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Abstract In this paper, we introduce a motivic version of Toën’s derived Hall algebra.

Then we point out that the two kinds of Hall algebras in the sense of Toën and

Kontsevich–Soibelman, respectively, are Drinfeld dual pairs, not only in the classical

case (by counting over finite fields) but also in the motivic version. Consequently they

are canonically isomorphic. All proofs, including that for the most important associa-

tive property, are deduced in a self-containedway by analyzing the symmetry properties

around the octahedral axiom, a method we used previously.

1. Introduction

Let k be a finite field with q elements, and let A be a finitary k-category, that

is, a (small) k-linear abelian category satisfying: (1) dimkHomA(M,N) < ∞;

(2) dimk Ext
1
A(M,N)<∞ for any M,N ∈A. The Hall algebra H(A) associated

to a finitary category A was originally defined by Ringel [20] in order to realize a

quantum group. In the simplest version, it is an associative algebra, which, as a

Q-vector space, has a basis consisting of the isomorphism classes [X] for X ∈A
and has the multiplication [X]∗ [Y ] =

∑
[L] g

L
XY [L], where X,Y,L ∈A and gLXY =

|{M ⊂ L |M �X and L/M � Y }|. The structure constant gLXY is called the Hall

number and the algebra H(A) now is called Ringel–Hall algebra. The Ringel–

Hall algebras have been developed into many variants (see [9]) as a framework

involving the categorification and the geometrization of Lie algebras and quantum

groups in the past two decades (e.g., see [18], [8], [9], [20], [13], [19], [14], [16],

[17]). If A = modΛ for a hereditary finitary k-algebra Λ, then there exists a

comultiplication δ : H(A) → H(A) ⊗ H(A) constructed by Green [5]. Burban

and Schiffmann in [3] and [2] also studied the (topological) comultiplication of

H(CohX) for some curves X. The comultiplication by Green naturally induces

a new multiplication on H(A). We call this new algebra structure the Drinfeld

dual of H(A) (see Section 2).

Toën [23] introduced derived Hall algebras associated to derived categories

(see [11] for lattice algebras associated to derived categories of heredity cate-
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gories). In [24], the notion was extended for triangulated categories with some

homological finiteness conditions, and a new proof for the associativity of derived

Hall algebras was given. From the viewpoint of associativity, derived Hall alge-

bras generalize Ringel–Hall algebras. The study of the theory of derived Hall

algebras is meaningful. It is applied to characterize refined Donaldson–Thomas

invariants via constructing an integration map from the derived Hall algebra of a

3-Calabi–Yau category to a quantum torus (see [10], [12]). Recently, Hernandez

and Leclerc [6] defined the monoidal categorification of a derived Hall algebra.

One may hope to construct an analogue of the comultiplication of Ringel–Hall

algebras. In Sections 2 and 3 of this article, we define a map over derived Hall

algebras analogous to comultiplications of Ringel–Hall algebras. In general, the

map does not provide an algebra homomorphism even for the derived category

of a hereditary algebra. However, it induces a new multiplication structure on a

derived Hall algebra. Then we can write down the Drinfeld dual of a derived Hall

algebra. The Drinfeld dual coincides with the finite-field version of the motivic

Hall algebras introduced by Kontsevich and Soibelman [12]. In Section 4, we point

out that the method of [24] provides two symmetries associated with the octahe-

dral axiom and they are equivalent. The first symmetry implies the associativity

of the derived Hall algebra in the sense of Toën; the second symmetry implies the

associativity of its Drinfeld dual. In Section 5, we construct the motivic version

of a derived Hall algebra and show that it is associative and isomorphic to the

Kontsevich–Soibelman motivic Hall algebra.

2. The Drinfeld dual of an algebra

Let A be an associative algebra over Q such that, as a space, it has a basis

{uα}α∈P and the multiplication is given by

uα · uβ =
∑
λ∈P

gλαβuλ,

where gλαβ ∈Q are the structure constants. We denote by A ⊗̂A the Q-space of all

formal (possibly infinite) linear combinations
∑

α,β∈P cα,βuα⊗uβ with cα,β ∈Q,

which can be viewed as the completion of A ⊗ A. Assume that there exists a

linear map δ :A→A ⊗̂A defined by

δ(uλ) =
∑
α,β

hαβ
λ uα ⊗ uβ

satisfying that, for fixed α,β ∈ P , there are only finitely many λ’s such that

hαβ
λ 	= 0.

Consider a nondegenerate symmetric bilinear form (•,•) : A× A→ Q such

that

(uα, uβ) = δα,βtα

for some nonzero tα ∈Q. Then the bilinear form naturally induces the following

two bilinear forms:

f1 : (A⊗A)× (A ⊗̂A)→Q and f2 : (A ⊗̂A)× (A⊗A)→Q.
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The first bilinear form is defined by

f1

( ∑
α,β∈P

cα,βuα ⊗ uβ ,
∑

α′,β′∈P
dα′,β′uα′ ⊗ uβ′

)
=

∑
α,β∈P

cα,βdα,βtαtβ .

Note that the sum of the right-hand side is induced by the first sum of the

left-hand side, which is a finite sum. The map f2 is defined similarly.

PROPOSITION 2.1

For any a, b, c ∈A, the equality (a, bc) = (δ(a), b⊗ c) holds if and only if, for any

uβ , uγ , and uα, we have hβγ
α tβtγ = gαβγtα.

Proof

The proof is the same as [21, Proposition 7.1]. It is enough to consider the case in

which a, b, and c are three basis elements denoted by uα, uβ , and uγ , respectively.

By definition,

(a, bc) = (uα, uβuγ) =
(
uα,

∑
λ∈P

gλβγuλ

)
= gαβγtα

and (
δ(a), b⊗ c

)
=

( ∑
ξ,τ∈P

hξτ
α uξ ⊗ uτ , uβ ⊗ uγ

)
= hβγ

α tβtγ .

The proposition follows. �

Let ADr be a space over Q with the basis {vα}α∈P . We define the multiplication

by setting

vα ∗ vβ =
∑
λ∈P

hαβ
λ vλ.

THEOREM 2.2

Assume that (a, bc) = (δ(a), b⊗ c) for any a, b, c ∈ A. Then there exists an iso-

morphism

Φ :ADr →A

by sending vα to t−1
α uα.

Proof

It is clear that the map Φ is an isomorphism of vector spaces. For any α,β ∈ P ,

Φ(vα ∗vβ) =
∑

λ∈P hαβ
λ t−1

λ uλ. Also, we have that Φ(vα) ·Φ(vβ) = t−1
α t−1

β uα ·uβ =∑
α,β∈P t−1

α t−1
β gλαβuλ. Proposition 2.1 concludes that Φ is an algebra homomor-

phism, that is,

Φ(vα ∗ vβ) = Φ(vα) ·Φ(vβ). �

As a corollary, the algebra ADr is also an associative algebra and is called the

Drinfeld dual of A. The first canonical example comes from Ringel–Hall algebra.

