimensional factorial local domain whose completion has embed-
ded associated prime ideal(s).

EXAMPLE 0.6
We have a three-dimensional factorial Nagata local domain that is not universally
catenary.

Now let us summarize the contents of this paper. First we recall the well-known
lemmas on regular sequences and Rees algebras in Section 1. In Sections 2 and 3,
after setting the notation, we write down several elementary formulas on the
relations that play essential roles later. We recommend skipping the tedious parts,
namely, Sections 2.4, 2.5, 2.6, and 3.2, in the first reading and coming back to
check the particular formulas when necessary.

The main body of this article consists of Sections 4 and 5. Making use of
the results in the preceding sections, we prove some more technical lemmas in
Section 4. The proofs of these lemmas make clear how to decompose the original
prime elements of the ground regular local ring by suitably chosen prime elements.
Then, we show in Section 5 that the lemmas above enable us to carry out a
factorial numbering on these suitably chosen prime elements, in decomposing
the original prime elements by these suitably chosen prime elements step by
step. Once a good factorial numbering has been achieved, it is not a hard task to
construct the desired factorial local domain, which is done in Section 6.

In closing the Introduction, we recommend reading the beautiful original
work of Nagata [6], Rotthaus [12], Ogoma [10], [11], Heitmann [3], and Brodmann
and Rotthaus [1], because our study was inspired by their fundamental ideas
and because, even though they are not explicitly mentioned each time, they are
scattered throughout our work. We hope that our construction will be of help
when new examples are wanted in the future.

Throughout this paper, all rings are commutative with 1. A local ring (A, m)
means a Noetherian ring A with a unique maximal ideal m. The set of natu-
ral numbers and that of nonnegative integers are denoted, respectively, by N
and Ny. Concerning other terminology, we refer the reader to Grothendieck [2],
Matsumura [5], and Nagata [6].

1. Preliminary lemmas

Two goals of this section are (1) to establish that (Kery) ®4 C =Ker(p ® id¢)
for rings A, B, C' and homomorphisms ¢: A — B, ¢ ® idg: C - B®4 C that
arise in later sections of the paper, and (2) to obtain prime ideals in rings and
homomorphic images of rings that arise later. To this end, we prove 12 tech-
nical lemmas in this section. Most of the lemmas are for rings of polynomials,
since the examples constructed in this paper involve rings with infinitely many
indeterminates adjoined. We begin by describing conventions for dealing with
indeterminates that we use in this section and extend in later sections.
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CONVENTIONS 1.0

Let n,r € N. We intend that, whenever U := (Uy,...,U,) or V := (V1,...,V,) are
adjoined to a ring A, they are indeterminates over A. We also assume the same
for other elements that are adjoined, unless we indicate otherwise.

Let Zpand Z := (Z,...,Zy) be variables over aring A. Let F := F;(Zy, Z) :=
Fj(Zo,Z1,...,Zy) be a polynomial in the n + 1 variables Zy, Z,...,Z, with
coefficients in A for each j =1,...,7. We use the abbreviations F := F(Zy,Z) :=
(F1(Zo,Z), .., Fr (20, Z)).

In the first lemma, we observe that the kernel commutes with the tensor product
in the case of a map from a polynomial ring over a ring A to a finitely generated
extension of A contained in A[l/a], for some non-zero divisor a of A, and the
map is tensored with a flat algebra extension B of A.

LEMMA 1.1 (CF. [3], [8, LEMMA 1.1])
Let S be a Noetherian ring, and let q, s1,...,5, be an S-sequence. Consider the
S-homomorphism

¢: S[U1,...,Un] = S[s1/q,...,8n/q] with U; — s;/q.
Put P:=Ker¢. Then P is generated by an S[U]-sequence. Namely,
P=(qUy —s1,...,qU,, — sp) and PNnS=(0).

Moreover, if (0)=q1 N---Nqg is a primary decomposition in S, then we get a
canonical primary decomposition P =1 N---NQy, in S[U]. In particular, when
S is an integral domain, P is a prime ideal of S|U].

LEMMA 1.2

With the notation of Lemma 1.1, assume in addition that S is an integral domain.
Then, for every e € N, we see that P := (s1+U1q%, ..., $n+Unq®) is a prime ideal
generated by the S[U]-sequence s1 +U1¢%,. .., 8, + Upng® and that PN .S = (0).

LEMMA 1.3 (CF. [8, LEMMA 1.1])

Let Ry be a local domain, and let Uy := (Uyg,...,Unk) be indeterminates over
Ry for k€ N. Put

R=|J Ri, where Ry =Ry_1(Uy).

E>1
Take a sequence of non-zero elements p1, pa,...,Pk,-.. in R such that
(1.3.1) p1 € Ry and Pk € Rp_o  for every k € N with k > 2.
Put
(1.3.2) Qk *=Dp1° " Pk-
Further, take r1,...,7, € Ry such that p1, r1,...,7, 18 an Rg-sequence, and let

rik =1 + Uing* + - + Uiegi
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with €; € N such that e1 < ez <--- <eg. Then Py := (rig,..., k)R is a prime

ideal generated by an R-sequence rik, ...,rpr and
(1.3.3) pn & P whenever h <k + 1.
LEMMA 1.4

With the notation of Lemma 1.3, we assume in addition that
p1 € Ro, Pk € Ri—1, and pr & Po_1  for every k € N with k > 2.
Then Py is a prime ideal generated by an R-sequence rik,...,Tni and

pn & Py whenever 2<h <k+ 1.

LEMMA 1.5
Let T be a ring, and let A be a flat T-algebra with the structure homomorphism
p: T — A. Assume that Fy,...,F. €T, and assume that A is a non-zero divisor
for T. Putting f; := o(F;) and ¢ = (A), we define ring homomorphisms, where
E/A:(Fl/Aa7FT/A) andi/q:(fl/Qaafr/q)

¢: TIV]—=T[E/A] that maps V;— Fj/A,

VY A[V] — Alf/q] that maps V;— f;/q.
Then Kery = A ® Ker ¢.

Proof
We may assume T[V]/Ker¢ = T[F/A] C T[1/A]. Then, since A is a flat
T-algebra, the induced map A ® (T'[V]/Kerp) — A[f/q] C A[l/q] =A@ T[1/A]

is injective and this gives the assertion. O

LEMMA 1.6

Let T := L[A, Z] be a polynomial ring in n+ 1 variables over a field L, and let A
be a flat T-algebra with the structure homomorphism p: T — A that maps A to q
and Z; to z;. Taking F1(A,Z),...,F.(A,Z) € T, we define ring homomorphisms:

¢: TIV] = T[E/A] that maps V; — F;(A,Z)/A,
¢ AV] — A[E/q]  that maps V= Fj(q,2)/q;

where z = (z1,...,2n) and F/q := (F1(¢,2)/q,...,F-(¢,2)/q). Assume that
Kergo=(G1(A,Z,Y),...,Gs(A,Z,V)). Then

Kerw = (Gl (qa§7z)a Ty Gs(qa§7z))
LEMMA 1.7

With T of Lemma 1.6, assume that Fy,...,F. € Ty =L[Z|CT. Let ¢: T[V] —
T[F/A] be a T-homomorphism that maps V; to F;(Z)/A. Then

Ker¢: (A‘/l - Fl(Z)a s 7A‘/7 - F’r'(Z)aGl(ZaK)7 s aGS(ZaK))a
where Gp(Z,V) € L|Z,V] and they are homogeneous in V.
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'};;iZfH (A, Z,V) € Ker ¢. We may assume that H contains no monomials divided
by AVj. That is,
H(A,Z,V):=Hi(A,Z)+ Hy(Z,V),
where Hy € LA, Z] and Hy € L[Z,V]. Then, replacing V; by F;(Z)/A, we have
H(AZ,F(Z)/A) = Hi(A, Z) + Hy(Z,F/A) =0

in L[A, Z,1/A]. Regarding H(A,Z, F/A) as a Laurent polynomial in A, we see
that each homogeneous part of H with respect to V belongs to Ker ¢. O

LEMMA 1.8

With the notation above, let “¢: Spec(T[F/A]) — Spec(T) be the canonical map.
Then

(1.8.1) “¢(Ass(T[E/A]/ATF/A])) = | Ass(T/(A, (£)")).

v>1

Proof
By our construction, we have the following canonical isomorphism of T-algebras:

T[E/A]/AT(E/A] = E(F)'T/(E)" T,
v>0

where T :=T/AT and F := (Fi(A,2),...,F.(A, Z)) = (F1(0,Z),...,F.(0,2)).
Then the assertion follows from the definition of Ass (i.e., the set of associated
prime ideals). O

LEMMA 1.9

Let (A,m) be a local ring, let a:= (a1,...,a,) be elements of A, and let q be a
non-zero dwisor of A. Putting o :=a;/q € Q(A), the total quotient ring of A,
let a:=(a1,...,q,), and we consider the surjective A-homomorphisms:

¢: AlV] = Ala] that maps V; — o,

¢v: AlV]u = Ala]pw) with U= A[V]\ (m,V).
Taking an element b € m, we put A= A/bA and m = m/bA. Let G, a1,...,a,,
respectively, be the images of q, ay,...,a, in A. When q is a non-zero divisor,
putting &; == a;/q € Q(A), let &:=(an,...,a,), and we can consider the induced

surjective A-homomorphisms:

¢: A[V] — Ala] that maps Vj — a;,

¢g: AlV]g — Alalgg)  with U= A[V]\ (m,V).
Assume that b ¢ Ass(Ala]gwy/qAla]gw)). Then
(1.9.1) Ald] 30y = A® Ala]gw)-

That is, Ker ¢ = A ® Ker ¢yr. In particular, if b is a prime element of A, then
b is a prime element of Ala]gw).
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Proof
On the one hand, by the following diagram whose rows are exact

0 —— Ala/dlow) — All/dew) — All/dlgw)/Ala/dsw) — 0
lxb lxb ixb
0 — Ala/dlow) —— All/dswy — All/dlgw)/Ala/dpw) — 0
where a/q = (a1/q, .-, ar/q) = (01,...,r) = @, We get an exact sequence
A® Ala/qlywy — A/ Q) — All/daw)/Ala/d gy — 0.

On the other hand, we have a commutative diagram with exact diagonal maps

Ala 3
0 0
where 7 is injective by assumption. Thus, A ® Ker ¢y = Ker ¢ . (I
LEMMA 1.10
Let A be a Noetherian ring with q, ai,...,a, € A, where we assume that q is a

non-zero divisor for A. Putting a; :=a;/q € Q(A), we set a:=(aq,...,o.)Ale],
where o := (a1,...,a.). Take an ideal b:= (by,...,b,) of A, and denote by g,
a;, respectively, the images of q, a; in A= A/b, where we further assume that
g is a non-zero divisor for A. Putting aj:=a;/q € Q(A), we consider an A-
homomorphism ¢: A[V] — Ala] that maps V; — &;. Suppose that

Ker¢ = (qgVy —ay,...,qVy — a,,G1(V),...,Gs(V)).
Then b :=bA[1/q] N Ala] = (b1, ...,bn, Gi(c),...,Gs(a)), where G(V) € A[V]

is a preimage of Gy (V). Assume further that G, (V) € (V)A[V] for h=1,...,s.
Then

anb=(bi-a1,...,b ar,Gi(a),...,Gs(a)).

