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Abstract After introducingan equivalenceproblem for symplectic singularities,we for-

mulate an algebraic version of such a problem. LetX be an affine normal variety with a

C∗-action having only positive weights. Assume that the regular partXreg ofX admits

an algebraic symplectic 2-form ω with weight l. Ourmain theorem asserts that any alge-

braic symplectic 2-form ω′ onXreg of weight l is equivalent to ω up to aC∗-equivariant

automorphism of X if l �= 0. When l = 0 we have a counterexample to this statement.

In the latter half of the article, we discuss the equivalence problem up to constant. We

associate to X a projective variety P(X) and prove that P(X) has a contact orbifold

structure. Moreover, whenX has canonical singularities, the contact orbifold structure

is rigid under a small deformation. The equivalence problem is then reduced to the

uniqueness of the contact structures. In most examples the symplectic structures turn

out to be unique up to constant with very few exceptions. In the final section we pose a

splitting conjecture for symplectic singularities.

Introduction

Assume that X is a germ of a normal complex space whose regular locus Xreg

admits a holomorphic symplectic 2-form ω. Two such pairs (X,ω) and (X ′, ω′)

are equivalent if there is an isomorphism φ :X →X ′ such that ω = φ∗(ω′). They

are not, a priori, equivalent even if their underlying complex analytic structures

are equivalent. The Darboux theorem asserts that any holomorphic symplectic

structure on (C2n,0) is equivalent to the standard one dx1∧dx2+ · · ·+dx2n−1∧
dx2n. A general theme of this article is such an equivalence problem for a singular

space.

The Darboux theorem is naturally extended to a symplectic quotient singu-

larity (cf. Proposition 1.1). An essential idea for proving the Darboux theorem

is due to Moser [Mo], and it seems rather difficult to develop this method for an

arbitrary singular space.

In this article we formulate algebraic versions of the equivalence problem.

Namely, we start with a normal affine varietyX of dimension 2d with aC∗-action.

Assume that 0 ∈X is a unique fixed point of the C∗-action with positive weights.

More precisely, the cotangent spacemX,0/m
2
X,0 of 0 ∈X has only positive weights

with respect to the C∗-action, or equivalently, the affine ring R of X is positively

graded:
⊕

i≥0Ri with R0 = C. We call such a C∗-action good. Let ω be an

algebraic symplectic 2-form on Xreg with weight l. If we represent the C∗-action
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by the family {φt}t∈C∗ of automorphisms of X , then φ∗
t (ω) = tl ·ω. If we change

the C∗-action of X , l may possibly change. But the positivity of l reflects the

properties of X itself. In fact, if X has canonical singularities, then l must be

positive (see Lemma 2.2). Conversely, when l > 0, one can show that X has

canonical singularities under the assumption that X has an isolated singularity

(see Lemma 2.4).

Let us consider two such pairs (X,ω) and (X ′, ω′) with the same weight l.

They are called equivalent if there is an C∗-equivariant isomorphism φ :X ∼=X ′

such that ω = φ∗(ω′). In particular, if X =X ′, then ω and ω′ are called equivalent

symplectic structures on X . Our main result is the following.

THEOREM 3.1

Let (X,ω) be a pair of a normal affine variety X with a good C∗-action and

an algebraic symplectic 2-form ω on Xreg with weight l �= 0. Then ω is a unique

symplectic structure with weight l up to equivalence.

If we drop the assumption l �= 0, then the result does not hold. We have a counter-

example when l= 0 (see Remark 3.3).

Affine symplectic varieties are constructed in several different manners such

as nilpotent orbit closures of a complex simple Lie algebra (cf. [CM]), Slodowy

slices to such orbits (cf. [Sl]) and the symplectic (or hyper-Kähler) reductions.

Note that these examples naturally come up with C∗-actions. It often happens

that the same C∗-variety appears in different constructions. But Theorem 3.1

asserts that the symplectic structures on the same C∗-variety are unique if they

have the same weight. We explain below how Theorem 3.1 is applied to explicit

examples.

Let g be a complex simple Lie algebra, and let S ⊂ g be a Slodowy slice to a

nilpotent orbit O of g. Let h be a Cartan subalgebra, and let W be the associated

Weyl group of g. We denote by χ : S → h/W the adjoint quotient map restricted

to S. We write S0 for the central fiber χ−1(0) of χ. It is known that S0 admits

a (Kostant–Kirillov) symplectic structure ω together with a C∗-action such that

ω has weight 2.

EXAMPLE 1

(i) Let g be the simple Lie algebra of type Bn (resp., Cn, F4, or G2). Let g′

be the simple Lie algebra of type A2n−1 (resp., Dn+1, E6, or D4). Consider

the Slodowy slices S and S′, respectively, for the subregular orbits of g and g′.

Then both S0 and S′
0 have a du Val singularity of type A2n−1 (resp., Dn+1,

E6, or D4). Moreover, they are isomorphic as C∗-varieties (see [Sl, Section 7.4,

Proposition 2, Section 8.3, Proposition 2]). According to Theorem 3.1† we see

that (S0, ω) and (S′
0, ω

′) are also equivalent as symplectic varieties. This fact has

†In this case one can check easily that they are symplectic equivalent without Theorem 3.1.



Equivalence of symplectic singularities 485

a nice application to the study of Poisson deformations of (S0, ω). As is observed

in [LNS], the Poisson deformation S → h/W of (S0, ω) is not the universal one.

But, since (S0, ω)∼= (S′
0, ω

′), one can regard S′ → h′/W ′ as a Poisson deformation

of (S0, ω). Since g′ is simply laced, this turns out to be universal.

(ii) Let g be the simple Lie algebra of type G2, and let S be a Slodowy slice

to the 8-dimensional nilpotent orbit of g. Let g′ be the simple Lie algebra of

type C3, and let S′ be a Slodowy slice to the nilpotent orbit of g′ of Jordan type

[4,12]. Then S0 and S′
0 are isomorphic to the 4-dimensional quasi-homogeneous

hypersurface

X :=
{
(a, b, x, y, z) ∈C5;a2x+ 2aby+ b2z + (xz − y2)3 = 0

}
as C∗-varieties (see [LNS, Section 10]). Then (S0, ω) and (S′

0, ω
′) are equivalent

as symplectic varieties by Theorem 3.1. As in (i), S → h/W does not give the

universal Poisson deformation of (S0, ω). But S
′ → h′/W ′ is the universal Poisson

deformation of (S0, ω).

EXAMPLE 2 ([LNSS, SECTION 3])

Quasi-homogeneous symplectic hypersurfaces

At this moment we know two kinds of quasi-homogeneous symplectic hyper-

surfaces. The first one is a series of examples Xn (n≥ 2) of dimension 4:

Xn :=
{
(a, b, x, y, z) ∈C5;a2x+ 2aby+ b2z + (xz − y2)n = 0

}
.

The second one is a 6-dimensional example. For details on this example, see

[LNS, Section 10].

One can put (homogeneous) symplectic structures on them in several differ-

ent ways.

(a) Originally these examples were found as the central fibers S0 of the

Slodowy slices S to certain nilpotent orbits of g. The Xn is the S0 for the

nilpotent orbit O[2n−2,12] of sp(2n) and the 6-dimensional example is the S0 for

the (unique) 6-dimensional nilpotent orbit of G2. A Slodowy slice has a C∗-action

and admits a symplectic structure of weight 2.

(b) Let V be an even-dimensional representation of sl2. One can put a Poisson

structure on A :=C[sl2⊕V ] by using the Lie bracket of sl2, the sl2-representation

V , and an sl2-equivariant map ϕ : ∧2V →C[sl2]. More precisely, for x+v, y+w ∈
sl2⊕V , we define

{x+ v, y+w} := [x, y] +ϕ(v,w) + (x ·w+ y · v)

and extend this bracket to a Poisson structure on A by the Leibniz rule.

Take as V the standard 2-dimensional representation, and take as ϕ the

(n− 1)th power Δn−1 of the Casimir element Δ ∈C[sl2]. Then we have a Pois-

son structure on A. Notice that SpecA is a 5-dimensional affine space A5. The

Poisson center Cn := {g ∈A;{g,A}= 0} is the polynomial ring C[fn] generated

by an element fn of A. The ring homomorphism C[fn]→A induces a morphism

of algebraic varieties fn : A5 → A1. One can prove that fn coincides with the
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defining polynomial of Xn: a
2x + 2aby + b2z + (xz − y2)n after a suitable C∗-

equivariant coordinate change of A5. The Poisson structure on A5 induces a

Poisson structure on the central fiber Xn := {fn = 0}. This Poisson structure

has weight −2, and it is generically nondegenerate; in other words, Xn admits a

symplectic structure of weight 2.

Similarly, by using the symmetric product S3(C2) of the standard repre-

sentation, we get a Poisson structure on A with a Poisson center f . Then f is

equivalent to the equation of the 6-dimensional hypersurface.

(c) The series Xn of hypersurfaces can be also obtained as the symplectic

reductions of Hanany and Mekareeya [HM] determined by unitrivalent graphs.

Thus we have three symplectic structures on Xn and two symplectic struc-

tures on the 6-dimensional example. They are all equivalent by Theorem 3.1.

In the latter half of the article we discuss the equivalence problem up to a con-

stant. Let (X,ω) be the same one as in Theorem 3.1; namely, l �= 0. A symplectic

structure ω′ on X is equivalent to ω up to constant when ω′ = λ · ω with some

λ ∈C∗. If the weight l of ω is nonzero, then the equivalence up to a constant

implies the equivalence up to a C∗-equivariant automorphism. Let R be the

affine ring of X . By the assumption, R is positively graded: R =
⊕

i≥0Ri. We

put P(X) := Proj(
⊕

i≥0Ri). Roughly speaking, we reduce the equivalence prob-

lem for the symplectic structure on X to the uniqueness of the contact structure

on P(X).

It is well known that a contact structure is an odd-dimensional counterpart

of a symplectic structure in complex and differential geometry. The author thinks

that this is a good occasion to give an appropriate formulation of the contact

structure for singular varieties.

