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Abstract We investigate the position of amenable subalgebras in arbitrary amalga-

mated free product vonNeumann algebrasM =M1 ∗B M2. Ourmain result states that,

under natural analytic assumptions, any amenable subalgebra of M that has a large

intersection with M1 is actually contained in M1. The proof does not rely on Popa’s

asymptotic orthogonality property but on the study of nonnormal conditional expecta-

tions.

Introduction

In his breakthrough article, Popa [13] introduced a powerful method based on

asymptotic orthogonality in the ultraproduct framework to prove maximal

amenability results in tracial von Neumann algebras. Notably, Popa [13] showed

that the generator masa in any free group factor is maximal amenable, thus

solving an open problem raised by Kadison.

The question of proving maximal amenability results in von Neumann alge-

bras has attracted a lot of interest over the last few years. Let us single out

two recent results related to the present work. Houdayer and Ueda [8] com-

pletely settled the question of the maximal amenability of the inclusion M1 ⊂M

in arbitrary free product von Neumann algebras (M,ϕ) = (M1, ϕ1) ∗ (M2, ϕ2).

Using a method based on the study of central states, Boutonnet and Carderi [2]

proved maximal amenability results in (tracial) von Neumann algebras arising

from amalgamated free product groups, among other things. We refer the reader

to [2], [8], and the references therein for other recent maximal amenability results.

In this article, we use yet another method, inspired by [2], based on the study

of nonnormal conditional expectations to prove maximal amenability results in

arbitrary amalgamated free product von Neumann algebras. We say that an

inclusion P ⊂ N of von Neumann algebras is with expectation if there exists a

faithful normal conditional expectation EP : N → P . We refer to Section 2 for

Popa’s intertwining-by-bimodules in arbitrary von Neumann algebras.
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MAIN THEOREM

For each i ∈ {1,2}, let B ⊂Mi be any inclusion of arbitrary σ-finite von Neu-

mann algebras with expectation. Denote by M = M1 ∗B M2 the corresponding

amalgamated free product von Neumann algebra. Let Q ⊂ M be any von Neu-

mann subalgebra with expectation satisfying the following two conditions:

(i) Q is amenable relative to M1 inside M (e.g., Q is amenable).

(ii) Q∩M1 ⊂M1 is with expectation and Q∩M1 �M1 B.

Then Q⊂M1.

We point out that the idea of [2] was also adapted in [10] to prove the above

theorem in the context of tracial free products. Our strategy follows a different

path. It is valid in the nontracial setting and allows the presence of arbitrary

amalgams.

Our main theorem completely settles the question of the maximal amenabil-

ity of the inclusion M1 ⊂M in arbitrary amalgamated free product von Neumann

algebras M = M1 ∗B M2. Our result strengthens and recovers [8, Corollary B]

(with a new and much simpler proof). It also generalizes a result obtained by

Leary [9] for certain tracial amalgamated free products. A corollary to our main

theorem is that if B is of type I and M1 has no type I direct summand or if B is

semifinite and M1 is of type III, then M1 is maximal amenable (with expectation)

inside M whenever M1 is amenable.

Let us give a few comments on the proof of our main theorem. If one tries to

use Popa’s [13] central sequence approach, a key fact one has to show is that Q-

central sequences in M have no mass on the closed subspace K⊂ L2(M) spanned

by all the reduced words in M starting with a letter in M2 �B. In the setting

of free products, this fact is proven by making K almost orthogonal to unKu∗
n,

where un ∈ U(Q ∩ M1) is a well-chosen sequence of unitaries witnessing that

Q∩M1 is diffuse. In the presence of the nontrivial amalgam B, this is no longer

possible in general, even with the stronger assumption that Q ∩M1 �M1 B. So

Popa’s strategy via central sequences cannot work for arbitrary amalgamated

free products.

To overcome this difficulty, we employ the central state formalism from [2],

which is better suited for analytic arguments. In the tracial setting, our proof

boils down to showing that any Q-central state on B(L2(M)) vanishes on the

orthogonal projection PK : L2(M) → K (where K is as above). To do this, we

use a key vanishing-type result for central states due to Ozawa and Popa [12,

Lemma 3.3], whose proof relies on C∗-algebraic techniques.