LEMMA 1.11

Let A be a local ring that contains a field L, and let aq,...,a, be an A-sequence.
Take polynomials without constant terms Fy(Z),...,F.(Z) € (Z)L[Z], and let
I:=(Fi(a),...,F-(a)), where a:=(a1,...,a,). Assume that the residue field of
A is separable over L. Then, for each p € Ass(A), there exists at least one P €
Ass(A/I) such that P D p.
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Proof
Let T':= L[Z](z), a regular local ring, and let ¢: T'— A be a local L-homomor-
phism that maps Z; — a;. Because ay,...,a, is an A-sequence, p makes A a flat

T-algebra. We may assume that A is complete. Thus, there exists a canonical
projection m: R — A= R/Ker, where R is a regular local ring with L C R. For
each 4, choose z; € R with 7(z;) = a;. Then o lifts to R; that is, we have a local
L-homomorphism ®: T'— R that maps Z; — z; such that ¢ =7 o ®. Because
21,...,2p forms an R-sequence by [6, (42.8)], ® makes R a flat T-algebra too.
Let p € Ass(A). Compare the heights of J := (Fy(Z),..., F.(Z)), Iy := (F1(2),
., F.(2)), where z:= (21,...,2,), and I = (I +p)/p = (Ip +B)/B, where L
is the prime ideal of R that corresponds to p. Suppose that htJ = h. Then
ht Iy = h. Hence, ht I < h by [6, (42.8)]. Take a prime ideal P of A that con-
tains I + p and that satisfies the inequality ht(P/p) < h. Then depth Ap < h by
[5, (15.E)]. Consequently, depthTg < h for @ = PNT. Thus, @ contains J and
ht @ < h. This means that Q) € Ass(T/J) and that ht Q = depthTy = h. There-
fore, P € Ass(A/I). O

LEMMA 1.12
Let A be a ring. Take ideals I, J of A, and take a, b € A. Assume that a is

a non-zero divisor for A/(I + J), and assume that b is a non-zero divisor for
A/(aA+1+J). Then

(aA+I)NBA+J)=abA+aJ +bI+1NJ.

Proof

It suffices to show that the left-hand side of the displayed equation is contained
in the right-hand side. Take x € (aA+I)N(bA+J). Then x =ay+a=bz+ [
with y, 2€ A, a €1, and S € J. Thus, z€ ((cA+1+J):bA)=(aA+ 1+ J);
that is, z=aw + v+ 6, where w € A, y € I, and 0 € J. Hence,

r=>blaw +~v+9) + B =abw +by+ (b + 3) € abA+ bl + J.

Therefore, bd + € J N (aA+1I). We claim that JN(aA+1)=aJ+1INJ.
Proof of the claim. Take € € JN (aA+I), and write £ =au+w with u € A

and we I. Then ue (I +J):ad) =1+ J; that is, u=7+ 0 with 7 € I and

oc€J. Thus, {=a(t+0)+w=ac+ (a7 +w)€aJ+INJ. O

2. Primary relations

2.1. Notation and terminology
Let Ky be a countable field. Let K be a purely transcendental extension field of
countable degree over K, say,

K= U KO({aig,big,cjdi:1,...,n;j:1,...7r;£: 1,...,k}),
keEN

where n,7 € N and {ai,bir,cjeli=1,...,n;5=1,...,m£=1,...,k} is a tran-
scendental basis over Ko. Let ay := (aik,...,ank), let by := (bik,...,bnr), let
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c = (Clky- - Crk), let a:= ({ag tren), let b:= ({bx }ren), and let ¢ := ({ck fren)-
Let Ky, := K 1(a by, ) for every k € N. Then

K= U Ky :KO(Qabvg)
keEN

Let z:=(z1,...,2,) and w := (w1, ..., w,) be indeterminates over K. Let Sy :=
Ky[z0,2,w] be a polynomial ring with prime ideal Mg := (20,2, w)So, and let
Ro = (So)mo = Ko[ZO,g,w](Zme). Then

(2.1.0) Ry is a regular local ring with maximal ideal ng := (29, z, w) Rp.

Let Sk, := Sk—1ax, bx, cx] be a polynomial ring with prime ideal My, := (20, 2, w) Sk,
and let Rk = (Sk)‘ﬁk = Kk[zovng}(zo,;,yy Then

(2.1.1) Ry, is a regular local ring with maximal ideal ny, := (29,2, w) Rk.
Further, put

(2.1.2) S = U Sk = Kola, b, ¢, 20, 2z, w] with prime ideal 9 := (zg, z,w)S,
keEN

and let R:= Syq = K|[20,2, W](z,2,w)- Then

(2.1.3) R is a countable regular local ring with maximal ideal n:= (zq,z,w)R
such that

(2.1.4) Ry =Ry-1(agby.cx)  and  R=|J Ry

keEN

2.2. Polynomial relations
With the notation of Section 2.1, we consider r polynomials in n variables over
K, with zero constant term: Fy(Z),...,F.(Z) € (Z)Ky|Z].

Let {A;g, Vin, } 1<i<nand g,h €Ny} be a countably infinite set of inde-
terminates over Ky[Z]. Define, for each ¢, m € N,

0 m
Xig:=Y Nig,  Yim:=» Vi, and  Zipm = Xig + Yim-

Given a monomial in the n(¢+ 1) indeterminates A;4, where 1 <i<n and 0 <

g <!, we abbreviate the monomial by AE+(£), where ET () := (3f0a~~76:e) €
Ng(“_l) is the ordered tuple of n(f + 1) exponents that occur in the monomial.

That is,

+

E*(@ eto Cne
A = A A

Similarly for monomials in the n(m+ 1) indeterminates V;5, where 1 <i <n and
0< h<m, set

- el e,
vE M = vie . Vi,

where E~(m) := (e1ps--»€pm) € Ng 2(m+1) Note that in [9] we continue to use +
to designate expressions involving or dominated by the indeterminates A;g4, and

7nm
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we use — to designate expressions involving or dominated by the indeterminates
Vih~ Let

& = (A107 Alla LR Alf, A207 L) ATLZ)’

Vm = (V10, VH, ey Vlm, Vgo, ey Vnm),

and let Zpm := (Z1tmy- - -y Znem)- Then, for each j with 1 < j <r, we write
F;(Zpy,) in terms of monomials in the A;,’s and V;3,’s as follows:

)4 m )4 m
Fj(ZKm) = Fj (ZAlg +Zv1ha--~;ZAng + Zvnh)
g=0 h=0 g=0 h=0
=Fj(Ao+-+A1u+Vio+ -+ Vim, ., Ao+ + Vi)

= Z kjEJr(é)E*(m)AE-F(Z)vE_(m) € Ko[Ar, Vi),

for some elements k;p+(s) - (m) € Ko, where the sum is taken over every mono-
mial AET(OTE (M) that occurs in Fj(Zyy,). With the terminology above, we
define, for each ET(¢) and E~(m),

o(E*(€)) :=max{0,9 |0 < g <l and e, >0 for some i with 1 <i <n},
o(Ef(m)) :=max{0,h |0 < h<m and e; >0 for some i with 1 <7 <n}.
That is, o(ET(£)) is the largest g < ¢ such that the exponent of A;, is positive
in A" for some i, and similarly for o(E~(m)). Next we write
Fj(Zum) = F} (Zim) + Fy (Zim),
where

+ “(m
F (Zem) = > kjg+ @ B-(m)AT OVE ™)
o(E+(£))>0(E~ (m))

and

_ + “(m
F (Zm) = Z kjE+(Z)E_(m)AE (O E (m)
o(ET(£))<o(E~(m))
Let B be a ring, and let Z := Z;,...,Z, be variables over B. Take F(Z) €
B[Z], and take variables  := (Qq,...,8,) over B[Z]. By Taylor’s expansion, we
get
oPF

@z)p 22" € BIZ.Q).

(2.2.1) F(Z+Q)=F(Z)+)

where Z+Q:=(Z1 4+ Q1,..., Zn+ Qn),

P F 1 Gt tdn
(aZ)D (Z) - dll, : dn! . (aZl)dl T (8Zn)d" (Z)?
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and QP := Q% ...Qd  and the sum is taken over all D := (di,...,d,) € N§ \
{(0,...,0)}. Note that the formula above works in arbitrary characteristic. Hence,

with the notation above, we have

Fy(Zps1yx) = Fj(Zlkk+A1(k+1)a ooy Znkk HAn(k41))

F;(Zkk) Jrz = (Zkk) VAL .
Thus,
OPF;
Ff (Zgernp) = F (Z) + Y =% @7)D 5 (Zik) A1
Fo(Zgryn) = Ty (Zik)-
By the same reasoning, we have
FH(Zgr1y 1) = F (Z i),
_ 3DF
F(Zwny o) = F (Zarnye) + Z k+1)k)vk+1

2.3. Numbering, |
With the notation as in Section 2.1, suppose that z := (z1,...,2,) and y:=
(y1,..-,yn) are elements of Ry that satisfy the following:

(230) 2i = T; + Y fOI‘iZl,...,ﬂ7
(2.3.1)  z0,21,...,&p,wy,...,w, form regular systems of parameters of R,
(2.3.2) 20,Yls- -y Yn, W1, ..., w, form regular systems of parameters of R.

Inductively, we define two sequences of elements of the field of quotients Q(R)
T, T2y ey They e e - and P1,D2y ey Py - -
in the following manner (for the details, see Section 5):
T = 2o and p1 € Ryo.
Supposing that 71,..., 7 and p1,...,px are already chosen, we write
Qe =Dp1---pe and Op, =71 Ty for £, m<k.
By choosing suitable natural numbers e1,...,¢c, we set
th:=q;"0n for h <k.
For h, £, m <k, we put
(2.3.3) Tig = +angit + -+ aieqy’
(2.3.4) Nim = Yi + 0107 + - + bim 05,
(2.3.5) wjp = wj 4 ¢t 4+ ety
(2.3.6)

2.3.6 CiZm =X+ Nim -
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With the notation above, put

(2.3.7) Som = Fj (Com),
(2.338) O = F (Gem).
Here we use the abbreviations as in Conventions 1.0, namely, z¢ := (214, ..., Zn¢),
N = (Mms -+ Mm)s Wh 2= (Wi, -, Wep), a0 Com := (Cems - - -, Guem ). Further,
for suitable natural numbers vq,..., v, let
1

(2.3.9) Oy = §< o T+ Wiie),

_ 1, _
(2.3.10) Vtm = g (Djem — Wim)-
Finally, take w41, pr41 that satisfy
(2.3.11) Pk+1 € Ri—1,
(2.3.12) Tht1 i= Tht1 +Z7a(k+l)H(q’€a-k‘rk)H’

where (qpogf, )T = (qraif )™ - (qeegty)™ and 71, 71y i € R, and the sum

is taken over all H := (hy,...,h,) € Nj\ {(0,...,0)}. Thus, by repeating the
process above, we get two sequences

Ty Ty e ey Thy e e and D1sP2y vy Dheyen -

Here we remark that, when the e;’s are chosen sufficiently large,
QK :==p1- Pk € Ri—2,
Op =y € kal[qua(Z,l)(k,l)],
where ge—10/ 1) 1) 7= (k-1 () ey G101y )
(2.3.13) th =g 0k € e Ri—1,
Tip = +an gt + -+ ainqr” € Rp—1{air],
Nik = Yi + 0107 + - + bipb* € Rk—1[%—104&_1)%_1)][1%],
(2.3.14) Wik =w; + i1t 4+ 4 ety € Ri—1[cjr).
2.4. Numbering, Il

With the notation above, by Taylor’s expansion, taking the sums over all D :=
(di,...,dn) € NG\ {(0,...,0)}, we get

+ k D
¢j(k+1 jkk—I—Z Ck:k: ak:-l—le;JrJrll) )

D5 tht1)k = Pk

+ _ 4+
P ht1) (k1) = P (k1)
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— D
(2.4.1) Sk (or1) = Py + Z C(k+1)k)(bk+19k+1 )P

Hence,

1
+ _ +
QO k+1)k = PR (¢j(k+1)k T Wj(k+1))
Q11

= ukﬂ{ jkk-l-z = (Creke) ak+1qk’ff)D
Ar41
+ (w]k + Cj(k+1)tkk+l)},

_ 1, _
Qs k+1)k = @(%kk — Wjk),

1
+ _ +
i1y 1) = 7T (@ ek T Witk+1))s
Ai41

_ 1 D
O (k+1) (k1) — W{ jk+1)k T Z C(k+1)k)(bk+19k+l )

— (wjr + Cj<k+1)tii+1l)}'

Thus,

V41 t5k+1
+ Qe 4+ L k+1
Xk = vk Yk~ Cik+1) T
A 4y,

1 P F; I
Uk Z (Ckk)(ak+1%++1 )P

qy ( )
Vk+1 Ek+1
_ qk+1 + qk+1 +

o + ==K
2 k+1)k v kk>
qkk j(k+1) qkk J
ikk = Xj(kr1)ko

+ _ ot
Ykt 1)k = Y(kt1) (k+1)0

9Vk+1 t5k+1
Qo AL - +c AEL
jk+1)k — er QO (k+1)(k+1) T Ci(k+1) 9Vk

1 «— OPF -
—@ZW(CU@H i) (b0 ”