We recall its definition from [20] and [22].
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EXAMPLE 2.3

Let A be a small finitary abelian category and linear over some finite field k

with q elements, and let P be the set of isomorphism classes of objects in A. For

α ∈ P , we take a representative Vα ∈A. The Ringel–Hall algebra of A is a vector

space H(A) =QP =
⊕

α∈P Quα with the multiplication

uα · uβ =
∑
λ∈P

gλαβuλ,

where gλαβ = |{V ⊆ Vλ | V ∼= Vα, Vλ/V ∼= Vβ}|. Define the map (see [22, Sec-

tion 1.4])

δ :H(A)→H(A) ⊗̂H(A)

satisfying δ(uλ) =
∑

α,β h
αβ
λ uα ⊗ uβ where hαβ

λ = |Ext1Λ(Vα, Vβ)Vλ
|/

|HomΛ(Vα, Vβ)| (see [22]). For fixed α,β ∈ P , dimk Ext
1(Vα, Vβ)<∞. Then there

are finitely many λ’s such that hαβ
λ 	= 0. The relation between hαβ

λ and gλαβ is

given by the Riedtmann–Peng formula

hαβ
λ =

|Ext1Λ(Vα, Vβ)Vλ
|

|HomΛ(Vα, Vβ)|
= gλαβaαaβa

−1
λ ,

where aα = |Aut(Vα)|.
Define a symmetric bilinear form on H(A):

(uα, uβ) = δαβ
1

|Aut(Vα)|
= δαβ

1

aα
.

It induces bilinear forms (H(A) ⊗ H(A)) × (H(A) ⊗̂H(A)) → Q and (H(A) ⊗̂
H(A))× (H(A)⊗H(A))→Q by setting

(a1 ⊗ a2, b1 ⊗ b2) = (a1, b1)(a2, b2).

Using Proposition 2.1 and the Riedtmann–Peng formula, we obtain

(a, bc) =
(
δ(a), b⊗ c

)
for any a, b, and c in H(A). The Drinfeld dual algebra of H(A) is a vector space

HDr(A) =
⊕

α∈P Qvα with the multiplication

vα ∗ vβ =
∑
λ

hαβ
λ vλ.

Theorem 2.2 concludes an isomorphism Φ :HDr(A)→H(A) by setting Φ(vα) =

aαuα.

3. The derived Riedtmann–Peng formula

We recall some notations and results from [24]. Let k be a finite field with q

elements, and let C be a (left) homologically finite k-additive triangulated cat-

egory with the translation (or shift) functor T = [1], that is, a finite k-additive

triangulated category satisfying the following conditions (see [24]).
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(1) the homomorphism space Hom(X,Y ) for any two objects X and Y in C
is a finite-dimensional k-space;

(2) the endomorphism ring EndX for any indecomposable object X in C is

a finite-dimensional local k-algebra;

(3) C is (left) locally homological finite; that is,
∑

i≥0 dimkHom(X[i], Y )<

∞ for any X and Y in C.

Note that the first two conditions imply the validity of the Krull–Schmidt the-

orem in C, which means that any object in C can be uniquely decomposed into

the direct sum of finitely many indecomposable objects up to isomorphism. For

X ∈ C, we denote by [X] the isomorphism class of X .

For any X , Y , and Z in C, we will use fg to denote the composition of

morphisms f :X → Y and g : Y → Z, and |S| to denote the cardinality of a finite

set S.

Given X,Y,L ∈ C, put

W (X,Y ;L) =
{
(f, g, h) ∈Hom(X,L)×Hom(L,Y )×Hom

(
Y,X[1]

) ∣∣
X

f−→ L
g−→ Y

h−→X[1] is a triangle
}
.

There is a natural action of AutX×AutY on W (X,Y ;L). The orbit of (f, g, h) ∈
W (X,Y ;L) is denoted by

(f, g, h)∧ :=
{(

af, gc−1, ch
(
a[1]

)−1) ∣∣ (a, c) ∈AutX ×AutY
}
.

The orbit space is denoted by V (X,Y ;L) = {(f, g, h)∧ | (f, g, h) ∈W (X,Y ;L)}.
The radical of Hom(X,Y ) is denoted by radHom(X,Y ), which is the set{

f ∈Hom(X,Y )
∣∣ gfh is not an isomorphism for any g :A→X and

h : Y →A with A ∈ C indecomposable
}
.

For any L
n−→ Z[1], there exist the decompositions L = L1(n) ⊕ L2(n), Z[1] =

Z1[1](n) ⊕ Z2[1](n), and b ∈ AutL, d ∈ AutZ such that bn(d[1])−1 =
(
n11 0
0 n22

)
and the induced map n11 : L1(n)→ Z1[1](n) is an isomorphism and n22 : L2(n)→
Z2[1](n) belongs to radHom(L2(n),Z2[1](n)). The above decomposition only

depends on the equivalence class of n up to an isomorphism. Let α= (l,m,n)∧ ∈
V (Z,L;M). If α= (l,m,n)∧ = (l′,m′, n′)∧, then L1(n) = L1(n

′). We can substi-

tute L1(α) for L1(n). To emphasize that n is related to α, we write n(α) as a

substitute for n.

Denote by Hom(X,Y )Z the subset of Hom(X,Y ) consisting of the morphisms

whose mapping cones are isomorphic to Z. For X,Y ∈ C, we set

{X,Y } :=
∏
i>0

∣∣Hom
(
X[i], Y

)∣∣(−1)i

.

By checking the stable subgroups of automorphism groups, we have the following

proposition.
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PROPOSITION 3.1 ([24, PROPOSITION 2.5])

For any M , L, and Z in C, we have the following equalities:

|Hom(M,L)Z[1]|
|AutL| · {M,L}

{Z,L} · {L,L} =
∑

α∈V (Z,L;M)

|EndL1(α)|
|AutL1(α)|

,

|Hom(Z,M)L|
|AutZ| · {Z,M}

{Z,L} · {Z,Z} =
∑

α∈V (Z,L;M)

|EndL1(α)|
|AutL1(α)|

.

Using this proposition, one can easily deduce the following corollary.

COROLLARY 3.2

For any X, Y , and L in C, we have that

|Hom(Y,X[1])L[1]|
|AutX| · {Y,X[1]}

{X,X} =
|Hom(L,Y )X[1]|

|AutL| · {L,Y }
{L,L}

and

|Hom(Y [−1],X)L|
|AutY | · {Y [−1],X}

{Y,Y } =
|Hom(X,L)Y |

|AutL| · {X,L}
{L,L} .