To run the argument for arbitrary amalgamated free products, we work with

conditional expectations Φ : B(L2(M)) → Q rather than Q-central states. We

prove a characterization of Popa’s (see [14], [15]) intertwining-by-bimodules for

arbitrary von Neumann algebras in terms of bimodular completely positive maps

(see Theorem 2 below, whose proof relies on a combination of results from [5]–[7],

[11]).
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1. Preliminaries

For any von Neumann algebra M , we denote by (M,L2(M), J,L2(M)+) its stan-

dard form, by Z(M) its center, and by U(M) its group of unitaries. The standard

Hilbert space L2(M) has a natural structure of an M -M -bimodule, and we sim-

ply write xξy := xJy∗Jξ for all ξ ∈ L2(M) and all x, y ∈ M . For any faithful

state ϕ ∈M∗, denote by ξϕ ∈ L2(M)+ the unique canonical vector implementing

ϕ ∈M∗. Write ‖x‖ϕ = ‖xξϕ‖L2(M) for every x ∈M . For any projection p ∈M ,

denote by zM (p) ∈ Z(M) its central support in M .

Amalgamated free product von Neumann algebras
For each i ∈ {1,2}, let B ⊂Mi be any inclusion of σ-finite von Neumann algebras

with faithful normal conditional expectation Ei :Mi →B. The amalgamated free

product (M,E) = (M1,E1)∗B (M2,E2) is a pair of von Neumann algebras M gen-

erated by M1 and M2 and a faithful normal conditional expectation E :M →B

such that M1, M2 are freely independent with respect to E:

E(x1 · · ·xn) = 0 whenever xj ∈M◦
ij and i1 	= · · · 	= in.

Here and in what follows, we denote by M◦
i := ker(Ei). We refer to the product

x1 · · ·xn, where xj ∈M◦
ij

and i1 	= · · · 	= in, as a reduced word in M◦
i1
· · ·M◦

in
of

length n≥ 1. The linear span of B and of all the reduced words in M◦
i1
· · ·M◦

in
,

where n≥ 1 and i1 	= · · · 	= in, forms a unital σ-strongly dense ∗-subalgebra of M .

We call the resulting M the amalgamated free product von Neumann algebra of

(M1,E1) and (M2,E2).

Let ϕ ∈B∗ be any faithful state. Then for all t ∈R, we have σϕ◦E
t = σϕ◦E1

t ∗B
σϕ◦E2

t (see [17, Theorem 2.6]). By [16, Theorem IX.4.2], for every i ∈ {1,2},
there exists a unique (ϕ ◦ E)-preserving conditional expectation EMi :M →Mi.

Moreover, we have EMi(x1 · · ·xn) = 0 for all the reduced words x1 · · ·xn that

contain at least one letter from M◦
j for some j 	= i (see, e.g., [19, Lemma 2.1]).

We will denote by M �Mi := ker(EMi). For more information on amalgamated

free product von Neumann algebras, we refer the reader to [17] and [20].

Relative amenability
Let M be any von Neumann algebra, and let P,Q⊂M be any von Neumann sub-

algebras with expectation. Denote by 〈M,Q〉 := (JQJ)′ ⊂B(L2(M)) the Jones

basic construction of the inclusion Q⊂M . Following [11, Theorem 2.1], we say

that P is amenable relative to Q inside M if there exists a conditional expecta-

tion Φ : 〈M,Q〉→ P such that Φ|M is faithful and normal.

Observe that if P ⊂M is with expectation and amenable (and hence injec-

tive), then by Arveson’s extension theorem, P is amenable relative to any von

Neumann subalgebra with expectation Q⊂M inside M .
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2. Intertwining by bimodules for arbitrary von Neumann algebras

Popa introduced his powerful intertwining by bimodules in the case when the

ambient von Neumann algebra is tracial (see [14], [15]). This intertwining by

bimodules has recently been adapted to the type III setting by Houdayer and

Isono [7].

We will use the following notation throughout this section. Let M be any

σ-finite von Neumann algebra, and let A ⊂ 1AM1A and B ⊂ 1BM1B be any

von Neumann subalgebras with expectation. Let (M,L2(M), J,L2(M)+) be the

standard form of M . Define B̃ := B ⊕ C1⊥B , and observe that B̃ ⊂ M is with

expectation. Fix a faithful normal conditional expectation EB̃ :M → B̃. Regard

L2(B̃)⊂ L2(M) as a closed subspace via the mapping L2(B̃)+ → L2(M)+ : ξϕ �→
ξϕ◦E

B̃
. The Jones projection eB̃ : L2(M)→ L2(B̃) satisfies

J1BJeB̃ = 1BeB̃ = eB̃1B = eB̃J1BJ.