9Vk+1 05k+1
Zk+1 - 4 kAL k+1 _
HZIC ](k+1)(k+1) elfk '(k+1)k7

where

+ k+1  Ek4+1—
Kikk € Rolars1, ceprs 4500 4y O5i1, Canl,

— Ek+4+1 Ek 1
i eanyk € Bolbrats chan 457 0575 Qe sl

61



62 Jun-ichi Nishimura

Therefore,
qyk+1 q5k+1
(2.4.2) O = -, T
Jjkk qkk 5 (k+1)(k+1) qkk Rjkk
. Ot
(2.4.3) ajkk:Waj(k+l)(k+1)+ g itk

where £y, € Rilahr1, Cor1s -1y py 1)) and £y, € Riclans, by, G,
Qka-l:k]'

2.5. Numbering, lll

Consequently, mo, 73, ..., Ty, ... are written as
Th =Th + ZThH(Qh—la?;L_l)(h_l))H
Vp Eh H
q qp
—TthZThH(Qh 1( baih + i 51 1)(h— 1)))
qh—l qh—l
l/hfl H
' q
=rp+ qihu;m + Z ThH (#Qha;ﬂ) )
4h—1

where each 7y, g € Rp_1, where if we take ¢, sufficiently large, then E;l is large
enough and wup, € Rp—1[an,cn] (cf. (2.3.12), (2.4.2)), and where the sums are
taken over all H := (hy,...,h,) € NG\ {(0,...,0)}. Hence, if h <m and ey, ...,em
are sufficiently large, then

Vm—1 H
[ q
Th="Th+ Q) Unm + Y Tha (#Qma;m)
(2.5.1) 9nh—1

With Unm € Rin—1[Gm; Cm]-

Putting s, := m1 (12 + g5 Uam ) -+ (rn + qzh Uhm) € Rm—1[0m,Ccm], we have

qunﬁl H
On = Shim + Z thmH (hqma;m)
(2.5.2) Gh—1

with thymp € T1 Rpm—1[0m; Cm]-
Thus, when e1,¢9,...,&,, are suitably large, we see that

Nim ‘= Yi + bileil + bigogz + -+ bimﬁf,’;"
Vm H
=y; + bilﬂ'il + (bl282m + ZUszH (C(]] a:";m) ) + ..
qy7n H
( zmsmm szmmH( y:: 1 7—:1771) )

H
= s+ b+ 3 T ()
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where
zmH - szhmH qm o 1/qh 1 ) Eﬂ-lRm—l[a_M7b_maC_m]~

By letting zigm = Ti¢ + Yim With Yim :=yi + i7" 4 bi2s52, 4+ + bim S5,
we get

Vm H
(253) Ciém =T+ Nim = Zitm + Z szH( ?/m 1 Oé;;,m)
-1
When m </ and €s,...,¢, are sufficiently large, we have
(254) ]@m gjim + Z dﬂm]qz’;n amm>
where gﬁm = Fj‘(ze_m) € Ry_1]ag, ce) with 2o, := (Z1em, - Znem), G := (a1e,. . .,
ane), and ¢ := (cig,...,¢r¢), and where dj[m] € ming_1Ro_1[ag, co] (cf. (2.1.1)).
Also, we get
(2.5.5) ¢J_gm =Yiem T Z Aj_gmH (qvna;Lm)Hv
where Gom = F;( Zgm) € Ro_1]ag, by, co] with by, := (bim,...,bpm) and where

A]émH €Ty 1Rg [a_ )y Zmy _@]

2.6. Numbering, IV
Finally, we remark that

‘s
+ (o + +
Ppr + Wik = (gjkk + E :djkqullf/kajkk> + Wik

=1
(2.6.1) ! )
= gﬂk + wjk + Zd}‘kkj(gbﬁk + wir).
j=1
Thus,
k
(2.6.2) ¢;rkk +wj = er(-j)(g;?ck + wjk)

=1
with an invertible r X r matrix (r§§)) in Ry_1(ag,ck) (cf. (2.5.4)).

k
If we put afy, = (l/q,':’“)(g;;ck + wjg), then a;'kkzzgzlrj(-j)a?kk and

Rk[a;:k] = Rylag,] where aZ‘k = (oszk,...,a:kk) and af, = (o, .., abu)-
Hence,
T
+ o+ + vk o+
ik = 9k T Z Ao O
i=1
(2.6.3)

s
_ .t A Vi A
=Yk T E :djkkak s
=1
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- = - +N\H
Dirr = Gyn + ZAjkkH(qkakk)
=9ikk t Z A]kaH(Qkaﬁk)H,

+ A - v
where djy ;.. db; € ming—1Ri—1(ak,cr) and Ak Afrr € Mg Ry,

(2.6.4)

3. Secondary relations

3.1. Taylor's formulas, |

With notation as in previous sections, let T := K[Z1, ..., Z,, A] be a polynomial
ring in n + 1 variables over a field K. Take r polynomials in n variables Z :=
(Zy,...,Zy) over Ky with zero constant term:

F1<Z)7.. . ,FT(Z> eTy:= Ko[Zl, .. ,Zn] cT.

Let V := (V1,...,V;), and let ¢: T[V] — T[1/A] be a T-homomorphism that
maps V; to F;(Z)/A. Then
(3.1.0) Ker¢p= (AV; — LAV, = F.(Z2),G1(Z,V),...,Gs(Z,V)),

where G}, (Z, K) eTy [K] and homogeneous of degree g in V.
for h=1,...,s (cf. Lemma 1.7). By definition, we have
(3.1.1) Grh(Z,F/A)=0 in T[1/A],

where F/A:=(F(Z)/A,...,F.(Z)/A). Now let A:=(Ay,...,A;) be new vari-
ables over T'. Recall that, by Taylor’s expansion (see (2.2.1)), taking the sums
over all E:= (e1,...,e,) € NG\ {(0,...,0)}, we have

8EGh
Gh(Z,V+A)=Ghr(Z,V) +Z (Z,V)AP,

where V4+A:=Vi+Ay,..., V. + A,
E 1 e+ ter
0¥ Gy, (Z.V) = . 0 G,
(OV)E el el (OVy)er--- (OV,)er

and we abbreviate the monomial A{* --- A% by AF. In (3.1.1), we replace Z; and

F;(Z), respectively, by

(Z2,V),

Ziom = (Do + Aj1 + -+ D) + (Vio + Vit + -+ + Vim),
Fj(Zum) = (F} (Zum) + Wie) + (F} (Zem) — W),
where Zpm = (Z1ems - - -+ Znem). Further, if we replace A by Ay, then we get
Gh(Zem: E(Zem)/ De)

(E*(Zem) + We) + (F—(Zem) — M))

Ay 0

= Gh (Zemv
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in T[Ag, We, Ay, Vi, 1/Ag]. Here we denote
E(Zem)/Ae = (F1(Zem) /Do, - - Fr(Zim) [ A0),

= Wi, W),

(3.1.2) F*(Zum) = (F" (Zem)» - FF (Zim)),
= (A10,A11,. -, A1p, Dog, .., App), and
=(V10,Vi1,---s Vim, Va0, -y Vium)-

Further, if we replace A by Vo, then we get
Gh(ZZma (me)/v )

(K(%) - %) =+ (F_Jr(Zém) + Wm))
Vi

=Gh (Zﬂ
in TV, We, Ay, Vin, 1/Vyy], where

F(Ziw) [V = (F1(Zem)/Vs - Fr(Zm) [ V) and
Wm = (W1m7~--aWrm)-

Hence,
it E25 2
et
oz, =
5 i (P ) (g0

Thus, if we replace Z;, Ff(@) F (Zkk), Wik, Ak, and Vi by Cigk, qﬁjkk,
Dikk> Wik q.F, and 6;F, respectively, then we have

Gh((km%) :_Zﬁﬁ(@_]ﬁ, qirkq;;wk)(¢;k ;kwk>E7

(V) 4y,
Gh((kk,%) :_Z(a C;*h (Ckk,(b Zk%)(d)zkeg;ﬂ%)lﬂ
That is,

9EG), 0 \E
Gh<@_k’a_?lc>:—ZW(@_k’j)(ﬁakk) ’

_ e _ q”k E
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In the same manner, we get

GGtk 1))

8EGh o o _
= _Z C(k+1)k’ (k+1)k)(ﬁa(k+l)k
E— +

Gh(C(k+1)k’a(_lc+1)k)

3EGh _ q,';’ff
:—Z—(av)E(C(k+1)kaa(k+1)k)( 91?6 z?chl)k

Grl(Cik+1) (k1) 0‘(+k+1)(k+1))

er+1

oraG,, + 1
== 2 Garyr G Hsygesn) (—q;x;;l

Gh(Ckt1) (k1) O‘(_k+1)(k+1))

oF Gy, B qZ’fll
=— Z _(3V)E (§(k+1)(k+1)7 Ol(k+1)(k+1)) (m

3.2. Taylor’s formulas, Il
With the notation above, for a suitable natural number py, let

(3.2.1)

1
Bhk = WGh (S a_;k)

1« 905G, N
:_%TZW(CM’ ﬁk)(q%akk) ;

k
_ 1 _
Brik = —w G (ks )
qy
1 oEG,, (4G N\E
=~ L vy o) (et
1

Btk = QkWGh(C(k+1)k>azgg+1)k)

1 oF Gy,
= —%WZW(C(’”—W“M)

o
x ( 7iin Y k1)
Qr+1
_ 1 _
Bh(k-&-l)k = Zwil Gh(C(k+1)kaa(k+1)k)
+ RS —

oEaGy,

1
— e 2 a5 & s et 1yk)
T 2 (P (S S

Cha1 k+1
B PNZEE
q

t€k+1 E

k+1

€k+1
tes1 \ P

— Ck4+1 "oy
9 k
k

B E
<k+1)<k+1>) )

E
(k+1)(k+1)) ‘

t6k+1

k+1

— Ck+1 o7 Ukt 1
k+1

)

9

)
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V41 Ert1
ki1 + tet1
X( R ) ,
+ 1 G N
5h(lc+1)(k+1) = —ggkﬂ h(w’a(k+l)(k+1))
+1 TR
1 oEaG,
s Gy (b)) O )
O 2 (V) E 2EEDGFD: Bkt 1) (kt1)
o -
x Vk+1 a(k+1)(k+1) )
Qrt1
Prianir = s CnlLn o) Oy )
+1 Wbl
1 oEaG,, B
- 7@2 (@V)F (0D, Oy ier))
q’:ki + 2
0;’“11 Yht1)(kt1) )
+
Thus,

) P o O W
= 3 2 (o i B g+ 5 )
hkk oLk Z (OV)E Sk — Qe4+19k41 et

Vi+1 2 Ek+1 Vit1 ki1 | g
q]€+1 ( 9 tk+1 ) Qk+1 tk+1 }
% { v — Ck+1 7w + ——Cryr1—
Qk qk’fl (k+1)k + qklr—ll qkk + k,r_ll
Vi+1 E
(YL G
- (QZ’“ 95’“2(8V)E(M’M)
OZk _ tiiﬁf E
. ( 71 O‘(k+1)k_ck+lT+1>
U1 Qr+1

Ek+1 Ek+1
I Gi+1 9k+1

7 \grn hkk + aﬂk Z)‘hjkka (k+1)k>
k+1

€
(Tt I BF I qk’f?f ek,fﬁ n Z)‘ o
q;;k h(k+1)k qZkg}L eltk hkk euk hikk™j(k+1)k

k41 k+1  + 4
where each 6hkk S Ro[ak+1;Ck+1apk+17Qk,9k+1 aCkk)qurl a(k+1)(k+1)’9 akk]
+

and A € Rol@r1, Prt1s Qs Sk q,:iﬁlaﬁﬂ)(kﬂ),tﬁ)zka_;k] (cf. (3.1.0)). Then we
have