Let A be a finitary abelian category, and let X,Y,L ∈A. Define

E(X,Y ;L) =
{
(f, g) ∈Hom(X,L)×Hom(L,Y )

∣∣
0→X

f−→ L
g−→ Y → 0 is an exact sequence

}
.

The group AutX × AutY acts freely on E(X,Y ;L) and the orbit of (f, g) ∈
E(X,Y ;L) is denoted by (f, g)∧ := {(af, gc−1) | (a, c) ∈ AutX × AutY }. If the
orbit space is denoted by O(X,Y ;L) = {(f, g)∧ | (f, g) ∈ E(X,Y ;L)}, then the

Hall number gLXY = |O(X,Y ;L)|. It is easy to see that

gLXY =
|M(X,L)Y |
|AutX| =

|M(L,Y )X |
|AutY | ,

where M(X,L)Y is the subset of Hom(X,L) consisting of monomorphisms f :

X ↪→ L whose cokernels Coker(f) are isomorphic to Y and M(L,Y )X is dually

defined.

The equality in Corollary 3.2 can be considered as a generalization of the

Riedtmann–Peng formula in abelian categories to homologically finite triangu-

lated categories. Indeed, assume that C =Db(A) for a finitary abelian category

A and X , Y , and L ∈A. Then one can obtain

Hom
(
Y,X[1]

)
L[1]

=Ext1(Y,X)L,
{
Y,X[1]

}
=

∣∣HomA(Y,X)
∣∣−1

,

where Ext1(X,Y )L is the set of equivalence classes of extensions of Y by X with

the middle term isomorphic to L and

gLXY =
|Hom(L,Y )X[1]|

|AutY | , {X,X}= {L,L}= {L,Y }= 0.
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Under the assumption, Corollary 3.2 is reduced to the Riedtmann–Peng formula

(see [19], [15])

|Ext1(Y,X)L|
|HomA(Y,X)| = gLXY · |AutX| · |AutY | · |AutL|−1.

For any X , Y , and L ∈ C, set

FL
XY =

|Hom(L,Y )X[1]|
|AutY | · {L,Y }

{Y,Y } =
|Hom(X,L)Y |

|AutX| · {X,L}
{X,X} .

THEOREM 3.3 ([23], [24])

Let H(C) be the vector space over Q with the basis {u[X] |X ∈ C}. Endowed with

the multiplication defined by

u[X] · u[Y ] =
∑
[L]

FL
XY u[L],

H(C) is an associative algebra with the unit u[0].

The algebra H(C) is called the derived Hall algebra when C is a derived category.

Here, we also use this name for a general left homologically finite triangulated

category.

Now we define the Drinfeld dual of H(C). Set
hXY
L =

∣∣HomC
(
Y,X[1]

)
L

∣∣ · {Y,X[1]
}
.

Define a map δ :H(C)→H(C) ⊗̂H(C) by

δ(u[L]) =
∑

[X],[Y ]

hXY
L u[X] ⊗ u[Y ].

Define a symmetric bilinear form

(u[X], u[Y ]) = δ[X],[Y ]
1

|AutX|{X,X} .

It induces bilinear forms(
H(C) ⊗̂H(C)

)
×

(
H(C)⊗H(C)

)
→ Q and(

H(C)⊗H(C)
)
×

(
H(C) ⊗̂H(C)

)
→ Q

by setting

(a1 ⊗ a2, b1 ⊗ b2) = (a1, b1)(a2, b2).

Set t[X] = 1/(|AutX|{X,X}). Then the derived Riedtmann–Peng formula in

Corollary 3.2 can be written as

hXY
L t[X]t[Y ] = FL

XY t[L]

for any X , Y , and L in C. Using Proposition 2.1, we have

(a, bc) =
(
δ(a), b⊗ c

)
, ∀a, b, c ∈H(C).

The Drinfeld dual algebra is a Q-space HDr(C) with the basis {v[X] |X ∈ C} and

the multiplication



484 Jie Xiao and Fan Xu

v[X] ∗ v[Y ] =
∑
[L]

hXY
L v[L] =

{
Y,X[1]

}
·
∑
[L]

∣∣Hom
(
Y,X[1]

)
L[1]

∣∣v[L]

=
{
Y [−1],X

}
·
∑
[L]

∣∣Hom
(
Y [−1],X

)
L

∣∣v[L].

Kontsevich and Soibelman [12] defined the motivic Hall algebra for an ind-

constructible triangulated A∞-category. We can define the finite-field version of

a motivic Hall algebra for a homologically finite k-additive triangulated category,

which is just HDr(C). Following Theorem 2.2, we have the immediate result.

COROLLARY 3.4 ([12, PROPOSITION 6.12])

The map Φ :HDr(C)→H(C) by Φ(v[X]) = |AutX| · {X,X} · u[X] for any X ∈ C
is an algebraic isomorphism between HDr(C) and H(C).

Then Theorem 3.3 implies that the algebra HDr(C) is an associative algebra.

To introduce the extended twisted derived Hall algebra Het(C) of H(C), we
need more assumptions. Assume that C is homologically finite; that is,∑

i∈Z

dimkHom
(
X[i], Y

)
<∞

for any X and Y in C. For example, the derived category C =Db(A) for a small

finitary abelian category A is homologically finite. Let K(C) be the Grothendieck

group of C. One can define a bilinear form 〈•,•〉 :K(C)×K(C)→ Z by setting〈
[X], [Y ]

〉
=

∑
i∈Z

(−1)i dimkHomC
(
X,Y [i]

)
for X,Y ∈ C. It induces the symmetric bilinear form (•,•) on K(C) by defining

([X], [Y ]) = 〈[X], [Y ]〉+ 〈[Y ], [X]〉. For convenience, for any object X ∈ C, we use

the same notation [X] for the isomorphism class and its image in K(C). It is easy
to check that this bilinear form is well defined. Set v =

√
q. Then Het(C) is given

by the Q(v)-space with basis {Kαu[X] | α ∈K(C),X ∈ C} and the multiplication

defined by

(Kαu[X]) ◦ (Kβu[Y ]) = v〈[X],[Y ]〉−(β,[X])Kα+βu[X] · u[Y ].

Note that K0 = u0 = 1.

PROPOSITION 3.5

The algebra Het(C) is associative.