Recall that a contact structure on a complex manifold Z of dimension 2d+1

is an exact sequence of vector bundles

0→D→ TZ
θ→M → 0,

with rank(D) = 2d and rank(M) = 1 so that dθ|D induces a nondegenerate pair-

ing on D. The line bundle M is called the contact line bundle. According to

LeBrun [LeB], the contact structure is a unique one with the contact line bundle

M if and only if H0(Z,O(D)) = 0.

Let us consider the natural projection map p : X − {0} → P(X). Then all

fibers of p are isomorphic to C∗, but some of them are multiple fibers. There

exists an open dense subset P(X)0 of P(X) such that P(X)0 is smooth and p

is a C∗-bundle over P(X)0. Define L := OP(X)(1)|P(X)0 . The symplectic form

ω on Xreg of weight l �= 0 determines a contact structure on P(X)0 with the

contact line bundle L⊗l (cf. Section 4.3). If CodimP(X)(P(X)−P(X)0)≥ 2, one

can employ this contact structure on P(X)0 as a contact structure on P(X). But

when CodimP(X)(P(X)−P(X)0) = 1, the contact structure on P(X)0 does not

yet have enough information. This is the case, for example, when (X,ω) is a du

Val singularity with a symplectic structure of weight 2. So, in a general case, we
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need to introduce the notion of a contact orbifold structure (see Section 4.4 for

details). A contact orbifold structure on a normal variety Z consists of an orbifold

structure Zorb on Z, an orbifold line bundle M (i.e., contact line bundle) on Zorb,

and a global section θ of Hom(ΘZorb ,M). Then one can prove the following.

THEOREM 4.4.1

The projectivized cone P(X) has a contact orbifold structure.

Let L ∈ Pic(P(X)orb) be the tautologcal line bundle, and assume that M= L⊗l.

Then one can completely recover the original symplectic structure (X,ω) from

the data (P(X),M, θ).

For each du Val singularity (X,ω) of type ADE, a contact orbifold structure

on P(X)∼=P1 is determined. But these structures are all different even though

the underlying space is the same P1. In other words, P1 has infinitely many

different contact orbifold structures.

WhenX has canonical singularities, the projectivized cone P(X) is a singular

Fano variety. But P(X) turns out to be a very special one. In fact, we prove that

the contact orbifold structure (P(X),M, θ) is rigid under a small deformation

if X has canonical singularities (see Proposition 5.2). When X is the closure of

a minimal nilpotent orbit Omin of a simple Lie algebra, P(X) is a contact Fano

homogeneous manifold. In this case the contact structure is known to be rigid

under a small deformation (cf. [LeB]). Thus Proposition 5.2 generalizes this fact.

The equivalence problem for a symplectic structure on X is now reduced

to the uniqueness of the contact orbifold structure on P(X). In most examples

the symplectic structures turn out to be unique up to a constant with very few

exceptions (see Section 6).

Section 7 is a speculation based on the analogy of the Bogomolov decomposi-

tion for compact Kähler manifolds with c1 = 0. The contents of Section 6 are still

fragmentary. However, the problems addressed in the final section would play a

role as a working hypothesis in their future study.

1. Equivalence problem for complex analytic germs

Assume that X is a germ of a normal complex space whose regular locus Xreg

admits a holomorphic symplectic 2-form ω. Two such pairs (X,ω) and (X ′, ω′)

are equivalent if there is an isomorphism φ :X →X ′ such that ω = φ∗(ω′). They

are not, a priori, equivalent even if their underlying complex analytic structures

are equivalent. The Darboux theorem asserts that any holomorphic symplectic

structure on (C2n,0) is equivalent to the standard one dx1∧dx2+ · · ·+dx2n−1∧
dx2n.

One can generalize the Darboux theorem to a quotient singularity, which

might be already known.
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PROPOSITION 1.1

Let (X,0) be a quotient symplectic singularity with a holomorphic symplectic

form ω. Then any holomorphic symplectic form on (X,0) is equivalent to ω.

Proof

Write X =C2n/G with a finite group G⊂ Sp(2n,C). Let π : (C2n,0)→ (X,0) be

a natural projection. Let ω′ be an arbitrary symplectic form on (X,0). Let ω̃ and

ω̃′ be, respectively, the pullbacks of ω and ω′ by π. We shall prove that there is

a G-equivariant isomorphism ϕ̃ : (C2n,0)→ (C2n,0) such that ϕ̃∗(ω̃′) = ω̃. Then

this ϕ̃ descends to an automorphism ϕ of (X,0) such that ϕ∗(ω′) = ω. We first

prove a linear algebra version of this fact. �

LEMMA 1.2

Let V be a 2n-dimensional complex representation of a finite group G. Assume

that ω and ω′ are G-invariant nondegenerate skew-symmetric 2-forms on V .

Then there is a G-equivariant linear isomorphism φ such that φ∗(ω) = ω′.

Proof

Denote by V ∗ the dual representation of V . We divide irreducible representations

V of G into three types:

(I) V ∼= V ∗ and dim(∧2V ∗)G = 1,

(II) V ∼= V ∗ and (∧2V ∗)G = 0,

(III) V is not isomorphic to V ∗ as a G-module.

Note that if V is irreducible and V ∼= V ∗, then C=HomG(V,V ) = (V ⊗ V ∗)G =

(V ∗⊗V ∗)G = (∧2V ∗)G⊕ (Sym2(V ∗))G. In case (I) one has dim(∧2V ∗)G = 1, and

the isomorphism V ∼= V ∗ is given by aG-invariant nondegenerate skew-symmetric

form which is unique up to a scalar. In case (II) one has dim(Sym2(V ∗))G = 1,

and V ∼= V ∗ is given by a G-invariant nondegenerate symmetric form which is

unique up to a scalar. If V is of type (III), then (∧2V ∗)G = 0 because there

is an injection (∧2V ∗)G → (V ∗ ⊗ V ∗)G =HomG(V,V
∗) = 0. Moreover, dim(V ⊗

V ∗)G = 1 because (V ⊗ V ∗)G = HomG(V,V ) = C. Finally, note that if V and

V ′ are irreducible representations of different type, one has (V ⊗ V ′)G = 0 and

HomG(V,V
′) = 0.

Assume that V is of type I. An element

ϕ ∈ (∧2V ∗)G =HomG(V,V
∗)

is represented by a matrix X if we choose a basis of V and choose its dual basis

of V ∗. By changing the initial basis if necessarily, we may assume that X = aJ ,

where a ∈C and where

J =

(
0 I

−I 0

)
.
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Here notice that V is an even-dimensional C-vector space. Similarly an element

ϕ ∈
(
∧2

(
(V ∗)⊕n

))G ⊂HomG

(
V ⊕n, (V ∗)⊕n

)
is represented by a matrix

X =

⎛
⎜⎜⎝
a11J a12J · · · a1nJ

a21J a22J · · · a2nJ

· · · · · · · · · · · ·
an1J an2J · · · annJ

⎞
⎟⎟⎠ ,

where A := (aij) is a symmetric matrix. If ϕ is nondegenerate, then for a suitable

matrix T of the form

T =

⎛
⎜⎜⎝
t11I t12I · · · t1nI

t21I t22I · · · t2nI

· · · · · · · · · · · ·
tn1I tn2I · · · tnnI

⎞
⎟⎟⎠ ,

we have

tTXA=

⎛
⎜⎜⎝

J 0 · · · 0

0 J · · · 0

· · · · · · · · · · · ·
0 0 · · · J

⎞
⎟⎟⎠ .

Assume that V is of type II. Then an element

ϕ ∈ (Sym2 V ∗)G =HomG(V,V
∗)

can be represented by a matrix of the form aI with a ∈C∗. Similarly an element

ϕ ∈
(
Sym2

(
(V ∗)⊕n

))G ⊂HomG

(
V ⊕n, (V ∗)⊕n

)
is represented by a matrix

X =

⎛
⎜⎜⎝
a11I a12I · · · a1nI

a21I · · · a2nI

· · · · · · · · · · · ·
an1I an2I · · · annI

⎞
⎟⎟⎠ ,

where A := (aij) is a skew-symmetric matrix. If ϕ is nondegenerate, then for a

suitable matrix T of the form

T =

⎛
⎜⎜⎝
t11I t12I · · · t1nI

t21I t22I · · · t2nI

· · · · · · · · · · · ·
tn1I tn2I · · · tnnI

⎞
⎟⎟⎠ ,

we have

tTXA=

(
0 I

−I 0

)
.
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Finally, assume that V is of type III. Then (∧2(V ⊕V ∗))G ⊂HomG(V ⊕V ∗, V ∗⊕
V ). An element (∧2(V ⊕ V ∗))G is represented by a matrix(

0 aI

−aI 0

)
.

Similarly an element

ϕ ∈
(
∧2

(
V ⊕n ⊕ (V ∗)⊕n

))G ⊂HomG

(
V ⊕n ⊕ (V ∗)⊕n, (V ∗)⊕n ⊕ V ⊕n

)
is represented by a matrix

X =

(
0 A

−tA 0

)
,

where

A=

⎛
⎜⎜⎝
a11I a12I · · · a1nI

a21I · · · a2nI

· · · · · · · · · · · ·
an1I an2I · · · annI

⎞
⎟⎟⎠ .

If ϕ is nondegenerate, then for a suitable matrix T of the form(
T1 0

0 T1

)
,

we have

tTXA=

(
0 I

−I 0

)
.

Now let us consider the V in Lemma 1.2. Decompose V into the sum of

irreducible representations

V =
⊕

(Vi)
⊕li ⊕

⊕
(V ′

j )
⊕mj ⊕

⊕
(Wk)

⊕nk ,

where Vi are of type (I), V ′
j are of type (II), and Wk are of type (III). Since V

admits a G-invariant nondegenerate 2-form ϕ, we see that in the third factor⊕
(Wk)

⊕nk each irreducible representation and its dual one appear in a pairwise

way. Thus the third factor can be written as
⊕

(Wk ⊕W ∗
k )

⊕nk . By the observa-

tions above we see that ϕ can be transformed to a standard G-equivariant 2-form

after making a suitable G-equivariant base change of V .