We will denote by 〈M,B̃〉 := (JB̃J)′ ⊂B(L2(M)) the Jones basic construction

and by T : 〈M,B̃〉+ → M̂+ the canonical faithful normal semifinite operator-

valued weight which satisfies T(eB̃) = 1. We refer the reader to [5] and [6] for

more information on operator-valued weights.

DEFINITION 1 ([7, Definition 4.1])

We say that A embeds with expectation into B inside M and write A�M B if

there exist projections e ∈ A and f ∈ B, a nonzero partial isometry v ∈ eMf ,

and a unital normal ∗-homomorphism θ : eAe → fBf such that the inclusion

θ(eAe)⊂ fBf is with expectation and av = vθ(a) for all a ∈ eAe.

We now provide a criterion for A �M B in terms of (normal) bimodular com-

pletely positive maps that generalizes part of [7, Theorem 4.3]. Note that there

is no restriction on the type of any of the algebras involved.

THEOREM 2

Keep the same notation as above. The following assertions are equivalent.

(i) A�M B.

(ii) There exists a nonzero element d ∈ A′ ∩ (1A〈M,B̃〉1A)+ such that

d1AJ1BJ = d and T(d) ∈M+.

(iii) There exists a normal A-A-bimodular completely positive map Φ : 〈M,

B̃〉 →A such that Φ(1AJ1BJ) 	= 0.

(iv) There exists an A-A-bimodular completely positive map Ψ : 〈M,B̃〉 →A

such that Ψ|M is normal and Ψ|1AMeBM1A 	= 0, where eB := eB̃J1BJ .

Proof

(i) ⇒ (ii) Let e, f, v, θ be as in Definition 1, witnessing that A�M B. Define the

element c := veB̃v
∗ 	= 0. Then c ∈ (eAe)′ ∩ (e〈M,B̃〉e)+, and T(c) = vT(eB̃)v

∗ =
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vv∗ ∈ M+. Moreover, since v = vf = v1B , we have J1BJc = vJ1BJeB̃v
∗ =

v1BeB̃v
∗ = c.

Next, choose a countable family of partial isometries (wn)n∈N in A such that

w∗
nwn ≤ e for every n ∈ N and

∑
n∈Nwnw

∗
n = zA(e), where zA(e) denotes the

central support of e in A. We may assume without loss of generality that w1 = e.

Put d :=
∑

n∈Nwncw
∗
n =

∑
n∈NwnveB̃v

∗w∗
n. A simple calculation shows that

d ∈A′∩(1A〈M,B̃〉1A)+, d≥ c 	= 0, and T(d) =
∑

n∈Nwnvv
∗w∗

n ∈M+. Moreover,

dJ1BJ = d, since the same holds for c, and each wn commutes with J1BJ .

(ii) ⇒ (i) We may choose a suitable nonzero spectral projection p of d

such that p ∈A′ ∩ 1A〈M,B̃〉1A, T(p) ∈M+, and p1A J1BJ = p. By applying [7,

Lemma 2.2], there exists a nonzero projection q ∈ Z(A)p such that the inclu-

sion Aq ⊂ q〈M,B̃〉q is with expectation (see also [6, Theorem 6.6(iv)]). Put

eB := eB̃J1BJ and r := q ∨ eB ∈ 〈M,B̃〉. Since q and eB are σ-finite projec-

tions in 〈M,B̃〉, so is r in 〈M,B̃〉, and hence r〈M,B̃〉r is a σ-finite von Neumann

algebra. We then obviously have q〈M,B̃〉q �r〈M,B̃〉r r〈M,B̃〉r. Since the central

support of eB in 〈M,B̃〉 is equal to J1BJ and since q J1BJ = q, the central

support of eB in r〈M,B̃〉r is equal to r. Since eB 〈M,B̃〉 eB = BeB , we have

q〈M,B̃〉q �r〈M,B̃〉r BeB by [7, Remark 4.5]. Since the inclusion Aq ⊂ q〈M,B̃〉q is

with expectation, we finally have Aq �r〈M,B̃〉r BeB by [7, Lemma 4.8].