Proof

By definition, we have[
(Kαu[X]) ◦ (Kβu[Y ])

]
◦ (Kγu[Z])

= [v〈[X],[Y ]〉−(β,[X])Kα+βu[X] · u[Y ]] ◦ (Kγu[Z])

= v〈[X],[Y ]〉+〈[L],[Z]〉−(β,[X])−(γ,[L])Kα+β+γ

∑
[L]

FL
XY u[L] · u[Z]
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= v〈[X],[Y ]〉+〈[X]+[Y ],[Z]〉−(β,[X])−(γ,[X]+[Y ])Kα+β+γ(u[X] · u[Y ]) · u[Z]

= v〈[X],[Y ]+[Z]〉+〈[Y ],[Z]〉−(β+γ,[X])−(γ,[Y ])Kα+β+γu[X] · (u[Y ] · u[Z])

= (Kαu[X]) ◦
[
(Kβu[Y ])

]
◦ (Kγu[Z])]. �

Dually, one can define H−
et(C) with the basis {Kαu

−
[X] | α ∈K(C),X ∈ C} and the

multiplication

(Kαu
−
[X]) ◦ (Kβu

−
[Y ]) = v〈[X],[Y ]〉+(β,[X])Kα+βu

−
[X] · u

−
[Y ],

where

u−
[X] · u

−
[Y ] =

∑
[L]

FL
XY u

−
[L].

There exist a map δ :Het(C)→Het(C) ⊗̂Het(C) by setting

δ(Kγu[L]) =
∑

[X],[Y ]

v〈[X],[Y ]〉hXY
L Kγu[X]K[Y ] ⊗Kγu[Y ]

and a bilinear form on Het(C)×H−
et(C) defined by

(Kαu[X],Kβu
−
[Y ]) = v−(α,β)−(β,[X])+(α,[Y ])δ[X],[Y ]

1

|AutX|{X,X} .

It naturally induces a bilinear form(
Het(C) ⊗̂Het(C)

)
×

(
H−

et(C)⊗H−
et(C)

)
→Q(v).

PROPOSITION 3.6

For any a ∈Het(C) and b, c ∈H−
et(C), we have

(a, bc) =
(
δ(a), b⊗ c

)
.

Proof

It is enough to consider the case when a=Kγu[L], b=Kαu
−
[X], and c=Kβu

−
[Y ].

By definition,(
Kγu[L], (Kαu

−
[X]) ◦ (Kβu

−
[Y ])

)
= v〈[X],[Y ]〉+(β,[X])(Kγu[L],Kα+βu

−
[X] · u

−
[Y ])

= v〈[X],[Y ]〉+(β,[X])FL
XY (Kγu[L],Kα+βu

−
[L])

= v〈[X],[Y ]〉+(β,[X])−(γ,α+β)−(α+β,L)+(γ,[L])FL
XY · t[L]

= v〈[X],[Y ]〉−(γ,α+β−[X]−[Y ])−(α,[X]+[Y ])−(β,[Y ])FL
XY · t[L].

Similarly, by definition, we have(
δ(Kγu[L]), (Kαu

−
[X])⊗ (Kβu

−
[Y ])

)
= hXY

L v〈[X],[Y ]〉((Kγu[X]K[Y ])⊗ (Kγu[Y ]), (Kαu
−
[X])⊗ (Kβu

−
[Y ])

)
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= hXY
L v〈[X],[Y ]〉−([X],[Y ])(Kγ+[Y ]u[X],Kαu

−
[X]) · (Kγu[Y ],Kβu

−
[Y ])

= hXY
L v〈[X],[Y ]〉−([X],[Y ])−(γ+[Y ],α)−(α,[X])+(γ+[Y ],[X])−(γ,β)−(β,[Y ])+(γ,[Y ])

× t[X]t[Y ]

= v〈[X],[Y ]〉+(β,[X])−(γ,α+β)−(α+β,L)+(γ,[L])hXY
L t[X]t[Y ].

This completes the proof. �

PROPOSITION 3.7

Let HDr
et be the Q(v)-space with the basis {Kαθ[X] | α ∈ K(C),X ∈ C} and the

multiplication given by

Kαθ[X] ∗Kβθ[Y ] = v(β,[X])−2(α,β)
∑
[L]

v〈[X],[Y ]〉hXY
L Kα+βθ[L].

Then the map Φ : HDr
et → H−

et defined by Φ(Kαθ[X]) = v(α,α)t−1
[X]Kαu

−
[X] is an

isomorphism of algebras.

By this proposition, we can view HDr
et as the Drinfeld double of H−

et.

4. Two symmetries

Consider the following commutative diagram in C, which is a pushout and a

pullback in the same time:

L′

m′

f ′

M

m

X
f

L

Applying the octahedral axiom, one can obtain the following commutative dia-

gram:

(4.1)

Z

l′

Z

l

L′ f ′

m′

M
g′

m

Y
h′

L′[1]

m′[1]

X
f

n′

L
g

n

Y
h

X[1]

Z[1] Z[1]
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with rows and columns being distinguished triangles, and a distinguished triangle

(4.2) L′ ( f ′ −m′ )
M ⊕X

(m
f

)
L

θ
L′[1].

The above triangle induces two sets

Hom(M ⊕X,L)
Y,Z[1]
L′[1]

:=

{(
m

f

)
∈Hom(M ⊕X,L)

∣∣∣∣
Cone(f)� Y,Cone(m)� Z[1], and Cone

(
m

f

)
� L′[1]

}
and

Hom(L′,M ⊕X)
Y,Z[1]
L

:=
{
(f ′,−m′) ∈Hom(L′,M ⊕X)

∣∣
Cone(f ′)� Y,Cone(m′)� Z[1], and Cone(f ′,−m′)� L

}
.

SYMMETRY I

The orbit space of Hom(M ⊕X,L)
Y,Z[1]
L′[1] under the action of AutL and the orbit

space of Hom(L′,M ⊕X)
Y,Z[1]
L under the action of AutL′ coincide. More explic-

itly, the symmetry implies the identity:

|Hom(M ⊕X,L)
Y,Z[1]
L′[1] |

|AutL|
{M ⊕X,L}
{L′,L}{L,L}

=
|Hom(L′,M ⊕X)

Y,Z[1]
L |

|AutL′|
{L′,M ⊕X}
{L′,L}{L′,L′} .

Proof

The equality is a direct application of Proposition 3.1 to the triangle (4.2). �

Roughly speaking, Symmetry I compares

L′ ( f ′ −m′ )
M ⊕X and M ⊕X

(m
f

)
L

in the triangle (4.2).

The diagram (4.1) induces a new symmetry which compares

L′ f ′

M
m

L and L′ m′
X

f
L.