Let us return to the proof of Proposition 1.1. Let ω̃(0) ∈ ∧2T ∗
0 (C

2n) and

ω̃′(0) ∈ ∧2T ∗
0 (C

2n) be, respectively, the restriction of ω̃ and ω̃′ to the origin

0 ∈C2n. By the lemma above, we may assume from the first that ω̃(0) = ω̃′(0).

The rest of the argument is an equivariant version of Moser’s standard argument.

For τ ∈R, define

ω̃τ := (1− τ)ω̃+ τ ω̃′.

We put

u := dω̃τ/dτ.
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Let us consider the complex (πG
∗ Ω

·
C2n , d), which is a resolution of the consant

sheaf CX . Note that u is a section of πG
∗ Ω

2
C2n . Since u is d-closed, one can write

u= dv with a G-invariant 1-form v. Moreover, v can be chosen such that v(0) = 0.

Define a vector field Xτ on (C2n,0) by

iXτ ω̃τ =−v.

Since ω̃(τ) is d-closed, we have

LXτ ω̃τ =−u,

where LXτ ω̃τ is the Lie derivative of ω̃τ along Xτ . If we take a sufficiently small

open set V of 0 ∈C2n, then the vector fields {Xτ}0≤τ≤1 define a family of open

immersions ϕ̃τ : V →C2n via

dϕ̃τ/dτ =Xτ (ϕ̃τ ), ϕ̃0 = id .

Since all ϕ̃τ fix the origin and the Xτ are all G-invariant, the ϕ̃τ induce

G-invariant automorphisms of (C2n,0). We have

d(ϕ̃∗
τ ω̃τ )/dτ = ϕ̃∗

τ (dω̃τ/dτ +LXτ ω̃τ ) = 0.

In particular, ϕ̃∗
0ω̃0 = ϕ̃∗

1ω̃1. The left-hand side is ω̃, and the right-hand side is

ϕ̃∗
1ω̃

′. If we put ϕ̃ := ϕ̃1, then ϕ̃ is a desired G-equivariant automorphism of

(C2n,0). �

2. Affine varieties with C∗-actions and symplectic structures

Let X be a normal affine variety of dimension 2d with a C∗-action. Assume

that 0 ∈X is a unique fixed point of the C∗-action with positive weights. More

precisely, the cotangent space mX,0/m
2
X,0 of 0 ∈ X has only positive weights

with respect to the C∗-action, or equivalently, the affine ring R of X is positively

graded:
⊕

i≥0Ri with R0 =C. In the rest of the paper we call such a C∗-action

a good C∗-action. Let ω be an algebraic symplectic 2-form on Xreg with weight

l. If we represent the C∗-action by the family {φt}t∈C∗ of automorphisms of X ,

then φ∗
t (ω) = tl · ω.

LEMMA 2.1

If ω′ is another symplectic 2-form with weight l′, then l= l′.

Proof

Assume that l < l′. Since ω′d is a generator of the canonical line bundle KX ,

one can write ωd = g · ω′d with a homogeneous regular function g on X with

negative weight l− l′. But this contradicts the assumption that X is positively

weighted. �

REMARK

The lemma shows that if we fix a C∗-action on X , then l is uniquely determined.

But if we replace the C∗-action on X by a different one, l may possibly change.
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For example, let X be a 2-dimensional quotient singularity C2/G where G is a

cyclic group of order m acting on C2 as x→ ζ ·x and y→ ζ−1 ·y with a primitive

mth root ζ of unity. Introduce a C∗-action on C2 by x→ tp · x and y → tq · y
with positive integers p and q which are coprime to each other. Put u := xm,

v := ym, and w := xy. Then X is an affine subvariety of C3(u, v,w) defined by

the equation uv − wm = 0. The C∗-action on C2(x, y) descends to a C∗-action

on X . With respect to this C∗-action, we have(
wt(u),wt(v),wt(w)

)
= (mp,mq, p+ q).

If we choose p, q in such a way that p+ q and m are coprime, then GCD(mp,mq,

p+ q) = 1. By definition X has a symplectic 2-form

ω := du∧ dv/wm−1,

which has weight p+ q.

Before going to the next lemma, we recall the notions of a symplectic singularity

and a canonical singularity. Let (X,ω) be a normal affine variety with a C∗-

action and an algebraic symplectic 2-form ω with weight l. Since ωd := ω∧· · ·∧ω

is a generator of the dualizing sheaf ωX , the canonical divisor KX is a Cartier

divisor. Let π : Y →X be a resolution, and let Ei (1≤ i≤ n) be the π-exceptional

divisors. One can write KY = π∗KX +ΣaiEi with some integers ai. If ai ≥ 0 for

all i, then we say that X has canonical singularities. On the other hand, if ω is

pulled back to a regular 2-form on Y , we say that X has symplectic singularities

(see [Be]). By [Na2], X has canonical singularities if and only if X has symplectic

singularities.

In order to check that X does not have canonical singularities, we only have

to find a partial resolution f : Z →X such that Exc(f) contains a divisor E such

that f∗(ωd) has a pole along E.

LEMMA 2.2

If X has only canonical singularities, then l is positive.

Proof

We prove that if l ≤ 0, then X does not have canonical singularities. Let R be

the affine ring of X . By the C∗-action of X , R has a grading R=
⊕

k≥0Rk with

R0 =C. Let x0, . . . , xn be homogeneous minimal generators of the C-algebra R,

and put ai := wt(xi). We assume that GCD(a0, . . . , an) = 1. The affine variety X

is embedded in Cn+1 by xi’s. Let π : V →Cn+1 be the weighted blowing up of

Cn+1 with weight (a0, . . . , an). By the definition, V is covered by open sets Vi

(0≤ i≤ n) and there is a Z/aiZ-Galois cover

pi :C
n+1 → Vi

such that

(π ◦ pi)∗xi = (x′
i)

ai ,
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(π ◦ pi)∗xj = (x′
i)

ajx′
j (j �= i),

and pi is the quotient map of the Z/aiZ-action on Cn+1,

x′
i → ζ · x′

i,

x′
j → ζ−aj · x′

j

with an aith primitive root ζ of unity. The exceptional divisor E := π−1(0) is

isomorphic to the weighted projective space P(a0, . . . , an). Let us observe the

restriction of pi to p−1
i (E ∩ Vi). Note that p−1

i (E ∩ Vi) is a divisor of Cn+1

defined by the equation x′
i = 0 and that the Z/aiZ-action on p−1

i (E∩Vi) is given

by

x′
j → ζ−aj · x′

j .

By the assumption GCD(a0, . . . , an) = 1, we see that Z/aiZ acts effectively on

p−1
i (E ∩ Vi). Therefore,

p−1
i (E ∩ Vi)→E ∩ Vi

is a Z/aiZ-Galois covering. Let p ∈ E be a general point. Then V is smooth

at p. Let X̃ be the proper transform of X ⊂Cn+1 by the weighted blowing up

π : V →Cn+1, and let

πX : X̃ →X

be the induced birational morphism. Note that

E ∩ X̃ =Proj
(⊕
k≥0

Rk

)
.

Since E ∩ X̃ is generically smooth and E is a Cartier divisor at a general point

p ∈E ∩ X̃ , we can see that X̃ is also smooth at such a point p.

Now let us consider the 2d-form ωd and regard it as a section of the canonical

line bundle KX . We shall prove that (πX)∗ωd has a pole along E ∩ X̃ if l ≤ 0.

Take a general point p ∈E∩X̃ , and assume that p ∈ Vi. We put X̃i := (pi)
−1(X̃∩

Vi) and Ei := (pi)
−1(E ∩ Vi). Recall that p−1

i (E ∩ Vi) → E ∩ Vi is a Z/aiZ-

Galois covering whose branch locus is contained in the divisor
∏

j 	=i xj = 0 of

E =P(a0, . . . , an). Since Proj(
⊕

k≥0Rk) is not contained in the divisor
∏

xj = 0

of P(a0, . . . , an), we see that

Ei ∩ X̃i →E ∩ X̃ ∩ Vi

is a (Z/aiZ)-Galois cover. This implies that the order of the zeros (or the poles)

of (πX)∗ωd along E ∩ X̃ coincides with the order of the zeros (or the poles) of

(πX ◦pi|X̃i
)∗ωd along Ei∩ X̃i. Let q ∈ X̃i be a point such that pi(q) = p. One can

choose the local coordinates of q ∈ X̃i from x′
j − x′

j(q) (0 ≤ j ≤ n). Since Ei is

smooth at q, we can include x′
i among the local coordinates. (Note that x′

i(q) = 0.)

Assume that x′
i, x

′
j1
−x′

j1
(q), . . . , x′

j2d−1
−x′

j2d−1
(q) are local coordinates. Recall

that V has a natural C∗-action and this C∗-action extends to the C∗-action on
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(x′
0, . . . , x

′
n) ∈Cn+1 by

x′
i → t · x′

i

and

x′
j → x′

j (j �= i).

Since ω has weight l, the weight of (πX ◦ pi|X̃i
)∗ωd is d · l. Around q ∈ X̃i, one

can write

(πX ◦ pi|X̃i
)∗ωd = h · dx′

i ∧ dx′
j1 ∧ · · · ∧ dx′

j2d−1

with a meromorphic function h of degree d · l−1. This means that (πX ◦pi|X̃i
)∗ωl

has poles of order 1− d · l along Ei ∩ X̃i if l≤ 0. �

COROLLARY 2.3

If CodimX Sing(X)≥ 4, then l > 0.

Proof

If Sing(X) has at least codimension 4 in X , then the symplectic 2-form ω extends

to a regular 2-form on an arbitrary resolution X̃ ofX by Flenner [Fl]. This implies

that X has only canonical singularities. �

LEMMA 2.4

If X has an isolated singularity and l > 0, then X has only canonical singularities.

Proof

Let π : Y → X be a C∗-equivariant resolution. Let Yc be a relatively compact

open subset of Y such that π−1(0) ⊂ Yc. Write KY = π∗KX +ΣaiEi where Ei

are π-exceptional divisors. Since KX is Cartier (because of the existence of ω),

all coefficients ai are integers. In order to prove that ai ≥ 0, we only need to prove

that ai > −1. This condition is equivalent to the L2-condition (cf. the proof of

[Ko, Proposition 3.20]): ∫
Yc

π∗ωd ∧ π∗ω̄d <∞.