_ 1 _
Bhkk = %WGh(C(kH)k - ak+1qiiﬁlaa(k+1)k)
qml 1

i Gn(C e
qk qll:ril ( (k+1)k (k+1)k>
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1 ora,, _ ceiinD
ra > (92D 0k ) (a1 5 )

M1 Ek+1
qk+1 Tei1 g- 4 Terr Qey1 5-
= R(k+1 wr Ohkk
a;" )k 4k

where 0, € Rolac+1, 4017 {kt1)k) [0,) and homogeneous in . We have

1
57{(1@+1)k = WGh(C(kH)(kH) - bk+192i+11’0‘(+k+1)(k+1))
O
- e,uk 9;:—1:-451 Gh(C(k+1)(k+1)7a&+1)(k+1))
1 o Gy,
+ ng Z (02)P (C(k+1)(k+1)v (k+1)(k+1))( bk+19k+1 )
9#k+1 Ek+1

Tk+1 Tk+1
=g Bk (k1) T i e Okt 1)k

where 5Z(k+1)k € Ro[bkﬂ,ei’fl 7C(k+1)(k+1)][az;€+1)(k+l)] and homogeneous in

a?;c+1)(k+1)' We have

_ 1 aEGh b 95k+1
ﬁh(k+1)k qgj_ﬂ Z (0V)E Clk+1) (k1) — b1y

91%+1 08k+1
k+1  — Ykl —
QZIC_O[ D+ T e o k+1)k>
Ot Gy 5\ E
o g Q1) (1) — k1 g o
91:1:—11 gn 1 6EGh
_—( o ) 5 Z CRE (Sl 1) (1)

Vi41 E
- 911 ot
k4 1) (k1) o Q1) (k+1)
- k+1

95k+1 €k+1 Vg+1 T
k1 (et 5 Tet1 I
+ gVrIn qgk-f—l h(k+1)k T Hk+1 Z hj(k+1)k (k+1)(k+1)
+1

k
0,5\
B 9;& 5h(k+1)(k+1)
92k+1 q5k+1 q’/k+1
+1 k+1 ¢o— Ak+1
+ HZkgh <qgi4i1 5h(k+1)k + et Mk+1 Z)\h] k+1)k (k+1)(k+1)>7

where
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— Ek4+1
Oy € Bolbrtt, it @47 Trtt, O 1s Q)b

v +
qk,ji»lla(k+1)(k+1)’ 0

k+1 a(k+1)(k+1)]

_ + v
>\ hj(k+1)k S Ro[bk+17ﬂ'k+1’9k,<( )k;qk.H a(k+1)(k+1),Qkilloz(k+1)(k+l)]

3.3. Taylor’s formulas, IlI
Summarizing the above, we have

s e
(33.1)  Bpu=— ( e ) ( o Pk k+1) T o —iOn k+1)k)

qZk+1 92k+1 Vi
D1 (ki1 o4+ 0" Z)\+ - )
O
_Ukgn \ T pHk hkk ik hjkk k+1)k )>
qy 0! 0! Jkkj(k+1)

HE41 el’kJrl

- Qg1 ( k+1 )gh
3.3.2 = —
( ) Bk q]l:k o7 ﬂh(k-ﬁ-l)(k-&-l)

Ek+1 Ek+1 Vk+1
k+1 (De+1 o— qk+1 Z/\
g g Ohlk )k hj(k+1) kaj(k+1)(k+1)
Ek+1

Qg1 o
+ — 7 Ok
dx,

where
Spors Mgk € Brlogyllann, crnl,
Onwr € Ric [ﬂ] [ak41][cry;,] and homogeneous in ay, ,
U

52_(k+1)k € Rifogillart1, bppa]ler (k+1)(k+1)] and

homogeneous in a&ﬂ)(kﬂ),

— — +

6h(k+1)k7 Ahg(k+1)k € RkH[%]-
4, Prime elements

As mentioned in the Introduction, we consider polynomials in n variables over a
countable field Ky without constant term: Fy(Z),...,F.(Z) € Ko[Z1,...,Z,] =:
Ty, and we assume the following.

ASSUMPTION 4.1
The F}’s satisfy the following:

(4.1.1) U Ass(To/(Fr,... . F)Y) = Ass(To/(F, ... Fy)).

v>1
For each P € Ass(TO/(Fl, . 7FT)), there exists a proper subset
(4.1.2) {i1,... it} of {1,2,...,n} such that B C Q:=(Z;,,...,Zi,)To.
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From now on, we fully use the notation in Sections 2 and 3.

DEFINITION 4.2
Let g7, q;, and q, :=q; + q;, be ideals of Ry[a;,] as follows:

(4.2.1) qﬁ = (¢l p + Wik, ooy Olp + Wek),
(422) q]; = (¢1_k;k _w1k7"'7¢7«_]€]€ _w’rk)'

We use ¢;‘kk from (2.3.7), ¢34, from (2.3.8), and wj from (2.3.5).

DEFINITION 4.3

Let qp, q, and q¢ be ideals of Ry, as follows:

(4.3.1) qj = (grkk+w1k,--~7g:_kk+wrk)v
(4.3.2) a8 = (916 — Wiks-- - Grpp — Wrk),
(4.3.3) qy == ap +ay-

We remark that qf Ry[a;,] =q; by (2.6.2) (cf. (2.6.4)).

Next let Ry := Ry, [a;:k]mk be a local ring with maximal ideal fi := 9, Ry,

where Ny, := (20,2, w, a},) is a maximal ideal of Ry[a},] (cf. Lemma 6.2).

DEFINITION 4.4

Let § =g, d,,, and g} be ideals of Ry as follows:

(4.4.1) af =0} Ril1/qe] 0 Ry = qf R[1/qx] N R =: df,
(4.4.2) Ar = a5 Bil1/qx] N Ry,

(143) 37 = a7 Rill /] 0 Ry

Further, let

(4.4.4) k= a5 +ay

(4.4.5) ag = af +aj.

LEMMA 4.5

Assume that p; ¢ qi_, for each i <k. Then
(4.5.1) Rp/ap — Rp/at and G = (afip- - fip)-

Here ﬁ;r is a prime ideal generated by an Ry, -sequence afkk, e ajkk, and p; ¢ qg
for each i < k. Suppose, in addition, that p1R_1 + El;fp o peRi_1 + Elzq are
distinct prime ideals of R_1. Then p1 Ry + ﬁ'k", o peRE+ d; are distinct prime
ideals of ]:'ik and, whenever € > e;,

(4.5.2) (P Ry +88) N Ry—y = pf' Ry—1 + a0,
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Proof
We first remark that qf is a prime ideal generated by the elements gfkk +
Wik, .- ,gjkk + wy that form a part of a regular system of parameters of the

regular local ring Ry (cf. (2.1.1)), and by assumption, it is clear that p; ¢ q
for each i < k. By definition, we have the following commutative diagram with
canonical surjective morphisms:

Ry /az Rk/ﬁg

N/

Rk/(akk

Indeed, the three surjective morphisms above are isomorphisms, because we have
the following canonical inclusions:

Ry/a € Re/a} € (Ri/ag Ri)[1/an] = ((Ric/ai)[1/a]) , -
In particular, El: = (%)Rk This implies that [ﬁ is a prime ideal generated by

an Rj-sequence afkk,...,ajkk and that p; ¢ c]Zr Consequently, if €, > e;, then
we have

Re/(py,6F) = Rie/ (5", a)
= Rk/(p’f77 qléfl)
= (Rk—l/(p?vqul))(a_’f’b_/ﬂc_k)' U
LEMMA 4.6

With notation and the assumptions as in Definitions 4.5 and 4.4 and Lemma /.5,
assume further that 71, qx form an (Rk/qg)—sequence. Then

(4.6.1) m1 ¢ | Ass(Ri/dr) = | J Ass(Ri/9),
where | Ass(Ry,/dx) denotes the union of the prime ideals in Ass(Ry/qx) for a
fized k € N. Hence, (4.6.1) implies that w1 is a non-zero divisor for Ry /.

Proof
Because Ry /q% = Ry,/q; by (4.5.1), we have (cf. (2.3.8))
Ri/af — Ri/ (@) +ay Be) = Rie/(df + ay Ri).
Thus, we get canonical surjections
However, the canonical inclusion Ry/qY C (Ri/q%)[1/qx] and the isomorphism
above show that these surjective morphisms are isomorphisms. Namely,

(4.6.2) Ri/q) — Ry./dr = Ri./a.

This gives the assertion. O
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LEMMA 4.7
With assumptions as in Lemma /.5, assume further that m; ¢ q,_, for each j <k.
Then g, is a prime ideal and 7; & q,, for each j < k.

Proof
By assumption, first we note that w; ¢ q,_; Ry—1[1/qe—1] for j <€ <k (cf. (2.3.13),
(2.4.1)). Next we show by induction that

(D10 — Wity -, Oy — Whe)Re[1/qe] is a prime ideal generated
(4.7.1)
by an Ry[1/qs]-sequence for each h <r and 0 < ¢ < k.
Indeed, the case £ =0 is true, because Fi(z) — wi,..., Fy(z) — w, form a sub-

regular system of parameters of Ry (cf. (2.1.0), (2.3.1), (2.3.2)). Hence, we only
show the claim for the case £ =k, assuming that

(¢1_(k—1)(k—1) W1 (k-1)s - - a¢h k—1)(k—1) wh(k—l))Rk—l[l/Qk—l] is a prime
ideal generated by an Ry_1[1/qr—1]-sequence for each h <r.

But, the assumption above implies that 6, ¢1_(k—1)(k—1) — Wi(k—1)s--s
¢;(k—1)(k—1) — Wy (-1 form an Ry_1[1/qx_1]-sequence (cf. [8, Lemma 1.1]). Thus,
q, Ri[1/qx] is a prime ideal and 7; ¢ q, Ry[1/qx]. In fact, this results from

Dok = Wit = (D50 _1yh—1y — Wick—1)) + {H; (Crt—1) biey O )03 — (0 0n)™ }

2
= ((bj_(k—l)(k—l) - wj(krfl)) + (Hj - CijIik)eika
where (cf. (2.4.1), Lemma 1.2)

1 3DF
H;(Cre—1)- bk, Ok) = egkz(az) (Chr—1)) (0055) P

€ Rk_l[a?;g—l)(k—l)][a_k’ b_k] C Rk—l[%a b_k] (1/qx].

Therefore, q, is a prime ideal and 7; ¢ q, for each j <k. |

LEMMA 4.8
With assumptions as in Lemmas 4.0 and /.7, assume further that

Gk Z1kks - - - > Znkk form an (Ry/qk )-sequence,
Gk Z1kks - - - > Znkk form an (Ry/q))-sequence.
Then
(4.8.1) dp = (a5 G (Cenr ) - G (Cens 3
Proof
First we show that g, D (q,;,Gl(Ck_k,a_;k),. (Ckk,akk)) Indeed, denoting by

T :=Ko|Z,...,Zn,A] a polynomial ring in n + 1 variables over a field Ky, we
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consider a Kjy-algebra homomorphism

wo: T — Rk[azk] that maps Z; to G for i=1,...,n and A to ¢;*.

Then, putting C := Ry[og]/q, and setting C' as the image of C' in C[1/qy]
with canonical projections 7: Ry[aj] — C and 7: Ri[a;,] — C, we have the
following commutative diagram, because ((/);rkk +wjik) + (P — wik) = Fj(Cer)

and because the image of oajkk in C can be identified with that of Fj (Crr)/arr:

TV] T[F/A] —— T[1/A]

Rylof]lv] 2 & L/
WP I
Rilofy] —= c

where ¢ := o ® Ko[V], ¢ := (7 0 po) @k,(a] Ko[A,1/A], and ¢ is an Ry[a;])-
algebra homomorphism with V; — a;rkk,. Further, ¢ is a T—homomorphismw—ith
Vj = Fj(Z)/A, ¢ is an Rj[ay,]-algebra homomorphism that maps V; to the
image of a;'k , 0 C, and %) is the Kj-algebra homomorphism induced by g that
maps F;(Z)/A to the image of ajkk in C. Then, by Lemma 1.7,

Ker¢ = (AVy — Fi(Z),...,AV, = F.(Z),G1(Z,Y),...,Gs(Z,V)).