Using the derived Riedtmann–Peng formula (see Corollary 3.2), we have

|Hom(Y [−1],L′)M |
|AutY | · {Y [−1],L′}

{Y,Y } =
|Hom(L′,M)Y |

|AutM | · {L
′,M}

{M,M} ,
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|Hom(L,Z[1])M [1]|
|AutZ| · {L,Z[1]}

{Z,Z} =
|Hom(M,L)Z[1]|

|AutM | · {M,L}
{M,M} ,

|Hom(X,Z[1])L′[1]|
|AutZ| · {X,Z[1]}

{Z,Z} =
|Hom(L′,X)Z[1]|

|AutL′| · {L
′,X}

{L′,L′} ,

and

|Hom(Y [−1],X)L|
|AutY | · {Y [−1],X}

{Y,Y } =
|Hom(X,L)Y |

|AutL| · {X,L}
{L,L} .

Hence, one can convert to compare

Y
h′

L′[1], L
n

Z[1] and X
n′

Z[1], Y
h

X[1]

in (4.1). To describe the second symmetry, we need to introduce some notations.

Fix X , Y , Z, M , L, and L′, define

DL,L′ =
{
(m,f,h,n) ∈Hom(M,L)×Hom(X,L)

×Hom
(
Y,X[1]

)
×Hom

(
L,Z[1]

) ∣∣
(m,f,h,n) induces a diagram with the form of (4.1)

}
,

and define

DL′,L =
{
(f ′,m′, h′, n′) ∈Hom(L′,X)×Hom(L′,M)

×Hom
(
Y,L′[1]

)
×Hom

(
X,Z[1]

) ∣∣
(m′, f ′, h′, n′) induces a diagram with the form of (4.1)

}
.

Here, “(m,f,h,n) induces a diagram with the form of (4.1)” means that there

exist morphisms m′, f ′, h′, n′, g, g′, l, l′ such that all morphisms constitute a

diagram as in (4.1). The crucial point is that the following diagram

L′

m′

f ′

M

m

X
f

L

is both a pushout and a pullback and rows and columns in (4.1) are distinguished

triangles. Note that the pair (f ′,m′) is uniquely determined by (m,f,h,n) up to

isomorphisms as required, so the above notation is well defined.

There exist natural projections

p :DL,L′ →Hom
(
Y,X[1]

)
×Hom

(
L,Z[1]

)
,

i1 : Hom
(
Y,X[1]

)
×Hom

(
L,Z[1]

)
→Hom

(
Y,X[1]

)
,

and

i2 : Hom
(
Y,X[1]

)
×Hom

(
L,Z[1]

)
→Hom

(
L,Z[1]

)
.
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The image of i1 ◦ p is denoted by Hom(Y,X[1])L
′

L[1], and given h ∈ Hom(Y,

X[1])L
′

L[1], define Hom(L,Z[1])h,L
′

M [1] to be i2 ◦ p−1 ◦ i−1
1 (h). It is clear that

Hom
(
Y,X[1]

)
L[1]

=
⊔
[L′]

Hom
(
Y,X[1]

)L′

L[1]
.

Similarly, there exist projections

q :DL′,L →Hom
(
Y,L′[1]

)
×Hom

(
X,Z[1]

)
,

j1 : Hom
(
Y,L′[1]

)
×Hom

(
X,Z[1]

)
→Hom

(
Y,L′[1]

)
,

and

j2 : Hom
(
Y,L′[1]

)
×Hom

(
X,Z[1]

)
→Hom

(
X,Z[1]

)
.

The image of j1 ◦ q is denoted by Hom(X,Z[1])LL′[1], and for any n′ ∈ Hom(X,

Z[1])L′[1], we denote j2 ◦ p−1 ◦ j−1
1 (n′) by Hom(Y,L′[1])n

′,L
M [1].

SYMMETRY II

• Fix h ∈Hom(Y,X[1])L
′

L[1]; then there exists a surjective map

f∗ : Hom
(
L,Z[1]

)h,L′

M [1]
→Hom

(
X,Z[1]

)L
L′[1]

such that the cardinality of any fiber is∣∣(f∗)−1
∣∣ := ∣∣Hom

(
Y,Z[1]

)∣∣ · {X ⊕ Y,Z[1]
}
·
{
L,Z[1]

}−1
.

• Fix n′ ∈Hom(X,Z[1])LL′[1]; then there exists a surjective map

(m′)∗ : Hom
(
Y,L′[1]

)n′,L

M [1]
→Hom

(
Y,X[1]

)L′

L[1]

such that the cardinality of any fiber is∣∣(m′)−1
∣∣ := ∣∣Hom

(
Y,Z[1]

)∣∣ · {Y,X[1]⊕Z[1]
}
·
{
Y,L′[1]

}−1
.

• |(f∗)−1| · {Y,X[1]} · {L,Z[1]}= |(m′)−1
∗ | · {X,Z[1]} · {Y,L′[1]}.

Proof

Given h ∈Hom(Y,X[1])L
′

L[1], there exists a triangle

α :X
f−→ L

g−→ Y
h−→X[1].

Applying the functor Hom(•,Z[1]) on the triangle, one can obtain a long exact

sequence

· · · Hom
(
Y,Z[1]

) u
Hom

(
L,Z[1]

) v
Hom

(
X,Z[1]

)
· · · .

Then the cardinality of Im(u) is |Hom(Y,Z[1])| · {X⊕Y,Z[1]} · {L,Z[1]}−1. The

map f∗ is the restriction of v to Hom(L,Z[1])h,L
′

M [1]. By definition, f∗ is epic and

the fiber is isomorphic to Ker(v) = Im(u). Thus the first statement is obtained.
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The second statement can be proved in the same way. The third statement is a

direct confirmation. �

Note that there also exist projections

p12 :DL,L′ →Hom(M ⊕X,L)

with the image Hom(M ⊕X,L)
Y,Z[1]
L′[1] and

q12 :DL′,L →Hom(L′,M ⊕X)

with the image Hom(L′,M ⊕ X)
Y,Z[1]
L . Symmetry I characterizes the relation

between Imp12 and Im q12. Meanwhile, Symmetry II characterizes the relation

between Imp and Im q. The relation between Imp12 and Imp (Im q12 and Im q)

is implicitly shown by the derived Riedtmann–Peng formula (see Corollary 3.2).

More explicitly, consider the projections

t1 : Hom(M ⊕X,L)→Hom(X,L),

t2 : Hom(M ⊕X,L)→Hom(M,L),

s1 : Hom(L′,M ⊕X)→Hom(L′,X),

and

s2 : Hom(L′,M ⊕X)→Hom(L′,M).

Using Corollary 3.2, we obtain that

|Hom(Y,X[1])L
′

L[1]|
|AutY | · {Y,X[1]}

{Y,Y } =
| Im t1 ◦ p12|
|AutL| · {X,L}

{L,L} .

Given a triangle α : X
f−→ L

g−→ Y
h−→ X[1] with h ∈ Hom(Y,X[1])L

′

L[1], applying

Corollary 3.2 again, we have

|Hom(L,Z[1])h,L
′

M [1]|
|AutZ| · {L,Z[1]}

{Z,Z} =
|t2 ◦ p−1

12 ◦ t−1
1 (f)|

|AutM | · {M,L}
{M,M} .