Since R>0 is naturally contained in C∗, each element t ∈ R>0 acts on X as

an automorphism φt of X . Let U be an open neighborhood of 0 ∈X such that

φt(U) ⊂ U for all t ∈ (0,1]. Put V := π−1(U). Fix ε0 ∈ (0,1), and put Un :=

φεn0 (U)− φεn+1
0

(U). Define Vn := π−1(Un). Since φ∗
tω = tl · ω, we have

∫
Vn

π∗ωd ∧ π∗ω̄d = ε2dnl0 ·
∫
V0

π∗ωd ∧ π∗ω̄d.

By the definition we have∫
V

π∗ωd ∧ π∗ω̄d =

∞∑
n=0

∫
Vn

π∗ωd ∧ π∗ω̄d.
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But the right-hand side equals

( ∞∑
n=0

ε2dnl0

)∫
V0

π∗ωd ∧ π∗ω̄d <∞.

The desired L2-condition has now been proved.

Note that this proof is not valid for a nonisolated case because
∫
Vn

π∗ωd ∧
π∗ω̄d might be infinite. �

3. Algebraic version of equivalence problems

In this section (X,ω) is a pair of a normal affine variety X of dimension 2d with

a good C∗-action and an algebraic symplectic 2-form ω on Xreg with weight l.

We shall consider the equivalence problem for a pair (X,ω). Let (X ′, ω′) be

another pair. Then (X,ω) and (X ′, ω′) are equivalent if there is a C∗-equivariant

isomorphism φ :X ∼=X ′ such that ω = φ∗(ω′). In particular, if X =X ′, then ω

and ω′ are called equivalent symplectic structures on X . A purpose of this section

is to prove the following theorem.

THEOREM 3.1

Assume that l �= 0. Then ω is a unique symplectic structure with weight l on X

up to equivalence.

We shall briefly recall some basic results on Poisson structures and their defor-

mations (for details see [Na1]). Note that the symplectic 2-form ω gives a natural

Poisson structure { , } on Xreg. By the normality of X , this Poisson structure

extends to a Poisson structure X . We denote this bracket also by { , }. The
bracket { , } has weight −l with respect to the C∗-action because ω has weight l.

Namely, if f and g are homogeneous element of OX of degree a and b, then {f, g}
is a homogeneous element of degree a+ b− l.

By using the Poisson bracket we define the Lichnerowicz–Poisson complex

0→ΘXreg

δ1→∧2ΘXreg

δ2→ · · ·

by

δpf(da1 ∧ · · · ∧ dap+1)

:=

p+1∑
i=1

(−1)i+1
{
ai, f(da1 ∧ d̂ai ∧ · · · ∧ dap+1)

}

+
∑
j<k

(−1)j+kf
(
d{aj , ak} ∧ da1 ∧ · · · ∧ ˆdaj ∧ · · · ∧ ˆdak ∧ · · · ∧ dap+1

)
.

In the Lichnerowicz–Poisson complex, ∧pΘXreg is placed in degree p. By the

symplectic form ω, each term ∧pΘXreg can be identified with the sheaf Ωp
Xreg

of p-forms. Moreover, the Lichnerowicz–Poisson complex is identified with the
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truncated de Rham complex

0→Ω1
Xreg

d→Ω2
Xreg

d→ · · · .

Put S1 := SpecC[ε]. Then the second cohomology H2(Γ(Xreg,∧≥1ΘXreg))

describes the equivalence classes of the OS1 -bilinear Poisson structures { , }ε on

Xreg × S1 which are extensions of the original Poisson structure { , } on Xreg ×
{0}. In fact, for ϕ ∈ Γ(Xreg,∧2ΘXreg), we define a bracket { , }ε on OXreg ⊕εOXreg

by

{f + εf ′, g+ εg′}ε := {f, g}+ ε
(
ϕ(df ∧ dg) + {f, g′}+ {f ′, g}

)
.

Then this bracket is a Poisson bracket if and only if δ(ϕ) = 0. On the other hand,

an element θ ∈ Γ(Xreg,ΘXreg) corresponds to an automorphism φθ of Xreg × S1

over S1 which restricts to give the identity map of Xreg × {0}. Let { , }ε,1 and

{ , }ε,2 be the Poisson structures determined, respectively, by elements ϕ1 and

ϕ2 of Γ(Xreg,∧2ΘXreg). Then the two Poisson structures are equivalent under φθ

if ϕ1 −ϕ2 = δ(θ).

Note that a Poisson structure { , }ε on Xreg×S1 uniquely extends to a Pois-

son structure on X ×S1. This means that H2(Γ(Xreg,∧≥1ΘXreg)) also describes

equivalence classes of the OS1 -bilinear Poisson structures { , }ε on X ×S1 which

are extensions of the original Poisson structure { , } on X × {0}.
Let us introduce a C∗-action on X × S1 in such a way that it acts on the

first factor by the original action and acts trivially on the second factor. The

following proposition is a C∗-equivariant version of the above observation.

PROPOSITION 3.2 (RIGIDITY PROPOSITION)

Let { , }ε,1 and { , }ε,2 be two Poisson structures on X×S1 relative to S1, both of

which have weight −l �= 0 and induce the original Poisson structure on X ×{0}.
Then there is a C∗-equivariant automorphism of X × S1 over S1 such that it

induces the identity map of X × {0} and it sends { , }ε,1 to { , }ε,2.

Proof

Let (∧≥1ΘXreg , δ) be the Lichnerowicz–Poisson complex for a Poisson manifold

Xreg. The algebraic torus C
∗ acts on Γ(Xreg,∧pΘXreg), and there is an associated

grading

Γ(Xreg,∧pΘXreg) =
⊕
n∈Z

Γ(Xreg,∧pΘXreg)(n).

The coboundary map δ has degree −l; thus we have a complex

Γ(Xreg,∧1ΘXreg)(0)
δ1→ Γ(Xreg,∧2ΘXreg)(−l)

δ2→ Γ(Xreg,∧3ΘXreg)(−2l).

The middle cohomology Ker(δ2)/ Im(δ1) of this complex describes the equiva-

lence classes of the extension of the Poisson structure { , } on Xreg to that on

Xreg × S1 with weight −l up to C∗-equivariant automorphism of Xreg × S1 over

S1 that induces the identity map of Xreg × {0}. Since each Poisson structure

Xreg×S1 uniquely extends to that on X×S1, Ker(δ2)/ Im(δ1) also describes the
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equivalence classes of the extension of the Poisson structure { , } on X to that

on X × S1 with weight −l up to C∗-equivariant automorphism of X × S1 over

S1 that induces the identity map of X × {0}.
The Lichnerowicz–Poisson complex (∧≥1ΘXreg , δ) is identified with the trun-

cated de Rham complex (Ω≥1
Xreg

, d) by the symplectic form ω. The algebraic torus

C∗ acts on Γ(Xreg,Ω
p
Xreg

) and there is an associated grading

Γ(Xreg,Ω
p
Xreg

) =
⊕
n∈Z

Γ(Xreg,Ω
p
Xreg

)(n).

The coboundary map d has degree zero; thus we have a complex

Γ(Xreg,Ω
1
Xreg

)(l)
d1→ Γ(Xreg,Ω

2
Xreg

)(l)
d2→ Γ(Xreg,Ω

3
Xreg

)(l).

Since ω has weight l, this complex is identified with the three-term complex

above.

We shall prove that Ker(d2)/ Im(d1) = 0. The C∗-action on X defines a

vector field ζ on Xreg. According to Naruki [Nar, Lemma 2.1.1] we define

Δ : Γ(Xreg,Ω
2
Xreg

)→ Γ(Xreg,Ω
1
Xreg

)

by Δ(v) := iζv. Since ζ is a C∗-equivariant vector field, Δ induces a map

Δ : Γ(Xreg,Ω
2
Xreg

)(l)→ Γ(Xreg,Ω
1
Xreg

)(l).

For v ∈ Γ(Xreg,Ω
2
Xreg

)(l), the Lie derivative Lζv of v along ζ equals l · v. If

moreover v is d-closed, then one has l · v = d(iζv) by the Cartan relation

Lζv = d(iζv) + iζ(dv).

This means that v is d-exact. �

Proof of Theorem 3.1

Denote by R the affine ring of X . By definition, R has a natural grading R =⊕
i≥0Ri with R0 = C. Let j : Xreg → X be the inclusion map. Since j∗Ω

2
Xreg

is a coherent OX -module, M := Γ(Xreg,Ω
2
Xreg

) is a finitely generated, graded

R-module: M =
⊕

Mi. Each Mi is a finite-dimensional C-vector space because

Ri = 0 for i < 0 and R0 =C. Our ω is an element of Ml by the definition. Let

Ml,closed be the subspace of Ml which consists of d-closed 2-forms. Let AutC
∗
(X)

be the algebraic group of C∗-equivariant automorphisms of X . Then AutC
∗
(X)

acts on Ml,closed. Let M0
l,closed be the Zariski open subset of Ml,closed which

consists of nondegenerate 2-forms. In particular, M0
l,closed is connected. Since

AutC
∗
(X) preserves M0

l,closed as a set, we see that M0
l,closed is a single orbit of

AutC
∗
(X) by Proposition 3.2. �

REMARK 3.3

Let X be an affine variety defined by f := x3 + y3 + z3 = 0 in C3. Then X has a

natural C∗-action with a fixed point 0 ∈X and with wt(x) = wt(y) = wt(z) = 1.