Hence, by definition, g, D Ker@ D (q,:,Gl(Ck_k,a_Z'k),...,GS(@_k,oz_,Jgk)).
Now we prove (4.8.1). Note that qf; is generated by an (Ry/qxR)-sequence
(cf. (4.3.1)). Further, we have (cf. (2.3.8), (4.3.2))

a5 = ak + a7

(4.8.2) =qi + (Fu(zkk)s - - - Fr(zan))
= (F1(zah)s -, Fr (z)) + 0
and 21k, - .., Znkk form an (R /(qk, q5))-sequence. Thus, by Lemma 1.11, we see
that
U U Ass(Bi/(ar. (a8)")) = Ass(Re/(ar-ap)) €| JAss(Ri/(ax.af)),
v>1

where the first union is the union of the prime ideals in Ass(Rk/(qx, (q5)")) of
all the v for a fixed k € N (cf. (0.1.1)), and |J Ass(Ry/(gx,q")) denotes the union
of the prime ideals in Ass(Rg/(qr,qY)) for a fixed k € N. Hence, by Lemma 4.6

T ¢ U U Ass(Ri/(qr, (a1)"))

v>1

= J Ass(Relagy) /ax Ri[ogy)) N Ry
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= UASS(Rk [it)/an R [agfy]) N Ry

Here (J Ass(Ry[agy)/qxRi[agy]) N Rx means the union of the prime ideals in the
set

{]J =PN Ry |‘I3 € ASS(Rk[Oz_,%k]/quk[a_]%k])}.

Then, letting afips % be the images of afy,, afy, in the field of quotients
Q(Ry) of Ry = Ry /m1 Ry, we get the following isomorphisms (cf. (1.9.1)):

Ri[ayfy] = (Ri/m Ry) @ Ri[ogf]
= (Rk/Trle) X Rk[%] = Rk[d_ﬁk]
On the other hand, by assumption (cf. (4.8.2))
U ASS(Rk/(qka qZ) (qﬁ)lj>) = ASS(Rk/(ka q]?)) .

v>1

Thus, denoting by &f;,, the image of a%,; in Q(Rx/qy), we have (cf. Lemma 1.8)

w1 ¢ (J Ass((Bi/ai)[afe) /ar (R /af ) [afs]) O Re

= U U Ass(Ri/ (qr,qx, (a2)"))-

v>1

(4.8.3)

By mapping V; to dfkk, consider an Ry-algebra isomorphism
(484)  RulVi,....Vil/J = (Ri/a) (@ @) C Re/d}.
Then we have (cf. (4.8.2), Lemma 1.7)

J= (an qzkvl - (gikk + wlk)a e

")qk ‘/tr (gjkk—i_wrk%Gl(zkik)K%7GS<Z]€7]€;K))

Hence,

Ry/(m, a5, G(Chrs i) = (Bilay] g/ (A5 GG )

where q, G’h(ékk,akk) gy, and G (Zkk, @ ajy,) are the images of q;7, Gin( kk,@)y
ay, and Gp(zek, agy) in Q(Ry/m1Ry) = Q((Rk[akk])‘ﬁk) (cf. (4.8.4), (2.6.3),
(2.6.1)). Thus, (71,4, ) = (71,9, ,G (Ckk,ak )), because (cf. (4.8.3), (4.4.1))
Qk¢UASS (Reloie]/ (71, q) . G (zkk _1?))
—UASS Rk[akk]/(m,qk ,G( zkk,akk ).
Therefore, q,, = (q; .G ((jkk,akk)) because q, :m =4q, (cf. (4.7.1)). O
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Finally, note that in the proof above we have also proved

(4.85)  (m,d;)=(m1,qy), and

a = (qZ,Gl(zk_k,a_,@c), oo, Gs(2kk, 2py)) is a prime ideal.
LEMMA 4.9
With the notation and assumptions from Lemma /.8, we have
‘ﬁ na, = (az—‘zk(d)j_kk - wjk)th(@JvLEc))

fori=1,...,n, j=1,....,r, and h=1,...,s, where Gux = (Cikk,--->Cnkk) and

+ (ot +
W = (O -+ Q) -
Proof

Let I:=q; Nq,, and let J:=qg% Nqy. Then by (4.6.1), (4.7.1), and (4.8.4), we
get the following commutative diagrams whose rows are exact:

0
0 Ry /T Ry/af @ Ry/ay, —— Ri/ix — 0
\LXﬂl iXﬂ‘l X
0 Ry,/1 Ry/d) @ Ry./ay, — Rip/dx — 0
and
0
0 Ry./J Ry/3p ® Ry /q] — Ry/i) — 0
iXﬂj iXTl'l X
0 Re/T Ri/df @ Rp/a] — Ri/d) — 0

Hence, we also get the following commutative diagram whose rows are exact (cf.

(4.8.5)):
0 —= Ry/I —— Ry/q} @ Ry/a, — Ri/ax
| i
0 —— Ry/J —— Ri/q} © Ry./q] —— Ri/qy

where
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I:= (7T1,I), a? = (ﬂ—lqu)a a]: = (leq;)a ak = CZIZ‘FEIEZ(WhEIk),
Kt

J:= (WlaJ)a a,ﬁ = (ﬂl,E]l%)a EIZ = (WlaaZ)v Elg ::a aZ:(leﬁlg)
Thus, it suffices to show that J = (afkk(gj_kk —wjk),Gh(zk_k,oz_ﬁk)) fori=1,...,n,
j=1,...,r,and h=1,...,s. This follows from Lemma 1.10. (|

LEMMA 4.10
With assumptions as in Lemma 4.8, we have

Ass((R/ay)/ar(Re /a5 ) N Ry,
= Ass(Re/(qx,dx)) N Ry,
Ass((Re/a5)/ax(Ri/d5)) 0 Relarody]
= Ass(Ry/(ar,ar)) 0 Riclarny].
Here Ass(Ry/(qi,dx)) N Ry := {p =P N Ry|P € Ass(Re/ (g1 1))}

(4.10.1)

(4.10.2)

Proof
First we show that there exists an Ry-algebra isomorphism
(4.10.3) Ri/(q, @) — Rie/ (g, 01

Indeed, we have an Rjy-algebra isomorphism Ri[V*]/JT = R [af,], mapping

Vj+ to a;’kk as in (4.8.4), and J* = (q,Z’“VjJr - (gb;”,ck + wjx)). Further, q, =
(9% » Gn(Crr, fy,)), where (cf. (4.8.1), (2.6.4), (2.5.3))
A = (%‘_kk —wj) = (gj_lck + ZAj_kkH(qkali_k)H - wjk)v
Vi ) Vk— H
GnGua ) = G (2 + 3 L (0 o) T oy ).
Moreover, we have an Ry-algebra isomorphism R [V2]/J% = Ry [ajy,] with VA —
agy and J® = (qF V) — (g;“kk + wjy)) for j=1,...,r. Also, we have q) =

(a7, Gn(zkkyy)), where qif = (g5, —wjk) (cf. (4.8.5)). Thus, we have Ry-algebra
isomorphisms

(Rk[V_+]/(qk7¢jkk + wjkmg;kk - U)jkry(;h(zilw‘/_-"_)));nv+ i} Rk/(qlﬁqlz)u

(Rk[V_A]/(qlﬁgj;gk +w]kvgj_kk; - wjkaGh(Zk_/kvv_A)))mVA - Rk/(Qk7ElZ)7

where My + := (20,2, w,V ") is a maximal ideal of Ry[V*] and Ny» := (20, 2, w,
V%) is a maximal ideal of Ri[V2]. Therefore, we get the assertion (4.10.3) (cf.
(2.6.2)). Now (4.10.1) results from

Ass((Re/ay,)/ae(Re/d;,)) N Ry,
= Ass(Ry,/(qx,d;,)) N Ri
= ASS(Rk/(qk,E[Z)) N Ry,
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= Ass(((Re/ay)) i) /ax (Ri/a)) (ki) 0, ) N B

= U Ass(Rr/ (g, ay, (aR)"))

v>1

:ASS(Rk/ ququqk))
= Ass(Ri/(qr.ay))

= Ass(Rk/(qk7 dx)) N Ry,

where &y, is the image of afy in Q(Rk/c!Z) (cf. (4.8.4), (4.1.1), (4.6.2)). Finally,
(4.10.2) follows from (4.10.1), because qx Ry, N Ry, [qka;fk] contains all the qkaj'kk’s
and because Ry[qraj]/ (qw_Xk)Rk [araify] = Ri/ag (cf. (4.5.1)). O

LEMMA 4.11

With assumptions as in Lemma 4.8, suppose further that one of the following
equivalent conditions is satisfied (cf. (2.5.2), (2.5.6), Lemma J.5):

Bither sgk, Z1kk, - - - » Znkk form an (Ry/qk)-sequence,

or O, Cikks - -+, Cukk form an (Rk/ﬁ;)-sequence.

Then
(4.11.1) m; & UASS(Rk/E]k) for every j <k or s ¢ UASS(Rk/qg),

(4112) | Ass((Ba/@D)/ (0. (07)")) N Ri = Ass(Ri/ (61,21)) N R
v>1

Proof
First, we remark that (4.11.1) follows from the assumption and the facts that
(cf. [8, Lemma 1.1])

O = (950, —wjx)  and gy —wji = Fj(zw)  (mod q).

Then
U Ass((Bi/a))/ (0. (a)")) N Re

= Ass((Rie/a) ) [y ) / 0k (Ric /3 [ ]) N R
= Ass((Re/ai) g/ s (Rie/ai)[G]) 0 Re

= |J Ass(Ri/ (swr- a8, (a))"))

v>1
= Ass(Ry/(Skk» 95 91))
= Ass(Rk/(Skmqg))

= Ass(Ri/(0k, ) N Ry,
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where &, is the image of o, in Q(Ry/T}) = Q(Ry/ap) (cf. (1.8.1), (4.5.1),
(4.1.1), (4.11.1), (4.6.2)).

LEMMA 4.12
With notation and assumptions as in Lemma /.11, we have

(JAss(Re/(ar,a;)) N Ry D | JAss(Be/(ar, ) N R,

U{ U Ass((Re/)/ (00, (q;y))} N Ry > | JAss(Bi/(0r,8;)) N Ry

v>1
Proof
We remark that, by (2.3.6) and (4.5.1), the first of the assumptions in Lemma 4.8
is equivalent to qr, Cikk,---,Cukr forming an (Rk/ﬁﬁ)—sequence. The assertions

above follow from Lemmas 4.11 and 1.11. Indeed, we have (cf. (4.10.1), (4.11.2))
U ASS(Rk/(qk, E[k)) NRED U Ass(ﬁk/(qk, ﬁﬁ)) N Ry,

UASS(Rk/(Gk, ak)) NRr D UASS(Rk/(Gk, E[;)) N Ry. O

LEMMA 4.13

With notation and assumptions as in Lemma /.11, take a € Rg_o or a € Rg_1. If
ek s sufficiently large, then the following statements are equivalent to each other
for every i <k:

(413.1)  a€p¥Ry1+qp_ anda g ps T Ry 1 +qp_y;
(4.13.2) ac€ pfiRk,l + Elz_l and a ¢ pfi+1]~%k,1 + E]ﬁ_l;

a€p; Ry, + Gx and a is not contained in any primary component
(4.13.3)

of pi Ri + G
a € p% Ry + i, and if we have a=pS'B  (mod §) with 3 € Ry,
then /3 ¢ UASS(Rk/(pi, ar));
(413.5)  a€pfRy+q, and adpi T Ry + 5

(4.13.4)

(4.13.6) a€piRy+qf and a ¢ pi T Ry + k.

Proof
The equivalence of (4.13.1), (4.13.2), (4.13.5), and (4.13.6) follows from
Lemma 4.5. That (4.13.3) implies (4.13.1) is a consequence of the following:

(@) N Re—1=(pf",ak_1)  and QN Rey=(p{"ap )

for at least one primary component 9 of (p¢it
divisor for Ry/(p%™,qx) and (pfit!