In the same way, we have

|Hom(X,Z[1])LL′[1]|
|AutZ| · {X,Z[1]}

{Z,Z} =
| Ims1 ◦ q12|
|AutL′| · {L

′,X}
{L′,L′} ,

and

|Hom(Y,L′[1])n
′,L

M [1]|
|AutY | · {Y,L

′[1]}
{Y,Y } =

|s2 ◦ q−1
12 ◦ s−1

1 (f)|
|AutM | · {L

′,M}
{M,M} .

The above four identities induce the equivalence of Symmetry I and Symmetry II.

Here, we sketch the proof of Theorem 3.3. Proving u[Z] ∗ (u[X] ∗u[Y ]) = (u[Z] ∗
u[X]) ∗ u[Y ] is equivalent to proving that∑

[L]

FL
XY F

M
ZL =

∑
[L′]

FL′

ZXFM
L′Y .
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We can check directly that the left-hand side equals the following:

1

|AutX| · {X,X}
∑
[L]

∑
[L′]

|Hom(M ⊕X,L)
Y,Z[1]
L′[1] |

|AutL| · {M ⊕X,L}
{L,L} ,

and that the right-hand side equals

1

|AutX| · {X,X}
∑
[L′]

∑
[L]

|Hom(L′,M ⊕X)
Y,Z[1]
L |

|AutL′| · {L
′,M ⊕X}
{L′,L′} .

Symmetry I naturally gives that the left-hand and right-hand sides are equal,

and then the proof of Theorem 3.3 is obtained immediately.

By using Symmetry II, we can provide a direct proof of the associativity of

HDr(C).

THEOREM 4.1 ([12, PROPOSITION 6.10])

The algebra HDr(C) is associative.

Proof

For any X , Y , and Z in C, we need to prove that

v[Z] ∗ (v[X] ∗ v[Y ]) = (v[Z] ∗ v[X]) ∗ v[Y ].

By the definition of the multiplication, it is equivalent to proving that∑
[L]

{
Y,X[1]

}{
L,Z[1]

}∣∣Hom
(
Y,X[1]

)
L[1]

∣∣ · ∣∣Hom
(
L,Z[1]

)
M [1]

∣∣
=

∑
[L′]

{
X,Z[1]

}{
Y,L′[1]

}∣∣Hom
(
X,Z[1]

)
L′[1]

∣∣ · ∣∣Hom
(
Y,L′[1]

)
M [1]

∣∣.
Following the first statement of Symmetry II, the left-hand side is equal to∑

[L],[L′]

{
Y,X[1]

}{
L,Z[1]

}∣∣Hom
(
Y,X[1]

)L′

L[1]

∣∣ · ∣∣Hom
(
X,Z[1]

)L
L′[1]

∣∣
·
∣∣Hom

(
Y,Z[1]

)∣∣ · {X ⊕ Y,Z[1]
}
·
{
L,Z[1]

}−1
.

Following the second statement of Symmetry II, the right-hand side is equal to∑
[L′],[L]

{
X,Z[1]

}{
Y,L′[1]

}∣∣Hom
(
X,Z[1]

)L
L′[1]

∣∣ · ∣∣Hom
(
Y,X[1]

)L′

L[1]

∣∣
·
∣∣Hom

(
Y,Z[1]

)∣∣ · {Y,X[1]⊕Z[1]
}
·
{
Y,L′[1]

}−1
.

The equality of the left-hand and right-hand sides is just the third statement of

Symmetry II. �

5. Motivic Hall algebras

Let K be an algebraically closed field. An ind-constructible set is a countable

union of nonintersecting constructible sets.
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EXAMPLE 5.1 ([7], [25])

Let C be the complex field, and let A be a finite-dimensional algebra CQ/I with

indecomposable projective modules Pi, i = 1, . . . , l. Given a projective complex

P • = (P i, ∂i)i∈Z with P i =
⊕l

j=1 e
i
jPj . We denote by ei the vector (ei1, e

i
2, . . . , e

i
l).

The sequence denoted by e= e(P •) = (ei)i∈Z is called the projective dimension

sequence of P •. We assume that only finitely many ei in e are nonzero. Define

P(A,e) to be the subset of

∏
i∈Z

HomA(P
i, P i+1) =

∏
i∈Z

HomA

( l⊕
j=1

eijPj ,
l⊕

j=1

ei+1
j Pj

)
,

which consists of elements (∂i : P
i → P i+1)i∈Z such that ∂i+1∂i = 0 for all i ∈

Z. It is an affine variety with a natural action of the algebraic group Ge =∏
i∈Z

AutA(P
i). Let K0(Db(A)), or simply K0, be the Grothendieck group of

the derived category Db(A), and let dim :Db(A)→K0(Db(A)) be the canonical

surjection. It induces a canonical surjection from the abelian group of dimension

vector sequences to K0; we still denote it by dim. Given d ∈K0, the set

P(A,d) =
⊔

e∈dim−1(d)

P(A,e)

is an ind-constructible set.

We recall the notion of motivic invariants of quasiprojective varieties in [9] (see

also [1]). Suppose that Λ is a commutative Q-algebra with identity 1. Let Υ :

{isomorphism classes [X] of quasiprojective K-varieties X}→ Λ satisfy that

(1) Υ([X]) = Υ([Z]) +Υ([U ]) for a closed subvariety Z ⊆X and U =X \Z;

(2) Υ([X × Y ]) = Υ([X])Υ([Y ]);

(3) if we write Υ([K]) = L, then L and Lk − 1 for k = 1,2, . . . are invertible

in Λ.

Let X be a constructible set over K, and let G be an affine algebraic group

acting on X . Then (X,G) = (X,G,α) is called a constructible stack (see [12, Sec-

tion 4.2]), where α is an action of G on X . In [12, Section 4.2], the authors defined

the 2-category of constructible stacks. Define Motst((X,G)) = Motst((X,G),

(Υ,Λ)) to be the Λ-module generated by equivalence classes of 1-morphisms

of constructible stacks [(Y,H)→ (X,G)] with the following relations:

(1) [(Y1,G1) � (Y2,G2) → (X,G)] = [(Y1,G1) → (X,G)] + [(Y2,G2) →
(X,G)];

(2) [(Y,H)→ (X,G)] = [(Z×Ad
K
,H)→ (X,G)] if Y → Z is anH-equivariant

constructible vector bundle of rank d;

(3) if we let (Y,H) be a constructible stack, let U be a quasiprojective K-

variety with trivial action of H , and let π : (Y,H)×U → (Y,H), then [ρ : (Y,H)×
U → (X,G)] = Υ(U)[ρ ◦ π : (Y,H)→ (X,G)].
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Let us recall the definition of motivic Hall algebras from [12]. Let C be an

ind-constructible triangulated A∞-category over K, and objects in C form an

ind-constructible set Obj(C) =
⊔

i∈I Xi for countable constructible sets Xi with

the action of an affine algebraic group Gi on Xi. For X,Y ∈Obj(C), set

{X,Y } := L
∑

i>0(−1)i dimC Hom(X[i],Y ).