Then there exist projections e ∈ A and f ∈ B, a nonzero partial isometry

V ∈ eq 〈M,B̃〉feB , and a unital normal ∗-homomorphism θ : eAe → fBf such

that the unital inclusion θ(eAe) ⊂ fBf is with expectation and aV = V θ(a)

for all a ∈ A. (Observe that the ∗-homomorphism fBf → fBfeB : y �→ yeB is

injective.) Thus, we have θ(a)V ∗ = V ∗a for all a ∈ A. We now follow the lines

of the proof of [7, Theorem 4.3(6)⇒ 4.3(1)] and use the same notation. Since

(V ∗)∗V ∗ ≤ q and T(q) ∈M , we have V ∗ ∈ nT. Since eBV
∗ = V ∗ and eB ∈ nT, we

also have that V ∗ ∈mT. We may apply T to the equation θ(a)V ∗ = V ∗a, and we

obtain that θ(a)T(V ∗) = T(V ∗)a for all a ∈A. Since V ∗ = eBV
∗ = eBT(eBV

∗) =

eBT(V
∗) by [7, Proposition 2.5] and since V ∗ 	= 0, we have T(V ∗) 	= 0. Finally,

[7, Remark 4.2(1)] shows that A�M B.

(ii) ⇒ (iii) The mapping Φ : 〈M,B̃〉+ →A+ : x �→ EA(T(d
1/2xd1/2)) extends

to a well-defined normal A-A-bimodular completely positive map Φ : 〈M,B̃〉→A

such that Φ(1AJ1BJ) = EA(T(d)) 	= 0 (see [5, Lemma 4.5]).

(iii) ⇒ (ii) Define the nonzero normal bounded operator-valued weight S :

1A〈M,B̃〉1A →A : T �→Φ(T J1BJ), and denote by p ∈A′ ∩ 1A〈M,B̃〉1A the sup-

port projection of S. Denote by z ∈ Z(A) the unique central projection such

that Az⊥ = ker(A→Ap : a �→ ap). Observe that zp= p and the ∗-homomorphism

Az →Ap : az �→ azp is injective. The mapping Sp : p〈M,B̃〉p→Ap : x �→ S(x)p is

a faithful normal bounded operator-valued weight. Likewise, the mapping Tp :

p〈M,B̃〉p→ Ap : x �→ EA(T(x))p is a faithful normal semifinite operator-valued

weight. By [6, Theorem 6.6(ii)], Tp is still semifinite on p(A′ ∩ 1A〈M,B̃〉1A)p,
and hence there exists a nonzero element c ∈ p(A′ ∩ 1A〈M,B̃〉1A)p such that

EA(T(c))p = Tp(c) ∈ (Ap)+. This implies that EA(T(c)) = EA(T(cz)) =
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EA(T(c))z ∈ A+. Thus, there exists a nonzero element d ∈ A′ ∩ (1A〈M,B̃〉1A)+
such that T(d) ∈M+.

(iii) ⇒ (iv) This implication is obvious.

(iv) ⇒ (iii) Put eB := eB̃J1BJ = eB̃1B . Denote by Λ the set of triplets

(ε,F ,G), where 0< ε< 1, F ⊂C∗(MeBM) is a nonempty finite subset such that

F =F∗, and G ⊂M is a nonempty finite subset. Define the order relation ≤ on

Λ by

(ε1,F1,G1)≤ (ε2,F2,G2) if and only if ε2 ≤ ε1, F1 ⊂F2, G1 ⊂ G2.

Then (Λ,≤) is a directed set. Following the lines of the proof of [12, Lemma 3.3],

since M lies in the multiplier algebra of C∗(MeBM) inside B(L2(M)), and

using [3, Proposition I.9.16], for every λ = (ε,F ,G) ∈ Λ, we may choose gλ ∈
C∗(MeBM) such that 0 ≤ gλ ≤ 1, ‖gλx − x‖ < ε for every x ∈ F , and ‖gλy −
ygλ‖< ε for every y ∈ G. Since span(MeBM) is dense in C∗(MeBM), for every

λ = (ε,F ,G) ∈ Λ, we may find an element hλ ∈ span(MeBM) such that ‖hλ −
g
1/2
λ ‖ < ε and ‖hλ‖ ≤ 1. For every λ = (ε,F ,G) ∈ Λ, the element fλ := h∗

λhλ

belongs to span(MeBM) and satisfies 0≤ fλ ≤ 1 and

‖fλ − gλ‖ ≤
∥∥h∗

λhλ − h∗
λg

1/2
λ ‖+ ‖h∗

λg
1/2
λ − gλ

∥∥≤ 2ε.

In particular, we have that limλ ‖fλx − x‖ = 0 for every x ∈ C∗(MeBM) and

limλ ‖fλy− yfλ‖= 0 for every y ∈M .