Lemma 1.2). Because (4.13.4) clearly implies (4.13.3), to complete the proof, it

,qk), because 0 is a non-zero
,qs_,) is an irreducible ideal of Rj_q (cf.
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suffices to show that (4.13.2) implies (4.13.4). Let

€ +
a=pitb+ Y 0 1)
j=1
with b,c; € Ry_1 such that b¢ (pi,d;_,). Then a=p$ (b+ qxpk) + Z;zl djOé;’_kk
with d;, k € Ri[aff} ], because
Vi €k

4y + k4
7 1 Yk T T By (k—1) (k—1)
Ar—1 A1

+
Qj(k—1)(k—1)

with K;r(kfl)(kfl) € Rk[aafl)(kfl)}‘
Thus, § =b+ grk (mod qi), because a = p (b + grk) (mod qy). Therefore,
the assertion results from the following: if b€ Ry_1 and b ¢ p; Ri—1 + El;—v then

b+ gk’ is a non-zero divisor for Ry /(p;,qx) for every &’ € Ry, (cf. Lemma 1.2,
(4.1.1)). O

LEMMA 4.14
With assumptions as in Lemma /.11, suppose that
mRi_1 + Aoy - TRt + q;,,_, are distinct prime ideals.

Assume further that, for every j <k,

(4.14.1) ;&\ JAss(Re—1/d; 1) /ax(Re—1/d;_1)),

(4.14.2) m; ¢ | JAss((Ri/ay)/ax(Ri/dy))-

Then 7 Ry, + qjp s - R + q;, are distinct prime ideals, and

(4.14.3) (W{j R + q,) N Rp 1= w{j Re_1 + q,_,; whenever e, > f;.
Proof

By assumptions (4.14.1) and (4.14.2), we have
qr ¢ UASS(Rk,l/(ﬂ'j, d,_1)) U UAss(ék/(wj,E{;)) for each j <k.
Then (wfj L3, )Re[1/qe) N Ry = ﬂjj Ry +d, for £=k—1 and k. Moreover,
() @) RelL/ax] = (n) 0 ) Re[1/ax]
= (]’ 1) Re[L/a4]

= (al7, 87 ) Re[1/a]

whenever g5, > f; (cf. (2.3.14), (2.4.1), (4.2.2), (4.4.3)). This completes the proof.
O
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LEMMA 4.15
With assumptions as in Lemma 4.14, we have
k k
Nesa) 0 (Y@ a0 =pf - pital - ol Ry
i=1 j=1
Pty e a a0 ay
Proof
The assertion follows from Lemma 1.12. Indeed, by Lemmas 4.5 and 4.14, we get
k 3 k }
(@) =5 pRe+df  and [ )( wlay) =t mlt Ry +
i=1 j=1
Moreover, pi*---p* is a non-zero divisor on Ry./dr (cf. (4.6.2)) and 7J* '--7T£k is
a non-zero divisor for Ry /(p7" ---pi*, qr) (cf. (4.14.2), (4.10.2)). O
LEMMA 4.16

With assumptions as in Lemma 4.1/, take a € Ri_1. Suppose that
(4.16.1) ac ﬂ Pl N () (a5 ).
j=1

If e, vk are sufficiently large, then there exist m € Ry, [qka,jk] and a unit u € Ry_1
such that

(4162) azpil...ka.77-{1...7-‘-;:1%.71'~u (mod E[,;)

Further, assume that

k k
(4.16.3) e Jort ey J@ e
i=1 =1
Then
(4.16.4) T ¢ UASS Rk/ Pi»q U UAss Rk/(wj,qk ))

for every i,j < k. Moreover, when a is a prime element of Ry_1, the image of ™
is either a prime element or a unit in Ry/q, .

Proof
By the first assumption and by Lemma 4.15, we can express
a:pil ...pk {1 . .7T£k b_’_pil ...pzk 'C+7Tll .7r£k d+e

with b€ Ry_1, c€d,_,, d€d;_,, and e€d}_, Nd,_,. That is,
c= i@ 11y — Witk—1)s

_ +
d=Y djaj(k—l)(k—l)’
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€= Z eijazzkfl)(kfl) (¢j7(k71)(k—1) - wj(kq))

+ D GG k-1 Wy
Then

c= ch(¢;kk —wjk) + 0 Ky,

Vi Ek
_ A+ A+
d= Zdj <—ka1 A t Tt Kj(k—l)(k—l))
Ax—1 k1

Ek-
zkk+ h ;?k 1)(k— 1))(¢;kk_wjk+6ZkH;(k—1)(k—1))
o

Vi
+zez{(q‘£%)gh (GGt ) + 085

4"

k £

+ i an [9 k(slj(k 1)(k—1)
A1

+ D Ao (B — wi + 05 "‘f(k—l)(k—l)ﬁ }
Vk X Zej Jkk — Wjk)

Q" \9n / + 4" pen ot
+ (W) D hGnl(Gukr i) + F% Ar—1>

Qg1 k—1
where k;_, € Rj_1, ”2—1 € Rk,l[a_k,c_k], ej € Rk,l[a_k,c_k,agk], and )\;_1 €
Ri—1[ag, be, o)) (cf. (2.4.2), (3.3.1), (3.3.2)).

Thus,
a:pﬁl...pzk.ﬂ'{l...ﬂ'gk
95’“
x[b+7f1“ o ke 1+p ek. VklZdajkk
qk ”Z_ i qquEk )\2_ ]
14 — —
p?"'pk qkkll ! p?'--pz : {1 ,f’“-qZk_’f !

TR (B — wik)
qyk _ gn

+ i Y6y~ wn) + (e 1) > ehGulGusa)-
k—1
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Now put
07
/_ k —
T =b+ IR .ﬂ_]{:klik—l
(4.16.5) + ek = lzd oz]kk+ e T R
it : pk -1

Vk9€k
el f1 fr  Vi—1 /\2_*1'
Pttt Mt

Then there exists w € Rk,l[a( \ Ni_1 such that 7 =wn’ € Ry, [qkagk].

1) (1))
Hence, by letting v =1/w, we get (4.16.2).

Assume further that a satisfies (4.16.3). Then by Lemma 4.13, we see that

Té¢ UASS(Rk/(pi, dr)) for each i <k.

Thus, 7 satisfies (4.16.4) by Lemmas 4.10 and 4.14. Finally, when a is a prime
element of Rj,_1, the image of 7 in Ry /q, is either a prime element or a unit,
because

(R ) [ = (B t)) [

qr0k

= (R foR)as b))

— ((Rk_l/aRk_l)[qk%k} [ag, b, cx] /q;)Uk

where Uy, and Uj, are multiplicative sets. O

LEMMA 4.17

With notation and assumptions as in Lemma /.10, take a € Ri_o. Assume that
a=pit-pik- {1~ -W,f’c-e (mod q;_;)

with € € Ry_1 such that the image of € in Rk_l/ﬁ,;_l is a unit. Then, for suffi-
ciently large ey, we have

(4.17.1) a=pst--ptonlt ko (mod §j)
where ¢ € Ry, and the image of € in Rk/ﬁ,; s a unit.
Proof
By assumption, we can write
a:pil ...pk {1 . .7T£k b_’_pil ...pzk 'C+7T11 "'W]J:k d+e

withbe Ry_1, c € I 1, d€d; 1, e€q_,Na;_, (cf. Lemmas 4.13, 4.16). Hence,
using the same notation as in the proof of Lemma 4.16, we get

a=pi - pit ~7r{1~-~ﬂ',{k -7’ (mod gy ).
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Incidentally, b=¢ (mod qx_1). Indeed, gr0x is a non-zero divisor for Rk_l/ﬁk_l
and

a=pi -k 'W{l W’J:k b (mod q_1).

Thus, the image of b in Rk,l/ﬁk,l is a unit; that is, b ¢ n_1. Consequently, 7’ ¢
1. Therefore, the image of € in Ry/q, is a unit, because ¢ =7’ (mod q,/). O

5. Factorial numbering

5.1. Simple numbering on P

With notation as in Section 2, because Ry = Rp_1(ag,bg,cx) and R = J, R
(cf. (2.1.1)), each height-one prime ideal p of R is generated by a unique prime
element (up to a unit multiple) p € Si. Thus, choosing such uniquely determined
p € Sy, for each height-one prime ideal p of R, we get a set of prime elements
that represents the height-one prime ideals of R, and we denote the set by P (cf.
(2.1.2)). That is,

(5.1.1) PN\ {0},

which contains, for each height-one prime ideal p € Spec(R), exactly one p € Sy,
such that pR = p. Then, P is a countable set and we may assume that it contains
zp and an infinite number of elements of Sy.

On the other hand, with notation as in Section 4, let

(5.1.2) Rh_l(a,b, c):= Rh_l(aik,bik,cjk)
where i=1,...,nand j=1,...,r with k=h,h+1,..., and let
(5.1.3) Ry—1(a,b,¢)<p = Ry_1(air,bir,cjr)

where i=1,...,nand j=1,...,r with 7=h,... ¢ (i.e., 7 <¥).
Now, before giving factorial numbering, we fix a simple numbering p1, p2, .. .,
Phs - . to the members of P as follows:

(5.1.4) p1 =20 and ph € Rp_o  for h>2.

PROPOSITION 5.2 (FACTORIAL NUMBERING)
With notation as in Section 2 and with simple numbering (5.1.4), we can choose

two sequences of elements of Q(R), namely, m1, 72, ..., Tj,... and p1,P2, ..., Pis-- -,
such that

= p1(= 20) and ;€ ij1[q]>104(+j,1)(j,1)] forj>2,
p1 € PN Ry and pi€EPNR;_o fori>2,

and for each natural number k, they satisfy the following:

(5.2.1) qk, 9% form an (Rk,l/ﬁlk,l)-sequence;

(5.2.2) @, 0 form an (Ry/qx)-sequence;

(5.2.3) P1Rk71 + Elz_l» e 7kak71 + Elg_l and T Ry, + Aoqse e oo
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FkRk_1 +4;_, are mutually distinct prime ideals of Rk_l;

(5.2.4) Qky Z1kks - - - » 2nkk form an (Ry/qy )-sequence;
(5.2.5) SkkZ1kks - - - Znkk form an (Ry/qe)-sequence;
(5.2.6) Qk» 21kks - - - » Znkk form an (Ry./q))-sequence.

We can take these elements so that each pp, € P is decomposed as follows:
_oem . enn— Fran—s) _Fnizn— -
(5.27)  pp=pm - popChTY e PP Ch Dy (mod §y),

where upy € Ry, \ g for k>2h —3 (cf. (4.16.2), (4.17.1)).
On the other hand, we can find natural numbers uy, vi, and € such that

pr < prg <0 < pp < g1 <o

A A A A
(5.2.8) v <vp <o < U < Vpyp <o
A A A A\

€1 <& < - < <€pyr <+
and they satisfy
470k € Ri—1 and Vg > Noy :=max{en; + Vor—1, fnj, fa2n—2)}

for 1<4,7<2h—3; 1<h<k+1 (¢f (4.5.2), (4.14.3), (4.16.2)). Finally, we
can give enumerations on

X" := the set of height-one prime ideals of Ri,l(a,b, e)/(pi,a;i 1),
X := the set of height-one prime ideals of R;_1(a,b, e)/(mj,d;_1)-
Namely, we have (cf. (5.1.2), (5.1.3))

X = {ﬁ; ::‘,ﬁ;/(pi,ﬁj_l)} such that ‘i?j;z C Ri_1(a,b, C)<h—2,

X ={p;, =P,/ (m;,d;_1)} such that B}, C R;_1(a,b,c)<p_a.
That is, because Xi+ and X;~ are defined to be the set of height-one prime ideals
of Ri_1(a,b, c)/(pi,a;,) and of Rj_l(a,b, c)/(mj,q;_1), Nj;b should be an ideal
of Ei,l(a,b, c) generated by the elements of Ri,l(a,b, C)<h—2 and ﬁ;h should

be an ideal of Rj_l(a,b,c) generated by the elements of Rj_l(a,b, C)<h—2.
Arranging the members of Xit, Xy, ..., X ,... and those of X; , Xy ,...,

X ,... in the following manner:
e T e
?il Ifiz P13 Pin
Po1 P22
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we get numberings on X+ :=J X" and on X~ := U X, specifically,

ﬁflvﬁf%ﬁ;pﬁigaﬁ;%ﬁ;h'" and ]31_15151_27ﬁ2_17ﬁ1_3’ﬁ2_2’ﬁ3_17'"'
Further, if p,, (or p,) is the kth member in X~ (or in X1 ), then we can take
5, p;i such that

(5.2.9) Mok41 € ‘i’s}h and P2k+1 € @Zh'

In the rest of this section, we carry out the proof of Proposition 5.2 by induction
on k.