Then regular part Xreg admits a symplectic form ω := Res(dx∧ dy ∧ dz/f). The
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weight l of ω is zero. The blowing up of X at zero gives us a resolution π : X̃ →X

with an exceptional curve E, which is an elliptic curve. The pullback π∗(ω) is a

meromorphic 2-form which has a pole along E. Thus (X,ω) is not a symplectic

variety in the sense of [Be]. In this case, rigidity does not hold. In fact, (X, t ·ω)
(t ∈C∗) is a nontrivial Poisson deformation of (X,ω) (cf. [EG]). We shall give

here a short proof of this fact. By the argument of the proof of the rigidity

proposition, it suffices to prove that ω ∈ Γ(Xreg,Ω
2
Xreg

) is not in the image of

d : Γ(Xreg,Ω
1
Xreg

)→ Γ(Xreg,Ω
2
Xreg

). Note that ω is a meromorphic 2-form on X̃

having a pole along E at order 1. Thus one has ω ∈ Γ(X̃,Ω2
X̃
(logE)). It can be

checked that Γ(X̃,Ω1
X̃
(logE))∼=Γ(Xreg,Ω

1
Xreg

). Let us consider the commutative

diagram

(1)

Γ
(
X̃,Ω1

X̃
(logE)

) Res−−−−→ Γ(E,OE)

d

⏐⏐� d

⏐⏐�
Γ
(
X̃,Ω2

X̃
(logE)

) Res−−−−→ Γ(E,Ω1
E)

Suppose that ω = dη for η ∈ Γ(X̃,Ω1
X̃
(logE)). Then one can write

Res(ω) = dRes(η)

by the commutative diagram. For any 1-cycle γ on E, one has∫
γ

Res(ω) =

∫
γ

dRes(η) = 0.

On the other hand, since Res(ω) is a nowhere vanishing 1-form on E, we should

have ∫
γ

Res(ω) �= 0

for some 1-cycle γ on E. This is a contradiction.

REMARK 3.4

Assume that X has canonical singularities. Then the complex

Γ(Xreg,Ω
1
Xreg

)
d→ Γ(Xreg,Ω

2
Xreg

)
d→ Γ(Xreg,Ω

3
Xreg

)

is exact. In particular, the complex

Γ(Xreg,Ω
1
Xreg

)(0)
d→ Γ(Xreg,Ω

2
Xreg

)(0)
d→ Γ(Xreg,Ω

3
Xreg

)(0)

is also exact.

The proof goes as follows. Let f : X̃ →X be a C∗-equivariant resolution. Let α be

a d-closed holomorphic 2-form on Xreg. By [Na2, Theorem 4] one has Γ(X̃,Ω2
X̃
) =

Γ(Xreg,Ω
2
Xreg

). Thus f∗α is a holomorphic 2-form on X̃ . The following argument

is based on [Na3, Section 1]. One can also find a similar argument in [Ka].
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We first show that [f∗α] ∈H2(X̃,C) is zero. It is sufficient to prove that, for

a small open neighborhood U of 0 ∈X (in the classical topology), [f∗α|f−1(U)] ∈
H2(f−1(U),C) is zero. In fact, the restriction map H2(X̃,C)→H2(f−1(U),C)

is an isomorphism by the C∗-action. One can blow up X̃ further to have a resolu-

tion g : Z → X̃ so that E := (f ◦ g)−1(0) is a simple normal crossing divisor of Z.

Since R1g∗C= 0, we have an injection H2(f−1(U),C)→H2((f ◦ g)−1(U),C). If

we take U sufficiently small, then H2((f ◦g)−1(U),C)∼=H2(E,C). To prove that

[f∗α|f−1(U)] = 0 in H2(f−1(U),C), we only have to check that [(f ◦ g)∗α|E ] = 0

in H2(E,C). Here we note that H2(E,C) has a mixed Hodge structure and

F 2(H2(E,C)) =H0(E, Ω̂2
E). The sheaf Ω̂2

E is the quotient sheaf of Ω2
E by the

torsion subsheaf supported on Sing(E). Since (f ◦ g)∗α|E is a holomorphic 2-

form on E, we have [(f ◦ g)∗α|E ] ∈ H0(E, Ω̂2
E). But H0(E, Ω̂2

E) = 0 by [Na3,

Lemma 1.2]. As a consequence, we have proved that [f∗α] ∈H2(X̃,C) is zero.

Now look at the Hodge spectral sequence

Ep,q
1 =Hq(X̃,Ωp

X̃
)⇒Hp+q(X̃,C).

Then f∗α= dη mod. E0,1
2 with some holomorphic 1-form η on X̃ . Since X has

rational singularities, we have E0,1
1 = 0; hence E0,1

2 = 0. Thus f∗α = dη. This

clearly shows that the original complex is exact.

PROPOSITION 3.5 (STRONG RIGIDITY)

Assume, in addition, that X has canonical singularities. Let (X1,{ , }ε) be a C∗-

equivariant Poisson deformation of (X,{ , }) over S1 in such a way that C∗ acts

on S1 trivially. Then this Poisson deformation is a trivial one.

Proof

The difference from Proposition 3.2 is that we do not assume that X1 =X ×S1.

Let f :X →Ad be a C∗-equivariant universal Poisson deformation of X over an

affine space Ad constructed in [Na1]. Note that there is a Poisson isomorphism

ι : X ∼= f−1(0). The C∗-action on X induces a C∗-action on the base space

Ad of the universal Poisson deformation. By the construction of f (see [Na1,

Section 5.2]), this action has only positive weights.

The infinitesimal Poisson deformation X1 → S1 determines a map S1 →Ad

which sends the closed point of S1 to the origin of Ad. Assume that this is a

closed immersion; namely, S1 ⊂ Ad. By the assumption, the C∗-action on Ad

restricts to the trivial action on S1. This contradicts the fact that the C∗-action

on Ad has only positive weights. Thus the map S1 →Ad is a constant map. �

4. Projectivized cone and contact structures

In this section (X,ω) is a pair of a normal affine variety X of dimension 2d with

a good C∗-action and an algebraic symplectic 2-form ω on Xreg with positive

weight l.
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4.1. Projectivized cone
Let R be the affine ring of X . By definition, R has a natural grading R=

⊕
i≥0Ri

with R0 =C. We put

P(X) := Proj
(⊕
i≥0

Ri

)
.

Let x0, x1, . . . , xn be homogeneous minimal generators of the C-algebra R, and

put ai = wt(xi). Then P(X) is naturally embedded in the weighted projective

space P(a0, a1, . . . , an). Let V →Cn+1 be the weighted blowing up of Cn+1 with

weight (a0, . . . , an). Then the fiber over the origin 0 ∈ Cn+1 is isomorphic to

P(a0, . . . , an). The singular locus Sing(V ) of V is contained in the fiber over the

origin; hence one can regard Sing(V ) as a subset of P(a0, . . . , an). In this identifi-

cation Sing(V ) is the locus where the projection map Cn+1−{0}→P(a0, . . . , an)

is not a C∗-bundle. As the subsets of P(a0, . . . , an), we may take the intersec-

tion of P(X) and Sing(V ). We assume that P(X) ∩ Sing(V ) has codimension

at least 2 in P(X). Notice that this condition is not necessarily satisfied. For

example, Am-surface singularity x2
0 + x2

1 + xm+1
2 = 0 for m≥ 2 does not satisfy

this condition.

Let P(X)0 be the open subset obtained by excluding this subset and

Sing(P(X)) from P(X). Note that CodimP(X)(P(X) − P(X)0) ≥ 2. There is

a natural projection

p :X − {0}→P(X),

which is a C∗-fibration and is actually a C∗-fiber bundle over P(X)0. We put

X0 := p−1(P(X)0). Let O(1) be the tautological sheaf on P(a0, . . . , an), and put

OP(X)(1) :=O(1)⊗OP(a0,...,an)
OP(X). Then OP(X)(1)|P(X)0 is an invertible sheaf

on P(X)0. Let L ∈ Pic(P(X)0) be the corresponding line bundle to this sheaf.

More exactly, OP(X)(1)|P(X)0 is the sheaf of sections of L. Denote by L−1 the

dual line bundle of L, and denote by (L−1)× the C∗-bundle which is obtained

from L−1 by removing the zero section. Then X0 coincides with (L−1)×, and the

natural projection

π : (L−1)× →P(X)0

coincides with p|X0 . Note that there is a canonical trivialization

π∗L∼=O(L−1)× .

Recall that l is the weight of ω. Later we will use the trivialization

π∗(L⊗l)→O(L−1)×

induced by this canonical trivialization.

4.2. Contact structure on a complex manifold
We shall briefly review a contact complex manifold according to LeBrun [LeB].

Let Z be a complex manifold of dimension 2d+ 1. A contact structure on Z is
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an exact sequence of vector bundles

0→D→ TZ
θ→M → 0,

with rank(D) = 2d and rank(M) = 1, so that dθ|D induces a nondegenerate pair-

ing on D. By using the formula for exterior derivation

dθ(x, y) = x
(
θ(y)

)
− y

(
θ(x)

)
− θ

(
[x, y]

)
,

one can check that this is equivalent to saying that [ , ] :D×D→ TZ/D(=M) is

nondegenerate. We call M the contact line bundle. As is well known, infinitesimal

automorphisms of Z are controlled by the cohomology group H0(Z,ΘZ). An

infinitesimal automorphism of Z is said to be contact if it preserves the contact

structure.

PROPOSITION 4.2.1 ([LeB, PROPOSITION 2.1])

Let

0→O(D)→ΘZ
θ→O(M)→ 0

be the exact sequence of sheaves determined by the contact structure. Then there

is a map s : O(M) → ΘZ of C-modules (not of OZ -modules) that splits the

sequence above, and the group of infinitesimal contact automorphisms coincides

with s(H0(Z,O(M)).

COROLLARY 4.2.2 (CF. [LeB, PROPOSITION 2.2])

Fix a line bundle M on Z. Assume that TZ
θ→M is a contact structure on Z

such that H0(Z,O(D)) = 0. Then θ is a unique contact structure with contact

line bundle M .

4.3. Quasi-contact structure on P(X)

One can generalize the notion of contact structures to a singular variety. Let Z be

a normal variety. Here a quasi-contact structure† on Z is just a contact structure

on an open set Z0 ⊂ Zreg with codimZ(Z −Z0)≥ 2. By the definition, there are

a line bundle M on Z0 and a vector bundle D on Z0 of rank 2d which fit into

an exact sequence

0→O(D)→ΘZ0 →O(M)→ 0.

Since the degeneracy locus of a contact form has codimension one, a contact

structure on Z0 uniquely extends to that on Zreg. Thus we may say that a qusi-

contact structure on Z is a contact structure on Zreg. Let j : Z0 → Z be the

natural inclusion map. Then we have an exact sequence

0→ j∗O(D)→ΘZ → j∗O(M)→ 0.