For any i, j ∈ I , consider the maps Φ1 :Xi ×Xj → Λ sending (M,N) to

Υ
([
HomC(M,N)

])
= LdimK HomC(M,N),

Φ2 : Xi × Xj → Λ mapping (M,N) to {M,N}, and Φ3 : Xi → Λ sending M to

Υ([Aut(M)]) (see Proposition 5.3). In the following, we assume that all three

maps are constructible functions.

Consider the Λ-module

MH(C) =
⊕
i∈I

Motst
(
(Xi,Gi)

)
.

One can endow the module with the multiplication[
π1 : S1 →Obj(C)

]
∗

[
π2 : S2 →Obj(C)

]
=

∑
n∈Z

L−n
[
π :Wn →Obj(C)

]
,

where π1(S1)⊆Xi, π2(S2)⊆Xj for some i, j ∈ I , and

Wn =
{
(s1, s2, α)

∣∣∣ si ∈ Si, α ∈HomC
(
π2(s2), π1(s1)[1]

)
,∑

i>0

(−1)i dimCHom
(
π2(s2)[i], π1(s1)[1]

)
=−n

}
.

The map π sends (s1, s2, α) to Cone(α)[−1]. Here, for simplicity of notation, we

write [S →Xi] instead of [(S,Gs)→ (Xi,Gi)]. The algebra MH(C) is called the

motivic Hall algebra associated to C.
For convenience, we use the integral notation for the right-hand term in the

definition of the multiplication. Then the multiplication can be rewritten as[
π1 : S1 →Obj(C)

]
·
[
π2 : S2 →Obj(C)

]
:=

∫
s1∈S1,s2∈S2

[
HomC

(
π2(s2), π1(s1)[1]

)
→Obj(C)

]
·
{
π2(s2), π1(s1)[1]

}

:=

∫
s1∈S1,s2∈S2

{
π2(s2), π1(s1)[1]

}
·
∫
α∈HomC(π2(s2),π1(s1)[1])E

v[E],

where v[E] := [π : pt → Obj(C)] with π(pt) = E. Note that HomC(π2(s2),

π1(s1)[1])E is a constructible set (see [4, Appendix]).

THEOREM 5.2 ([12, PROPOSITION 10])

With the above multiplication, MH(C) becomes an associative algebra.

Inspired by [12] and [24], the proof can be considered as a motivic version of

Symmetry II.
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Proof

By the reformulation of the definition of multiplication, the proof of the theorem

is easily reduced to the case when Si is just a point. Given X , Y , and Z ∈Obj(C),
v[Z] ∗ (v[X] ∗ v[Y ]) is equal to

T1 :=
∫
α∈Hom(Y,X[1])L[1]

∫
β∈Hom(L,Z[1])M[1]

{
Y,X[1]

}
·
{
L,Z[1]

}
· v[M ]

and (v[Z] ∗ v[X]) ∗ v[Y ] is equal to

T2 :=
∫
α′∈Hom(X,Z[1])L′[1]

∫
β′∈Hom(Y,L′[1])M[1]

{
X,Z[1]

}
·
{
Y,L′[1]

}
· v[M ].

Using the notation in Section 3, we have

T1 =
∫
α′∈Hom(X,Z[1])L

L′[1],α∈Hom(Y,X[1])L
′

L[1]

∫
β∈Hom(L,Z[1])α,L′

M[1]

{
Y,X[1]

}
·
{
L,Z[1]

}
· v[M ]

and

T2 =
∫
α∈Hom(Y,X[1])L

′
L[1],α

′∈Hom(X,Z[1])L
L′[1]

∫
β′∈Hom(Y,L′[1])α

′,L
M[1]

{
X,Z[1]

}
·
{
Y,L′[1]

}
· v[M ].

As in the proof of Theorem 4.1, fix α ∈ Hom(Y,X[1])L
′

L[1]; by (4.1), there is a

constructible bundle Hom(L,Z[1])α,L
′

M [1] →Hom(X,Z[1])LL′[1] with fiber dimension

dimHom
(
Y,Z[1]

)
+dim

{
X ⊕ Y,Z[1]

}
− dim

{
L,Z[1]

}
.

Fix α′ ∈Hom(X,Z[1])LL′[1]; by (4.1), there is a constructible bundle

Hom
(
Y,L′[1]

)α′,L

M [1]
→Hom

(
Y,X[1]

)L′

L[1]

with fiber dimension

dimHom
(
Y,Z[1]

)
+dim

{
Y,X[1]⊕Z[1]

}
− dim

{
Y,L′[1]

}
.

Hence, we have T1 = T2. �

Given an indecomposable object X ∈ C, Υ([EndC(X)]) = Ldimk EndC(X), and

Υ
(
[AutX]

)
= Ldimk radEndX(Ld(X) − 1),

where d(X) = dimk(EndX/ radEndX). Given n ∈N, consider the morphism

Aut(nX)→GLn(EndX/ radEndX);

the fiber is an affine space (consisting of matrices with elements belonging to

radEndX) of dimension n2 dimk(radEndX). Hence, by [1, Lemma 2.6], we have

Υ
([
Aut(nX)

])
= Ln2 dimk(radEndX)+(1/2)n(n−1)d(X)

n∏
k=1

(Lkd(X) − 1).



Remarks on Hall algebras of triangulated categories 495

Generally, an object X ∈ C is isomorphic to n1X1 ⊕ n2X2 ⊕ · · · ⊕ ntXt, where

Xi �Xj for i, j = 1, . . . , t and i 	= j. Consider the natural morphism

Aut(X)→Aut(n1X1)× · · · ×Aut(ntXt).

It is a vector bundle of dimension
∑

i 
=j Hom(niXi, njXj). Hence, we have the

following result.

PROPOSITION 5.3

For X ∈ C, Υ([AutX]) = Lt
∏l

i=1

∏si
j=1(L

jd(X) − 1) for some t, l, s1, . . . , sl ∈ N

and then is invertible in Λ.