5.3. Choice of 7 and p; andthecase k=1

Let m; = zg. Then 7 ¢ UASS(Ro/qo) and m Ry +4q, is a prime ideal of Ro. Next
take p; € PN Ry such that p; ¢ UASS(RO/(m,E[O)) and such that pi, z1,...,2,,
Wiy evoysWry D1y Yly- vy Yny Wiye-o s Wr, a0d pP1, 21,..., 25, Wi, ..., Wy, respectively,
form part of the regular systems of parameters of R. Then

.M é UASS(RO/C]Q) and m Ry + qo is a prime ideal of Ry,

- q1,0; form an (Ro/ﬁo)-sequence,

. q1,0; form an (Rl/ﬁl)-sequence,

. p1R0 + E{g and m Ry + qo are mutually distinct prime ideals of Ro,

A
.« q1,71115- - -5 2n11 form an (Ry/qf)-sequence,
A ~
. $11,2111,- - - 2n11 form an (R /q{)-sequence,
Y\«
.« q1,21115 - - - 2n11 form an (R;/qy)-sequence.

Finally, we can give enumerations on the sets of height-one prime ideals
X" of Ro(a,b,¢)/(p1,dg) and X[ of Ro(a,b,e)/(m1,dy).
Namely,
X = {ﬁfh = ‘ﬁfh/(plvﬁé)} and A = {ﬁl_h 12‘13171/(#17@6)}
such that ‘iq‘h C Ro(a,b,c)<p,_2 and ‘ﬁl_h C Ro(a,b,c)<p_a.

5.4. Inductive assumptionsup to k =2k — 1
For a natural number x, we may assume by induction that mq,...,m2x_1 and
P1,---,D2x—1 have been chosen as follows:

(5.4.1) m; ER]-,l[qj,loz(+ and pi € PNR;_5 fori,j<2x-—1,

jfl)(jfl)]

and

« qm,Om form an (R,,—1/qm—1)-sequence,

© Qm, 0y form an (Rm/ﬁ{m)—sequence,

. p1§m71 + q;,l, o ,mem,1 + ﬁ;fl and 7T1Rm,1 + E{;l,p cee
T Rom—1 + q,,_1 are mutually distinct prime ideals of Ron_1,

© Qs Zlmms - - s Znmm form an (R, /q5,)-sequence,

 Smmy Zlmms - - - » Znmm form an (R, /q5,)-sequence,

G Zlmms - - - s Znmm form an (R, /qy.)-sequence
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for m < 2k — 1. Further, we may assume that, for 2h — 2 <2k — 1, each p, € P
is decomposed by the elements above as follows:

_ em €n(2h—3) fr1 frnizh—3) _frzh—2) ~
PREPTM Doy M Ty Mty Upm (mod qy,),

where wupy, € Ry, \ iy, with 2h —3 <m <2k — 1 (cf. (4.16.2), (4.17.1)). On the
other hand, we may assume that we find natural numbers uy, v, and 5 such
that

u1<u2<... </J‘m<”. </,L2K_1

A A N A
V) < Vg < ov < VUpy <00 < Vg1
A A N A

1 € < gy <o < €961
that satisfy
(5.4.2) Qo' Om € Ryy—1 and vag > Nog :=max{en; + vor—1, fnj, fnizn—2)}

for m<2xk—1,4,5<2h—3,and h <l+ 1<k (cf. (4.5.2), (4.14.3), (4.16.2)).
Finally, we may assume that, for 7,j <2k — 1, we can give enumerations

X" := the set of height-one prime ideals of R;_1(a,b,c)/(pi,d;" ),
X, := the set of height-one prime ideals of Rj_l(a,b, c)/(m;, E|j:1).
Namely (cf. (5.1.2), (5.1.3)),
X;‘ = {ﬁj}t ::‘53;»2/(191-,51?_1)} such that ‘i?;';b C Ri_l(a,b, C)<h-2,
X = {ﬁ;h ::&f3;h/(7rj, ﬁ;_l)} such that ‘53]1 CRj_1(a,b,c)<p_a.

Arranging the members of X1+, X;,...,Xfr,... and those of &, X5 ,...,
X;,... in the following manner:

mo o i

Po1 Pao

u - St

P Peo Pen

S i -
Pok—1)1 Per-1)2 Por—1)n

we get numberings on Xéﬁfl) =2t and Xiaw—1) = Uji{l X

ﬁ—li_laﬁ—lgvﬁé‘—laﬁi‘%ﬂﬁ;%ﬁg_la'" and ﬁ1_17‘31_23ﬁ2_1aﬁ1_37ﬁ2_27ﬁg13""
Then, if p,, (or pj;,) is the mth member in Xigwo
also assume that m;, p; satisfy

1 (or in X&Nil)), then we may

Tom+1 € ‘BZ% and Pam+1 € Py, for m+1<k.
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5.5. Decomposition of p,, 1 and choice of 7y, pay;

Let e(xq1)1,€(kt1)25 -+ €(rt1)(26—1)> S(rt1)1> f(rt1)25 -+ -5 f(wt1)(20—1) De natural
numbers that satisfy the following

2k—1 2K— f
e(n+1)z ~+ (r+1)j ~—
Pr+1 € ﬂ +02k—2) m +02k—2)

and
2k—1 2Kk—1
Pri1 ¢ U e a0 e ).
j=1
Then
et =P LB e e g (mod 5, )

with fa, € R2n—1[Q2,-;—10¢?_2,€_1)(2H_1)]-
Here (s, is either a prime element or a unit in R%_l/agﬁ_l and us,. is a

unit in Rox_o (cf. Lemma 4.16). If By, is a prime element, then put o, := Bay.
Then

Tow & U ASS(RQH—l/(qQH—17 512;@—1))

and o, Rop_1 + d5,._1 is a prime ideal different from pi]:%gn_l + ﬁ;‘,{_l and
Wij,.;_l + (5,1 for 4,5 <2k — 1. Otherwise, take my, € P N Ry such that the
image of 7y, is a prime element in ]:22,171/5[2171,

Tow & U Ass(Rau—1/(q2r—1,820-1)),

and o, Rop_1 + d5,._1 is a prime ideal different from piRow_1 + qgﬂ_l and
WjRQH_l + EIQ_n—l for Z,j S 2k — 1.

In both cases, let po,, € PN Rax—_2 (or PN Ry) such that the image of poy is
a prime element in RQ,Q_l/E{;Kfl,

P2k ¢ UASS(RZK—l/(02K7 q2n—1))7
and poxRon_1 + ﬁgﬁ_l is a prime ideal different from p;Ro._1 + ﬁ;_l and
TjRow_1 + g, for i+ 1,j < 2k. Thus,
(5.5.1) T € Rj,l[qj,la(fj_l)(j_l)] and pi € PNR;_5 for 1,7 <2k,
and, for m < 2k,

« Qm, 0y form an (Rm 1/qm—1)-sequence,

* Gm, Om form an (Rp,/qm,)- sequence

. lem 1+qm 15+ ,mem 1+qm 1 and 7T1Rm 1+qm 1+ mRm_lJr
q,,_1 are mutually dlstlnct prime ideals of Rm,l.
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Now we show that if the €,,’s are large enough, for m < 2k,

(5.5.2) Gms Z1mm,y - - - » Znmm form an (R,,/q5,)-sequence,

(5.5.3) S Z1mims - - s Znmm form an (R, /q5,)-sequence.

Proof of (5.5.2) and (5.5.3)

By definition, it is enough to show that, for m < 2k,
Ty Zlmms - - - Znmims Gimm + Wims -« -y G + Wrm form an R,,-sequence,
Sy Z1mmy -+« > Znmms G1mm T Wims -« s Gmm + Wrm form an R,,-sequence.

By induction, we may assume for ¢ < 2x — 1 that

+ + .
Qs 2105 - - - Zntey G1pp + Wik, - - -, gy + wre form an Ry-sequence,
+ + ‘
500,21005 - - -5 Znets G1pp T Wie, - - -y Grgp + wre form an Ry-sequence.
Because zimm, -+ -y Znmm, gf‘mm +Wim, - - G + Wrm is a subregular system of
o — + fq
parameters of Ry, B := (Zimms - - - » Znmms Simm + Wims - - s Gy + Wrm) 18 &

prime ideal generated by an R,,-sequence. By construction, we have
2
Smm = S(m—1)(m—1)Tm T qm" Tm,

m
Zimm = Tim + (yz + Z bihsff;n)
h=1

E;n m *
= Zi(m—1)(m—1) + dm Nim + S?mfl)(mfl)rimv

Zi(m—1)(m—1) = Zi(m—1)(m—2) T Di(m—1)S(m_1)(m—1)>

gjtnm +Wjm = gj+(m71)(m71) +Wjm-1) + qfr;n"{jm7
where (cf. (2.5.1), (2.3.6), (2.5.4))
T'm € Rm—l, Tfm € Rm_l[b_mejm € Rm_l[C_mL Zime € Rm—l[a_m, b_ﬁ],

+
Smm> Tms 9 jmm> Kim S Rm—l[am7c_m]a and A, € Rm—l[amab_maﬁl

Thus, to get the assertion, it suffices to show that g, 7, ¢ P, for sufficiently
large €,,,. Namely,

G T & Brn—1-
In fact, this results from
(2(m—1)(m—1)s Gm—1) N Rim—2 = (2(m—-1)(m—1), Gm-1) N Rm—2
= (Zm-1)(m=1)>Am—1) N Rin_2
=Pm-1NRm—2
=(0)
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and from either ¢,,, T, € R,_2 or

p=pi! ~--7r71:;'fll T U, (mod 4, ),

where p € R,,—o with m,, € Rm—l[‘]m—la?_m,l)(m,l)] (cf. (5.4.1), (5.5.1)). This
completes the proof of (5.5.2) and (5.5.3). O

Moreover, with the notation and assumptions above, we show that

(5.5.4) Ums Z1mm, - - Znmm form an (R, /qy,)-sequence for m < 2k.

Proof of (5.5.4)

First of all, by inductive hypothesis, we may assume that
Qe 21005 - - - > 2nee form an (Ry/q) )-sequence for ¢ < 2k — 1.

By construction, Ryn/(m1.0%) 2= (Rom-1/(m1,05% 1)) (dm:bums ) (cf. (23.5)).
Thenv because gfmm = Wims s Grmm — Wrm, Zl(m—l)(_m—l)v <+ 2n(m—1)(m—1)
form a subregular system of parameters of R,,/m1 R, Pm-1:= (Z1(m-1)(m-1)>
ooy Zn(m—1)(m—1)) is a prime ideal generated by an (R,,—1/(71,4,, ;))-sequence.
If we denote by G, and Zjn_1)(m—1) the images of g, and zjm_1)(m—1) in
Rmfl/(ﬂ—h Clrvnq), Zimm = Zi(mfl)(mfl) + aimq;gnm in (Rmfl/(ﬂ—la CIZ@A))[aima bﬂ7
¢m]. On the other hand, p; € R;_, for j > 2. Hence, we may further assume that

PBeN (Re—1/(m1,97_1)) = (0) for £ <2k — 1.
In particular, g, ¢ Pm_1. Thus by Lemma 1.1, 1, ¢, Zimms - - s Znmm form an
(R /qy,)-sequence, and we get the assertion. O
Next choose sufficiently large pioy, vox, €2, such that

pa < pip <o < <o < a1 < flow

N A\ A N A
V] < Vg <o < VU <00 < Vo1 < Vo
N A\ A N A

€1 < e <o < g <vvr <21 < €24
and
(5.5.5)  qorrban € Row—1 and  vax > Noy :=max{en; + Vax—1, faj, fn2n—2)}

for i,j <2h—3 and h <k +1 (cf. (4.5.2), (4.14.3), (4.16.2), (5.4.2), (5.5.2),
(5.5.3)). Finally, we give enumerations on

X, := the set of height-one prime ideals of Ry, _1(a,b,c)/(paw,dar 1),
X, := the set of height-one prime ideals of Ry._1(a,b,c)/(Tax, 5. 1)-
Namely,
s = Py = Blawn/ P2ss 83 1) } such that B, C Raw-1(a,b,¢)<ns,

X, = {ﬁ(_%)h ::‘J}(_Qn)h/(ﬂgm d2,._1)} such that ‘3(_2,1)11 C Ron_1(a,b,c)<p_a.
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5.6. Choice of 75,11 and pa,; 11
When pj, =B}, /(pe.af ;) C Ri—1(a,b,e)/(pe,df ) is the xth member in
X(;m) = Ule Xf, take mo, 41 as a prime element of P N Ry, such that

« Mor+t1 € ‘Beh whose image is a prime element in Ry, /qs,,

e T2k+1 ¢ UASS(RQ,{/((]QH, qQH))
. 71'2,{+1R2,g + g5, is a prime ideal different from piRoy + d3,., and T Roy. + oy
for i,j < 2k.