Note that the last map is surjective by Proposition 4.2.1.

†We do not assume that j∗M is a line bundle on Z. As we will define in Section 4.4, if j∗M
is a line bundle on Z, we call it a contact structure on Z.
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Let us return to the original situation. The complement of P(X)0 in P(X)

has at least codimension 2. Let us introduce a quasi-contact structure on P(X).

This is a slight modification of the argument in [LeB, p. 425], where the case

l = 1 is treated. Recall that we have a C∗-bundle p|X0 :X0 →P(X)0 and it is

identified with π : (L−1)× →P(X)0.

For θ ∈H0(P(X)0,Ω1
P(X)0(L

⊗l)), the pullback π∗(θ) is regarded as an ele-

ment of H0((L−1)×,Ω1
(L−1)×) by the trivialization π∗(L⊗l)→O(L−1)× .

By the assumption we have a symplectic 2-form ω on (L−1)× with weight l.

As a C∗-bundle, there is a natural C∗-action on (L−1)×. Let ζ be the vec-

tor field which generates the C∗-action. Then one can write ω(ζ, ·) = π∗θ with

an element θ ∈ H0(P(X)0,Ω1
P(X)0(L

⊗l)). This θ gives a contact structure on

P(X)0 with contact line bundle L⊗l. Conversely, if a contact structure θ ∈
H0(P(X)0,Ω1

P(X)0(L
⊗l)) is given to P(X)0, then dπ∗(θ) becomes a holomorphic

symplectic 2-form on (L−1)× with weight l. Note that we need the assumption

l �= 0 to get the correspondence between symplectic structures of weight l and

contact structures.

4.4. Contact orbifold structure and Jacobi orbifold structure
In Section 4.1 we imposed a rather technical assumption; namely, P(X)∩Sing(V )

has at least codimension 2 in P(X).

In the remainder of this section we do not assume this.

In a general case a possible structure would be a contact orbifold structure.

Let us consider a normal variety Z and a line bundle M on Z. A contact structure

on Z (with contact line bundle M ) is a contact structure on the Zariski open set

Zreg (as a complex manifold) with contact line bundle M |Zreg . A contact form

θ is regarded as a section of Hom(ΘZ ,M). A contact orbifold Y is a normal

variety with the following data: Y =
⋃
Uα is an open covering of Y and, for each

α, there is a finite Galois covering ϕα : Ũα → Uα such that the (possibly singular

but normal) variety Ũα admits a line bundle Mα and a contact form θα with

contact line bundle Mα. These data should satisfy a compatibility condition. If

Uα ∩Uβ �= ∅, then we form a diagram

Ũα
pα← Ũα ×Y Ũβ

pβ→ Ũβ .

Let (Ũα×Y Ũβ)
n be the normalization of Ũα×Y Ũβ . Denote by pnα the composite

of the normalization map and pα. We then assume that pnα and pnβ are both étale.

Moreover, as the compatibility condition we assume that there is an isomorphism

of line bundles

gβ,α : (pnα)
∗Mα → (pnβ)

∗Mβ

and that

(pnα)
∗(θα) = (pnβ)

∗(θβ).

Finally, for any α, β, and γ with Uα ∩Uβ ∩Uγ �= ∅, we should have

gα,β ◦ gβ,γ ◦ gγ,α = id
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on

(Ũα ×Y Ũβ ×Y Ũγ)
n.

In other words, {Mα} is an orbifold line bundle M on Y orb, and {θα} is a global

section of Hom(ΘY orb ,M).

The most natural structure would be actually a Jacobi structure (see [Li]).

This is very similar to the fact that a Poisson structure would be more natural

than a symplectic structure in the singular case. If a normal variety has a contact

structure in the sense above, then we have a pairing map

O(M)|Zreg ×O(M)|Zreg →O(M)|Zreg

defined by (u, v)→ θ([s(u), s(v)]). Here s is the map defined in Proposition 4.2.1

in Section 6. By the normality this pairing uniquely extends to

{ , } :O(M)×O(M)→O(M).

The bracket satisfies the Jacobi identity, but it is no more a biderivation. We call

it a Jacobi structure on Z. The Jacobi structure is generalized to the orbifold

version in a similar way as the contact orbifold structure is defined. A contact

orbifold structure determines a Jacobi orbifold structure.

THEOREM 4.4.1

The projectivized cone P(X) has a contact orbifold structure.

Proof

First note that P(a0, . . . , an) has a natural orbifold structure. In fact, let Cn+1−
{0}→P(a0, . . . , an) be the quotient map of the C∗-action (x0, . . . , xn)→ (ta0x0,

. . . , tanxn). Restrict this map to Wi := {xi = 1} ⊂ Cn+1. Then one has a map

Wi → P(a0, . . . , an) for each i, and these maps give an orbifold structure of

P(a0, . . . , an). We show that P(a0, . . . , an) admits an orbifold line bundle

OP(a0,...,an)(1). There is a finite Galois cover

P(a0, . . . , ai−1,1, ai+1, . . . , an)→P(a0, . . . , an)

defined by

(x0, . . . , xn)→ (x0, . . . , x
ai

i , . . . , xn)

for each i. One can identify Wi with the open set of P(a0, . . . , ai−1,1, ai+1, . . . , an)

defined by xi �= 0. Let

L̃i :=OP(a0,...,ai−1,1,ai+1,...,an)(1)|Wi .

Then {L̃i}0≤i≤n gives an orbifold line bundle on P(a0, . . . , an). In fact, the

(Z/a0Z× · · · ×Z/anZ)-Galois cover

P(1, . . . ,1)→P(a0, . . . , an)

is a smooth global cover (cf. [Mu, Section 2]) in the sense that it is factorized as

P(1, . . . ,1)→P(a0, . . . , ai−1,1, ai+1, . . . , an)→P(a0, . . . , an)
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for any i. The tautological line bundle OP(1,...,1)(1) has a G := (Z/a0Z× · · · ×
Z/anZ) linearization defined by xi → ζmi

i xi (0≤ i≤ n) for a primitive aith root ζi
of unity and mi ∈Z/aiZ. Then OP(1,...,1)(1)|xi 	=0 with the action of Gi :=Z/aiZ

is the pullback of L̃i. This is equivalent to giving an orbifold line bundle of

P(a0, . . . , an) (cf. [Mu, Section 2]). The merit of introducing the orbifold structure

is the following. Let Σ⊂P(a0, . . . , an) be the union
† of the ramification loci of the

coverings Wi → P(a0, . . . , an). Each fiber of the projection map Cn+1 − {0} →
P(a0, . . . , an) is isomorphic to C∗, but the fibers over the points contained in

Σ are multiple fibers. However, if we take the normalization (Wi ×P(a0,...,an)

(Cn+1 − {0}))n of the fiber product of Wi and Cn+1 − {0} over P(a0, . . . , an),

then the first projection(
Wi ×P(a0,...,an)

(
Cn+1 − {0}

))n →Wi

is a C∗-bundle and the second projection(
Wi ×P(a0,...,an)

(
Cn+1 − {0}

))n →Cn+1 − {0}

is an étale map.

Put Ui := Wi ∩X and Li := L̃i|Ui . Then an orbifold structure of P(X) is

given by {Ui →P(X)}. Moreover, {Li} gives an orbifold line bundle L on P(X).

The orbifold line bundle L is called the tautological line bundle. Let M be the

orbifold line bundle on P(X) defined by L⊗l.

Let Xi be the normalization of the fiber product Ui ×P(X) (X − {0}). Then
the first projection Xi → Ui is a C∗-bundle, and the second projection Xi →
X−{0} is an étale map. Let ωi be the pullback of ω by the map (Xi)reg →Xreg.

As in Section 4.3, ωi defines a contact structure on (Ui)reg with contact line

bundle L⊗l
i |(Ui)reg . These contact structures are glued together to give a contact

orbifold structure on P(X) with contact line bundle M. �

We shall briefly recall the cohomology for an orbifold. Let πi : Ui → P(X) be

the orbifold charts with Gi =Gal(πi), and let pni,j : (Ui ×P(X) Uj)
n → Ui be the

projection maps from the normalization of Ui×P(X)Uj to Ui. An orbifold OP(X)-

module F is a collection {Fi} of OUi -modules glued together by

gi,j : (p
n
i,j)

∗Fi
∼= (pnj,i)

∗Fj

compatible on the triple overlaps. If we put, in particular, j = i, then this means

that Fi has a Gi-linearization. The sheaves (πi)
Gi∗ Fi of Gi-invariant sections

of Fi are glued together to give a sheaf F̄ on P(X). The space Γ(P(X), F )

of global sections of F is nothing but Γ(P(X), F̄ ). We define Hp(P(X), F ) :=

Hp(P(X), F̄ ). When Fi are all invertible sheaves, F is called an orbifold line

bundle. Even if F is an orbifold line bundle, F̄ is not necessarily a line bundle.

Let Pic(P(X)orb) be the group of isomorphism classes of orbifold line bundles on

†If we identify P(a0, . . . , an) with the central fiber of the weighted blowup V →Cn+1, then

Σ coincides with Sing(V ).
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P(X). In general Pic(P(X)orb) is not isomorphic to H1(P(X),O∗
P(X)). In order

to capture the orbifold line bundles we consider the Čech complex∏
i

Γ(Ui,O
∗
Ui
)→

∏
i,j

Γ(Ui,j ,O
∗
Ui,j

)→
∏
i,j,k

Γ(Ui,j,k,O
∗
Ui,j,k

)→ · · · .

We denote by Hp
orb(U ,O∗

P(X)) the pth cohomology of this complex. The inductive

limit limHp
orb(U ,O∗

P(X)) for the admissible orbifold charts is the pth Čech orbifold

cohomology Hp
orb(P(X),O∗

P(X)) of O
∗
P(X). Then

Pic
(
P(X)orb

)∼=H1
orb

(
P(X),O∗

P(X)

)
.

As in the proof of Theorem 4.4.1, let L be the tautological line bundle on P(X).

We put

R :=
⊕
n≥0

H0
(
P(X),L⊗n

)
.