We introduce some necessary notations. Let W =
⊔

n∈Z
Wn. Then π : W →

Obj(C) (for simplicity, we use the same notation as π :Wn →Obj(C)) induces that
π(W)⊆Obj(C). For X ∈ C, if Υ([AutX]) = Lt

∏l
i=1

∏si
j=1(L

jd(X)−1), then write

da(X) = (t, s1, s2, . . . , sl) and Lda = Lt
∏l

i=1

∏si
j=1(L

jd(X) − 1). For X,Y,L ∈ C,
write

d{X,Y } =
∑
i>0

(−1)i dimCHom
(
X[i], Y

)
and d∗ = d(X,Y,L) = (da(X), d{X,L}, d{X,X}). For a fixed triple d∗ = (da, l,m) with

da = (t, s1, s2, . . . , sl) and two pairs [πi : Si →Obj(C)] for i= 1,2, define

Vd∗ =
{
(s1, s2,L,β)

∣∣ L ∈ π(W), β ∈Hom
(
π1(s1),L

)
with Cone(β)∼= π2(s2) and

da
(
Aut

(
π1(s1)

))
= da, d{π1(s1),Cone(α)} = l, d{π1(s1),π1(s1)} =m

}
.

Consider the Λ-module

MHT (C) =
⊕
i∈I

Motst
(
(Xi,Gi)

)
endowed with the multiplication[

π1 : S1 →Obj(C)
]
·
[
π2 : S2 →Obj(C)

]
=

∑
da,l,m

[
ψ : Vd∗ →Obj(C)

]
L−daLl−m

:=

∫
s1∈S1,s2∈S2

Υ
([
Aut

(
π(s1)

)])−1{
π1(s1), π1(s1)

}−1

×
∫
L∈π(W)

[
Hom

(
π1(s1),L

)
→Obj(C)

]
,

where π1(S1) ⊆ Xi, π2(S2) ⊆ Xj for some i, j ∈ I , and ψ(s1, s2,L,β) = L. Then

MHT (C) is an Λ-algebra.

Given Z,M ∈ C and l : Z →M , there is a unique distinguished triangle

Z
l

M
m

L
n

Z[1],
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where L=Cone(l) and m= ( 1 0 ), n= ( 01 ). Set

nHom
(
Z[1],L

)
=

{
nt

∣∣ t ∈Hom
(
Z[1],L

)}
and

Hom
(
Z[1],L

)
n=

{
tn

∣∣ t ∈Hom
(
Z[1],L

)}
.

It is easy to check that they are vector spaces.

LEMMA 5.4 ([24, LEMMA 2.4])

With the above notation, we have

Υ
([
nHom

(
Z[1],L

)])
= {M,L}{Z,L}−1{L,L}−1

and

Υ
([
Hom

(
Z[1],L

)
n
])

= {Z,M}{Z,L}−1{Z,Z}−1.

Now we give the motivic version of the derived Riedtmann–Peng formula.

PROPOSITION 5.5

For Z,L,M ∈ C, we have[
HomC(Z,M)L →Obj(C)

]
· {Z,M}
Υ([AutZ]) · {Z,L} · {Z,Z}

=
[
HomC(M,L)Z[1] →Obj(C)

]
· {M,L}
Υ([AutL]) · {Z,L} · {L,L} .

Proof

Define the constructible set

S1 =
{
(aL, l, tn)

∣∣ aL ∈AutL, l ∈HomC(Z,M)L, t ∈HomC
(
Z[1],L

)}
and

S2 =
{
(aZ ,m,nt)

∣∣
aZ ∈AutZ,m ∈HomC(M,L)Z[1], g2 ∈AutL, t ∈HomC

(
Z[1],L

)}
.

Here, the projection S1 → AutL × HomC(Z,M)L is a constructible bundle of

dimension dimkHomC(Z[1],L)n. (The choice of n is irrelevant.) In the same way,

S2 is a constructible bundle of dimension ndimkHomC(Z[1],L). Note that, given

g1 ∈ AutZ, g1 ◦ l = l means that g1 = 1 + g′1 and g′1 ◦ l = 0. However, g′1 ◦ l =
0 is equivalent to saying that g′1 = t ◦ n for some t ∈ Hom(Z[1],L). Similarly,

g2 ∈ AutL satisfies mg2 = m if and only if g2 ∈ 1 + nHom(Z[1],L). For any

l′ ∈HomC(Z,M)L, there exists a unique aZ ∈AutZ such that aZ l= l′. There is

an isomorphism S1 → S2 defined by sending (aL, l
′, tn) to (aZ , aLm,nt). Hence,

we have that [S1 →Obj(C)] = [S2 →Obj(C)]. On the other hand, by the definition

of motivic Hall algebras and Lemma 5.4, we have
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[
S1 →Obj(C)

]
=Υ

(
[AutL]

)
{Z,M}{Z,L}−1{Z,Z}−1 ·

[
HomC(Z,M)L →Obj(C)

]
and [

S2 →Obj(C)
]

=Υ
(
[AutZ]

)
{M,L}{Z,L}−1{L,L}−1 ·

[
HomC(M,L)Z[1] →Obj(C)

]
.

This concludes the proof of the proposition. �

THEOREM 5.6

With the above defined multiplication, MHT (C) becomes an associative algebra.

The proof can be considered to be the motivic version of the proof for [24,

Theorem 3.6].

Proof

Set u[E] := [π : pt → Obj(C)] with π(pt) = E. Given three functions [πi : Si →
Obj(C)] for i= 1,2,3, we need to prove

[π3] ·
(
[π1] · [π2]

)
=

(
[π3] · [π1]

)
· [π2].

By the reformulation of the definition of multiplication, the proof of the theorem

is easily reduced to the case when Si is just a point. Let π3(pt) = Z, π2(pt) = Y ,

and π1(pt) =X . Set t[X] = Υ−1([Aut(X)]) · {X,X}. Then u[Z] ∗ (u[X] ∗ u[Y ]) is

equal to∫
L∈π(W),L′∈π(W′)

[
Hom(M ⊕X,L)

Y,Z[1]
L′[1] →Obj(C)

]
t[X]t[L]{M ⊕X,L},

where π(W ′) is the image of π : Ext1(Z,X)→Obj(C) by sending α to its middle

term. Similarly, we have that (u[Z] ∗ u[X]) ∗ u[Y ] is equal to∫
L∈π(W),L′∈π(W′)

[
Hom(L′,M ⊕X)

Y,Z[1]
L →Obj(C)

]
t[X]t[L′]{L′,M ⊕X}.

Following Proposition 5.5, we have that (u[Z]∗u[X])∗u[Y ] = u[Z]∗(u[X]∗u[Y ]). �

THEOREM 5.7

There exists an algebra isomorphism Φ :MH(C)→MHT (C) defined by

Φ
([
π : S →Obj(C)

])
=

∫
s∈S

t[π(s)]u[π(s)],

where t[π(s)] =Υ−1([Aut(π(s))]) · {π(s), π(s)}.

The proof is a direct application of Proposition 5.5.
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