Next when ﬁé_h = &ﬁzh/(w, d,_,) C Ri_1(a,b,¢)/(mp,d, ) is the xth member in
(25) U , choose pai+1 € PN Ro,—1 that satisfies the following:

.« Pogt1 € ‘B[h whose image is a prime element in Roy. / q;;,

- Doyl & UASS(RQR/(GM—&-h qZH))
pg,ﬂ_leK + q% is a prime ideal different from leg,.c + q%, and '/TJRQK + 05,

fori+1,5 <2k+1.

Hence,

(5.6.1) m; € ijl[qﬂ'*laz;;l)(jﬂ)} and pi €EPNR;_o fori,j<2x+1.
Further, for m <2k +1

 Gm,0,, form an (Rm 1/8m—1)-sequence,

* qm,Om form an (R, /q,)-sequence,

. lem 1+qm 1o--- ,mem 1—|—qm 1 andmRm 140,41, ..,ﬂmRm_l—l—
d,_, are mutually distinct prime ideals of R, ;.

Now, by the same arguments as in (5.5.2), (5.5.3), and (5.5.4), we get for m <
2k+1

(5.6.2) Ams?1mms - - - Znmm form an (R, /q5,)-sequence,

and if the ,,’s are large enough, then

(5.6.3) SmmZlmm, - - - Znmm form an (R,,/q5,)-sequence,
(5.6.4) QmsZ1mms - - - Znmm form an (R, /qy,)-sequence.
Moreover, choose sufficiently large po.41, Var+1, €2x+1 Such that

1 < prg < v < < < oy < H2k+1

A A A A N
v <V <o <V < < Vo < Vg1
A N A A N

€1 e < - < gy < o0 < €2, < E2641

and q¢o. 1 0241 € Rop (cf. (4.5.2), (4.14.3), (4.16.2), (5.4.2), (5.
(5.6.3)).

ot
(@}
ot
S~—
—
ot
(=]
[\)
~—



A few examples of local rings, Il 91

Finally, we give enumerations on

X, = the set of height-one prime ideals of Rox(a,b,c)/(pari1,dqr),

Xy, .1 = the set of height-one prime ideals of Iégn(a, b,c)/(T2m+1,05,)-
Namely,

Xz—;+1 = {ﬁamrl)h ¢:5f3(+2m1)h/(192n+175|2+n)} with ‘ﬁa,ﬁq)h C RQK(C%baC)Sh—?’

X2;+1 = {ﬁén+1)h = Y’Bén+1)h/(ﬂ2“+1’ E{;m)} with fj3(72ﬁ+1)h C Rg,i(a, b, C)Sh,Q.

This completes the proof of Proposition 5.2. O

6. Construction

6.1. Notation and terminology
With the notation, assumptions, and numberings as in the previous sections, let

Bk = Rk[a];k;aﬂ_]j]w 616_14;}7 mk = (2’0’57&7 a[i_kaa]:kvﬂ_]j]w /Blg_k;)Bka

B::LJB;c7 and M:ZUme(Zmé,w)B’

where w := (wq,...,w,), z:=(21,---,2n), a_gk:: (afkk,...,a:‘kk), Qpp, = (e
e ), B_,jk:: (ﬂfkk,...,ﬁjkk), @:: (Biggs---+B5p), and k=1,2,.... Then

we have the following result.

LEMMA 6.2
With the notation above, M is a maximal ideal of B. And we have the canonical
isomorphism R/n — B/M.

Proof
By definitions and by relations among ozjkk, ko ﬂ,‘fkk, and f3;,,, it is clear that
all these elements are in M (cf. (2.4.2), (3.2.1), (3.2.2)). To get the assertion, it
remains to verify that M # B.

Assume the contrary. That is, M = B. Then there exist Yo, Y1, -, Vns 015+ -,
0, € B that satisfy

’yO'ZOJ’_/Yl.ZlJ’_'.'—’_’Y’rL'ZTL—’_él'w1+."+57‘.w7‘:1'

We may assume that v;, d; € By, for sufficiently large k. Thus there exist c;,
d; € Ry, and v € N such that

ap 08 (vi — i), qg 006, — dj) € ar (cf. (2.3.10), (3.2.1), (3.2.2)).

Hence,

qr-0r(cozo+crz1 4 +epzn +diw + -+ dew, — 1) € Qg

and therefore gy -0% € §. This contradicts the choice of py and m,,, (cf. [8, Lemma
1.4], (5.2.2)). O
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LEMMA 6.3
With the notation above, p; and m; are prime elements of B that satisfy the
following:

k
(6.3.2) U((Ri(a,b.0)/(x;,87)) @), — B/ B,
k

where &, is the image of oy, in the field of quotients of Ri(a,b, o)/ (pi,a;)
and @_;k is the image ofa_ﬁk in the field of quotients of R;(a,b, c)/(mj,q; ) with
Ujr =1+ (1, O‘Zk)’ respectively.

Proof
First of all, putting R := Uk Ry, we note that Ry (a,b,c)/(p;, ) = R/piR for
every k > 1. In fact, this results from the following commutative diagram:

Rk/(pi;ﬁ;:) Rk-&-l/piék—i-l

N

Rk+1/(pivflz+1) - Rk+2/piRk+2

where the left diagonal map is injective (cf. (4.5.2)). This also shows that p; Ry 1N
Ry, = (pi7az_)Rk; for every k > i. .

Proof of (6.3.1)
By the remark just above, we get the following commutative diagram, because
Ryp[1/0k11] = Bi[1/0k+1] (cf. (3.2.1), (3.2.2), (5.2.8)):

(Rie/(0i8)) [y By/(piBrs1 N By)

| |

(Bir/ (i 85 0) 0G0y o)) — B/ (0,8 4)) [ﬁ]

where the upper horizontal map is surjective (cf. (2.4.2), (3.3.1), (3.3.2)) and
the left vertical map and the lower horizontal map are injective (cf. (5.2.3),
(5.2.1)). O

Proof of (6.3.2)
By construction, we get the following commutative diagram, because R, lagl[1/
qr] = Bi[1/qx] (cf. (3.2.1), (3.2.2), (5.2.8)):
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Rk/(ﬂ-ﬁa]:) - Bk/(ﬂ'jBk-‘rl N Bk)

|

o) — (i) o]

where the upper horizontal map is surjective (cf. (2.4.2), (3.3.1), (3.3.2)) and the
left vertical map and the lower horizontal map are injective (cf. (4.14.3), (5.2.3),
(5.2.1)). O

LEMMA 6.4
With the notation above, let A= By, and let m= MA. Then (A,m) is a Noe-
therian unique factorization domain.

Proof

Let p be a non-zero prime ideal of A. Because A and R have the common field
of quotients, p N R contains a prime element of R, say, p. We may assume that
p=pr+1 € P. Then

p=pit Pt

€2k V2K

2k 4o
{b+7f1 Tor 2k~ 1‘*‘ B ple T E i 00,
= " Pop—1 "2k

E2k Vak €2k
q2k K,+ + q 9 )\+
c1 €2k—1  V2k—1 "2k—1 e €ok—1 f1 fok vop 1 2k—1
28 Pok—1 "lop—1 Pyt *Por_ 1T Tk Qo1
€2k—1
“Pop—1 E :CJ J2k2k — wjok)
1213 Vak
Doy dor,. \ 9" / +
Vzk I E :e ]2k2k —wjor) + ( i E enGn(Car2ks Uopon)s
A1 a1

where b is a unit element in Roj_; (cf. (4.16.5), Lemma 4.17, (5.2.7)). Hence,
p :pi . pgzk 1171—{1 ’/ngk (b + 02k5/ + q2k5/ + ZC/ j2k2k + Zd ﬂthZk)

where 8/7 6/’ C;’v and d% € RQk}—l(GZk)bZkyCQk)' Thusa

pA=p - ppi o m A
That is, p contains either p; for some ¢ <2k — 1 or 7; for some j < 2k. Because
both A/p;A and A/m;A are Noetherian domains (cf. (6.3.1), (6.3.2), (5.2.9)), p
is finitely generated. Therefore, A is Noetherian. Moreover, the argument above
shows that if, in addition, p is a height-one prime ideal, then p is principal (cf.
[8, Proposition 5.6]). O
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6.5. Notation

With the same notation as in previous sections, let R:= K|[[zq, 21, ..., 2n, W1, . .

w,]]. Take elements of R:

61 = x1+a11Q1 + - +aqu;€ 7Il+zaquk s
%)

R €1 €k _ €l

Wj~—wj+cj1t1 +"'+Cjktk +-~-—wj+chktk.

Let 90;_ =limg 0 (lsj_k-ka 7/};_ = C,Dj_ +wj, and let

+
at, =al, ——% > Zc toh —
jkk = Yk qVk_ ]kk jhlp ‘Pg
k h>k

By letting 0y := 71 - - - 7, with

= e (@160 € R (cf. (2.3.12)),

we put
77}2'171 =y + biléil 44 biméfﬁ",
M= yi+ Y budi
éém =i+ ﬁim7
and
Further, let
Bk = Fj (Cur)
- F+ (5—) Fy (Ek_k) = f]-zk + ~fj7€lca
;= Fj(¢)

— lim Ft i - — ot s
= Jim fli+ Jim fii =67+
and
1/1; =) —wj.

LEMMA 6.6
With the notation above, we get

KHZ07§1775”]]/(@177¢T)%§/(¢f—77w:—7,¢;1—77,¢}r_)

1
o)

)
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By Lj;mma 6.2, we have a canonical surjection 7: R — A that gives the following
commutative diagram

R

R

with canonical injections ¢, pgr, and p4. Thus, we are only to determine Keri. By
definition, l)f}j - (rbj'kk +wjk) € q;g’lrllR and ¢jkk +wjk = q’:kajkk € q;* A. Hence,
Z(w;f) € qiF A for every k € N. Namely, w;r € Keri.

On the other hand, a;rkk = d;rkk in A, because qrF (a;rkk - d;rkk) = 1/);r €R

L
P,

)

_—
)
b

BN

-
L

and because ¢ is a non-zero divisor for A. Thus, (; =, (b;kk = fﬁﬂk, o

im0 @40 and @; = F(¢) in A. Moreover, ¢ — (fj, —wjk) € (gt Tt

and i(fp, — wik) = Gjp, — Wik = 07" gy, € 0y A. Hence, i(1; ) € (g5, 7))
for every k € N. That is, ¢;” € Keri.
Finauy, A\/ﬂ_lA\g ﬁ/(ﬂl, q63w+) and (’/Tla qavar)ﬁ = (’/Tla ’l/;ia 1/)+)§7 because

A/WlA = U((‘él(avbv c)/(wlvq;))[__zk])Ulk = (U(R/(tha))[@zk])zj
k k

=y 3l

with U = 14 (n,a;;,) (cf. (6.3.2), (4.8.1)). Therefore, Keri = (¢, ... T,
¥;7). This completes the proof of Theorem 0.1. O
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