Then X = Spec(R). If we pull back the projection map p : X − {0} → P(X)

by Ui →P(X) and take the normalization, then we have a C∗-bundle Xi → Ui

and the induced map Xi →X − {0} is étale. The contact structure θi induces

a symplectic structure ωi of weight l on Xi. These symplectic structures {ωi}
descend to a symplectic structure ω of weight l on X . In this way, (X,ω) is

recovered from the contact structure (M, θ).

EXAMPLE 4.4.2

(i) Let us consider a du Val singularity X of type An, Dn (n≥ 4), or En (n=

6,7,8) with a symplectic structure ω of weight 2. By Theorem 4.4.1, P(X) has

a contact orbifold structure. Different types of du Val singularities determine

mutually different contact orbifold structures. But the underlying variety P(X)

are all P1. In other words, P1 has infinitely many different contact orbifold

structures.

(ii) The odd-dimensional projective space P2n+1 has a contact structure

with a contact line bundle M = O(2). We have two choices of the tautological

line bundle L: L = O(1) or L = O(2). The weights l are then, respectively, 2

and 1. The corresponding symplectic variety (X,ω) is isomorphic to C2n+2 with

the standard symplectic structure in the first case. In the second case (X,ω) is

isomorphic to C2n+2/{+1,−1} with a symplectic 2-form ω0. Here −1 acts on

C2n+2 by xi →−xi (1≤ i≤ 2n+2), and ω0 is the symplectic structure induced

from the standard symplectic form dx1 ∧ dx2 + · · ·+ dx2n+1 ∧ dx2n+2.

5. Rigidity of contact orbifold structures

5.1.
Let (X,ω) be a pair of a normal affine variety X of dimension 2d with a good

C∗-action and an algebraic symplectic 2-form ω on Xreg with positive weight l.
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In Section 4 we have attached a contact orbifold structure (M, θ) to the projec-

tivized cone P(X). In this section we consider the deformation of such a contact

orbifold.

Let (Y,{Uα},{Mα},{θα}) be a contact orbifold, and let S be a punctured

space with 0 ∈ S. A flat deformation of (Y,{Uα},{Mα},{θα}) is a flat surjective

map Y → S together with the covering charts Φα : Ũα →Y such that

(i) Y is a flat deformation of Y ;

(ii) for each α, Φα is a Galois covering with the Galois group Gα, which is

a flat deformation of ϕα : Ũα → Y over S so that the maps

(Ũα ×Y Ũβ)
n → Ũα

are étale;

(iii) there are line bundles Mα on Ũα that restrict to give Mα on Ũα, and

{Mα} are glued together to give an orbifold line bundle of Y ; and finally,

(iv) all contact structures θα on Ũα extend compatibly to the contact struc-

tures Θα on Ũα with the contact line bundles Mα.

Of course, one can start from a different admissible orbifold charts {U ′
α} of Y

and consider its flat deformation. A flat deformation of the contact orbifold struc-

ture (Y,M, θ) is exactly an equivalence classe of that of (Y,{Ui},{Mα},{θα}).
Now let us return to the contact orbifold (P(X),M, θ).

PROPOSITION 5.2

Assume that X has only canonical singularities. Then the contact orbifold struc-

ture (P(X),M, θ) is rigid under a small flat deformation.

This is a counterpart of Proposition 3.5 in contact geometry.

Proof

Recall the construction of the contact orbifold structure (cf. proof of Theo-

rem 4.4.1). With the same notation as in the proof of Theorem 4.4.1, the map

Xi →X − {0} is an étale map. Since X has canonical singularities, Xi also has

canonical singularities. Since Xi is a C∗-bundle over Ui, we see that Ui has canon-

ical singularities; hence all orbifold charts of P(X) have canonical singularities.

Let (Y,M1, θ1) be an infinitesimal deformation of (P(X),M, θ) over S1 :=

SpecC[ε]. The orbifold line bundle L defines an element [L] of H1
orb(P(X),

O∗
P(X)). Note that there is an exact sequence

0→OP(X) →O∗
Y →O∗

P(X) → 1,

where the map OP(X) → O∗
Y is defined by f → 1 + ε · f . This exact sequence

yields the exact sequence

H1
orb

(
P(X),OP(X)

)
→H1

orb(Y,O
∗
Y )→H1

orb

(
P(X),O∗

P(X)

)
δ→H2

orb

(
P(X),OP(X)

)
.



Equivalence of symplectic singularities 507

Note that M= L⊗l. Since M extends to M1, one has δ([M]) = 0. This means

that l · δ([L]) = 0. As H2
orb(P(X),OP(X)) is a C-vector space, one has δ([L]) = 0.

Thus one can find an orbifold line bundle L1 on Y that is an extension of L. Then
l · [L1]− [M1] ∈H1

orb(Y,O
∗
Y ) is the image of an element η ∈H1

orb(P(X),OP(X))

by the map H1
orb(P(X),OP(X))→H1

orb(Y,O
∗
Y ). If we replace L1 by the orbifold

line bundle corresponding to [L1]− 1/l · η, then we may assume that L⊗l
1 =M1.

The exact sequences

0→ ε · L⊗n →L⊗n
1 →L⊗n → 0

yield the exact sequences

H0(Y,L⊗n
1 )→H0

(
P(X),L⊗n

)
→H1

(
P(X),L⊗n

)
.

By the next lemma, we see that the maps H0(Y,L⊗n
1 )→H0(P(X),L⊗n) are all

surjective for n≥ 0. We put

R :=
⊕
n≥0

H0(Y,L⊗n
1 ).

and define X := Spec(R). Then X is an infinitesimal deformation of X over S1.

Moreover, the contact structure (M1, θ1) of Y defines a symplectic structure ω1

on X . As a consequence, we have obtained an infinitesimal deformation (X , ω1)

of (X,ω). By the construction (X , ω1) has a C∗-action. If one regards S1 as a

C∗-space with trivial action, then the map X → S1 is C∗-equivariant. By Propo-

sition 3.5, (X , ω1) is a trivial deformation of (X,ω). In particular, (Y,M1, θ1) is

also a trivial deformation of (P(X),M, θ). �

LEMMA 5.2.1

We have

H1
(
P(X),L⊗n

)
= 0

for all n≥ 0.

Proof

As remarked above, each orbifold of P(X) has rational Gorenstein singularities.

Since P(X) is locally the quotient variety of an orbifold chart by a finite group,

the log variety (P(X),0) (with the zero boundary divisor) has log terminal sin-

gularities by [Kaw, Proposition 1.7].† Moreover, P(X) has a contact orbifold

structure; thus Korb
P(X) =M−d−1 if dimP(X) = 2d+1. Since M= L⊗l is ample,

Korb
P(X) is negative.

Let πi : Ui → P(X) be an orbifold chart. Then Ui → πi(Ui) is a (Z/aiZ)-

Galois cover. One can write KUi = π∗
i KP(X) + Bi with an effective divisor Bi

on Ui whose support coincides with the ramification divisor of πi. We have in

this way a collection {Bi} of (Z/aiZ)-stable Cartier divisors Bi on Ui such that

†The map π : V →X in Proposition 1.7 is assumed to be étale in codimension 1. But this

condition is not necessary to prove the “if” part.
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(pn)∗i,j(Bi) = (pn)∗j,i(Bj). Then O(B) := {O(Bi)} becomes an orbifold line bun-

dle, and by the definition of B, we have O(B) ∼= L⊗m for some m ≥ 0. Since

−Korb
P(X) and O(B) are ample and nef, respectively, theQ-Cartier divisor −KP(X)

is ample. Since L̄⊗n −KP(X) is ample and (P(X),0) has log terminal singulari-

ties, the lemma is a direct consequence of the Kawamata–Viehweg vanishing (see

[KMM, Theorem 1-2-5]). �

6. Equivalence up to a constant

Let (X,ω) be a pair of a normal affine variety X of dimension 2d with a good

C∗-action and an algebraic symplectic 2-form ω on Xreg with positive weight l.

An algebraic symplectic 2-form ω′ on Xreg is said to be equivalent to ω up to

constant when ω′ = λ · ω with some λ ∈C∗.

Let us consider the hypersurfaces

Xn :=
{
(a, b, x, y, z) ∈C5;a2x+ 2aby+ b2z + (xz − y2)n = 0

}
,

where n ≥ 2. These are central fibers of Slodowy slices to nilpotent orbits of

sp(2n) with Jordan type [2n− 2,12] (see [LNS]); hence they admit natural sym-

plectic 2-forms ωn of weight 2. One can also construct symplectic 2-forms ω′
n

of weight 2 on Xn by using representations of sl2 (cf. Section 0, Example 2(b)).

Moreover, X3 coincides with the central fiber of the Slodowy slice to the subsub-

regular nilpotent orbit of the Lie algebra of type G2 (see [LNS, Section 10]). Thus

X3 admits a symplectic 2-form σ3 induced from the Kostant–Kirillov form on g2.

By Theorem 3.1 we already know that they are equivalent up to a C∗-equivariant

automorphism. But we can say more.

PROPOSITION 6.1

Each hypersurface Xn admits a unique holomorphic symplectic 2-form of weight

2 up to a constant.

Proof

We put X :=Xn. In this case, as explained below, CodimP(X)(P(X)−P(X)0) =

2 and P(X)0 = P(X)reg. As in Section 4.3, ωn defines a contact form θ ∈
H0(P(X)reg,Ω

1
P(X)reg

⊗ L⊗2). It is enough to check that θ is a unique contact

structure with contact line bundle L⊗2.

First note that P(X) is not quasi-smooth; X has a du Val singularity of type

Dn+1 along {a = b = xz − y2 = 0}. When n = 2, we understand that D3 = A3.

The singular locus of P(X) is the disjoint union of two smooth rational curves

{a= b= xz − y2 = 0} ∪ {x= y = z = 0}
in P(2n− 1,2n− 1,2,2,2). Along the first component, P(X) has a D2n surface

singularity, and along the second component, it has quotient singularity of type

(1/(2n− 1))(1,1). Take points p1 and p2, respectively, from the first and second

components, and consider the complex analytic germs (P(X), pi). Then(
P(X), p1

) ∼= (C1,0)×D2n,
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(
P(X), p2

) ∼= (C1,0)× 1

2n− 1
(1,1).

Let Cl(P(X)) (resp., Cl(P(X), pi)) be the divisor class group of P(X) (resp.,

(P(X), pi)). One has an exact sequence

0→ Pic
(
P(X)

)
→Cl

(
P(X)

)
→

⊕
1≤i≤2

Cl
(
P(X), pi

)
.

By the same argument as in [Do, 3.2.5, 3.2.6], we see that Pic(P(X)) = Z ·
[OP(X)(4n − 2)]. Since Cl(P(X), pi) are finite abelian groups, we see that

Cl(P(X)) is a finitely generated abelian group; in particular it is discrete. Let φ

be an automorphism of P(X) contained in the neutral component Aut0(P(X))

of the automorphism group Aut(P(X)). Then φ∗([OP(X)(i)]) = [OP(X)(i)] for

all i. Note that there is an exact sequence

0→OP((2n−1)2,23)(i− 4n)→OP((2n−1)2,23)(i)→OP(X)(i)→ 0.

Applying these exact sequences, we have

H0
(
P
(
(2n− 1)2,23

)
,OP((2n−1)2,23)(i)

)∼=H0
(
P(X),OP(X)(i)

)
for i= 2,2n− 1. Note that

H0
(
P
(
(2n− 1)2,23

)
,OP((2n−1)2,23)(2)

)
=Cx⊕Cy⊕Cz

and

H0
(
P
(
(2n− 1)2,23

)
,OP((2n−1)2,23)(2n− 1)

)
=Ca⊕Cb.

The automorphism φ induces linear automorphisms of H0(P(X),OP(X)(i)) (i=

2,2n− 1) and hence those of Cx⊕Cy⊕Cz and Ca⊕Cb. Such linear automor-

phisms induce an automorphism of P(2n− 1,2n− 1,2,2,2). Thus φ extends to

an automorphism of the ambient space P(2n− 1,2n− 1,2,2,2).

We shall use Corollary 4.2.2 to prove the uniqueness of θ. Let j :P(X)reg →
P(X) be the inclusion map. As we noted in Section 4.3, the contact structure θ

induces an exact sequence

0→ j∗O(D)→ΘP(X) → j∗(L
⊗2)→ 0.

Since j∗(L
⊗2) =OP(X)(2), we see that h0(P(X), j∗(L

⊗2)) = 3.

On the other hand, h0(P(X),ΘP(X)) = 3. A geometric explanation of this

fact is the following. As we have seen above, all infinitesimal automorphisms of

P(X) come from those of the ambient space P(2n− 1,2n− 1,2,2,2). The set of

linear transformations of (x, y, z) preserving the quadratic form xz− y2 becomes

a 3-dimensional algebraic subgroup of GL(3,C). Fix such a linear transforma-

tion ϕ. Then there is a unique linear transformation of (a, b) (up to sign) which

sends the cubic form a2ϕ(x) + 2abϕ(y) + b2ϕ(z) to a2x+ 2aby + b2z. Since the

exact sequence attached to the contact structure always splits (as C-modules),

we conclude that h0(j∗O(D)) = 0. �
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Let O ⊂ g be a nilpotent adjoint orbit of a complex simple Lie algebra. Let Õ be

the normalization of the closure Ō. Since O admits a Kostant–Kirillov 2-form,

Õ has a holomorphic symplectic structure of weight 1.

PROPOSITION 6.2

Assume that Õ is a Richardson orbit with a Springer map π : T ∗(G/P )→ Õ for

some parabolic subgroup P of G. Then Õ has a unique symplectic structure of

weight 1 up to constant.

Proof

Let P := P(T ∗(G/P )) be the projectivized tangent bundle of G/P . Then π

induces a generically finite proper map π̄ : P → P(Ō), and the contact 1-form

θ ∈H0(P(O),Ω1
P(O) ⊗ OP(O)(1)) is pulled back (and is extended) to a contact

1-form

π̄∗θ ∈H0
(
P,Ω1

P ⊗OP(1)
)
.

We prove that this is a unique contact structure on P with contact line bundle

OP(1). Let

0→O(D)→ΘP
π̄∗θ→ OP(1)→ 0

be the corresponding exact sequence. Let p :P→G/P be the projection map of

the projective space bundle. Since p∗OP(1) = ΘG/P , we have

h0
(
P,OP(1)

)
= h0(G/P,ΘG/P ).

On the other hand, by the exact sequences

0→OP → p∗Ω1
G/P ⊗OP(1)→ΘP/(G/P ) → 0,

one has an exact sequence

0→H0(OP)→H0
(
Hom(ΘG/P ,ΘG/P )

)
→H0(ΘP/(G/P ))→H1(OP).

Since ΘG/P is a simple vector bundle (see [A-B]), we have H0(Hom(ΘG/P ,

ΘG/P )) ∼= C. As H1(OP) = 0, we see that H0(ΘP/(G/P )) = 0. By the exact

sequence

0→H0(ΘP/(G/P ))→H0(ΘP)→H0(p∗ΘG/P ),

it is clear that h0(ΘP) = h0(G/P,ΘG/P ). This implies that H0(P,O(D)) = 0. �

REMARK

Let O be a nilpotent orbit (where O is not necessarily a Richardson orbit).

Consider the contact structure on P(O):

0→O(D)→ΘP(O)
θ→OP(O)(1)→ 0.

Since O is a homogeneous space acted on by G, there is a natural map g →
H0(ΘP(O)). Then the composition map

θ|g : g→H0
(
OP(O)(1)

)
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is injective. The following is a proof. Let ω be the Kostant–Kirillov 2-form on O.

As in Section 4.3, let ζ be the vector field on O which generates the C∗-action.

Let π :O→P(O) be the projection map. By definition, π∗θ = ω(ζ, ·). For x ∈O,

we denote by x̄ ∈P(O) the corresponding point. Let us consider TxO as a linear

subspace of g. Then ζx = x by the definition. For v ∈ g, we have [x, v] ∈ TxO;

hence (
θ|g(v)

)
x̄
= ωx

(
x, [v,x]

)
.

One can write x= [ax, x] with some ax ∈ g. Let κ be the Killing form on g. By

the definition of the Kostant–Kirillov 2-form we have

ωx

(
x, [v,x]

)
= κ

(
x, [ax, v]

)
= κ

(
[x,ax], v

)
=−κ(x, v).

If v ∈ ker(θg), then κ(x, v) = 0 for all x ∈ O. Note that x is contained in the

cone Ō ⊂ g. Since T0Ō is invariant under the adjoint G-action and the adjoint

representation is irreducible, T0Ō = g. This means that, if x runs inside O, they

span g as a C-vector space. Since κ is nondegenerate, we conclude that v = 0.

Now we have the following.

PROBLEM

When does g coincide with H0(P(O),ΘP(O))?

When Omin is the minimal nilpotent orbit of g, P(Omin) is a flag varietyG/P with

a parabolic subgroup P . Let M :=G/P be a flag variety, where G is a connected

simple complex Lie group acting effectively on M . Then, by Onishchik (cf. [GO,

Theorem 4.10]), the neutral component Aut0(G/P ) is isomorphic to G except in

the following three cases:

(i) G= P Sp(2n) and P is the stabilizer subgroup of an isotropic flag of type

(1,2n− 2,1) in the vector space C2n acted by G;

(ii) G=G2 ⊂ SO(7) and M is a quadric 5-fold in P6.

(iii) G= SO(2n+ 1) and P is the stabilizer subgroup of an isotropic flag of

type (n,1, n) in C2n+1.

In (ii) and (iii), M =G/P is not realized as the projectivized cone P(Omin)

of the minimal nilpotent orbit Omin. But in the case (i), G/P = P(Omin) with

Omin ⊂ sp(2n). Thus we have proved the following.

PROPOSITION 6.3

Assume that Omin is the minimal nilpotent orbit of g. Then Õmin has a unique

symplectic structure of weight 1 up to constant except when g= sp(2n).

Note that the exceptional case corresponds to the quotient singularity C2n/Z2

by the action (z1, . . . , z2n)→ (−z1, . . . ,−z2n).
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7. Problems

Let (X,ω) be a pair of a normal affine variety X of dimension 2d with a good

C∗-action and an algebraic symplectic 2-form ω with positive weight l. Let us

call (X,ω) irreducible of weight l when ω is a unique symplectic structure of

weight l up to a constant.

PROBLEM 7.1

Does (X,ω) have symplectic singularities, or equivalently, canonical singularities?

PROBLEM 7.2

Is the fundamental group π1(Xreg) of the regular part of X finite?

When G := π1(Xreg) is finite, one can take a finite G-Galois covering π : Y →X

in such a way that the induced map π−1(Xreg)→Xreg is the universal covering

of Xreg. Let m be the order of G. Let C∗ ×X →X (t, x)→ φt(x) be the given

C∗-action on X . We consider the C∗-action on X defined as its mth power:

C∗ ×X →X(t, x)→ φtm(x).

Then Y has a C∗-action so that π is C∗-equivariant.

Recall here the Bogomolov splitting theorem for a compact Kähler manifold

X with c1 = 0. It states, in particular, that if X is a holomorphic symplec-

tic manifold with a finite fundamental group, then its universal cover X̃ splits

into the product of irreducible symplectic manifolds Xi (i= 1, . . . , r) such that

h0(Xi,Ω
2
Xi

) = 1.

The following is an analogue of the splitting theorem in affine symplectic

varieties with good C∗-actions.

PROBLEM 7.3

Is there a C∗-equivariant isomorphism of symplectic varieties

(Y,π∗ω)∼=
∏

1≤i≤k

(Yi, ωi)

where each (Yi, ωi) is irreducible of weight m · l?

For example, as an (X,ω), take the quotient singularity C2n/Z2 defined at the

end of Section 6, and take the symplectic form induced from ω̃ := dz1 ∧ dz2 +

· · ·+ dz2n−1 ∧ dz2n. Then (X,ω) is not irreducible, but

(C2n, ω̃)∼=
∏

1≤i≤n

(C2, dz2i−1 ∧ dz2i).
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