Define the completely positive map Φλ : 〈M,B̃〉 → A : T �→ Ψ(fλTfλ), and

denote by Φ a pointwise σ-weak limit of (Φλ)λ∈Λ. Namely, fix a cofinal ultrafilter

U on the directed set Λ, and define Φ(T ) = σ-weak limλ→U Φλ(T ) for every T ∈
〈M,B̃〉. From the properties of (fλ), we see that Φ|C∗(MeBM) =Ψ|C∗(MeBM) and

Φ is an A-A-bimodular completely positive map. Moreover,

Φ|1AJ1BJ 1AMeBM1A =Φ|1AMeBM1A =Ψ|1AMeBM1A 	= 0.

Using the multiplicative domain of Φ, we have that Φ(1AJ1BJ) 	= 0. Our task is

now to show that Φ is normal.

First, we claim that Φλ is normal for every λ ∈ Λ. Indeed, put fλ =∑k
i=1 xieByi for some x1, . . . , xn, y1, . . . , yn ∈M . For every T ∈ (1A〈M,B̃〉1A)+,

since [EB̃(x
∗
i Txj)]

k
i,j=1 ∈ Mk(B̃)+ commutes with diag(eB , . . . , eB) =

diag(eB̃J1BJ, . . . , eB̃J1BJ), we have

fλTfλ = f∗
λTfλ =

k∑
i,j=1

y∗i EB̃(x
∗
i Txj)eByj ≤

k∑
i,j=1

y∗i EB̃

(
(xi1B)

∗ T (xj1B)
)
yj .

Since Φ is completely positive, we have

Φλ(T ) = Ψ(fλTfλ)≤Ψ|M
( k∑
i,j=1

y∗i EB̃

(
(xi1B)

∗ T (xj1B)
)
yj

)
.

Since Ψ|M is normal, this implies that Φλ is normal for every λ ∈ Λ.
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In order to deduce that Φ is normal, take ϕ ∈ (A∗)+. Since Φ and Ψ coincide

on C∗(MeBM) and since fλ ∈ span(MeBM) and 0≤ fλ ≤ 1, we have

(ϕ ◦Φ)(1)≥ lim
λ→U

(ϕ ◦Φ)(fλ) = lim
λ→U

(ϕ ◦Ψ)(fλ)≥ lim
λ→U

(ϕ ◦Ψ)(f2
λ) = (ϕ ◦Φ)(1).

The Cauchy–Schwarz inequality implies that

lim
λ→U

∥∥ϕ ◦Φ− (ϕ ◦Φ)(fλ · fλ)
∥∥ ≤ lim

λ→U
2
∣∣(ϕ ◦Φ)

(
(1− fλ)

2
)∣∣1/2

≤ lim
λ→U

2
∣∣(ϕ ◦Φ)(1− fλ)

∣∣1/2 = 0.

For every λ ∈ Λ and every T ∈ 〈M,B̃〉, we have fλTfλ ∈ span(MeBM), and

hence Φ(fλ · fλ) = Ψ(fλ · fλ) = Φλ. We get that limλ→U ‖ϕ ◦ Φ− ϕ ◦ Φλ‖ = 0.

Since ϕ ◦Φλ is normal for every λ ∈ Λ, it follows that ϕ ◦Φ is normal. Since this

holds true for every ϕ ∈ (A∗)+, we obtain that Φ is normal. �

3. Proof of the main theorem

Throughout this section, we keep the same notation as in the statement of the

main theorem. Write (M,E) = (M1,E1) ∗B (M2,E2) for the amalgamated free

product von Neumann algebra. Fix a faithful state ϕ ∈M∗ such that ϕ= ϕ ◦E.
Denote by K the closure in L2(M) of the linear span of all the elements of

the form x1 · · ·xnξϕ, where n ≥ 1 and x1 · · ·xn ∈M is a reduced word starting

with a letter x1 ∈M◦
2 . By using [17, Section 2], K is naturally endowed with a

structure of a B-M1-bimodule, and as M1-M1-bimodules, we have the following

isomorphism:

L2(M)� L2(M1)∼=L2(M1)⊗B K.

We will identify L2(M)� L2(M1) with L2(M1)⊗B K and K with L2(B)⊗B K,

and we will write PK : L2(M)→K for the orthogonal projection. Observe that

PK ∈ 〈M,M1〉, because K is invariant under the right action of M1 on L2(M).

LEMMA 3

Let Θ : 〈M,M1〉 →Q∩M1 be any conditional expectation such that Θ|M is nor-

mal. Then Θ(uPKu
∗) = 0 for every u ∈ U(M1).

Proof

Denote by (M1,L
2(M1), J

M1 ,L2(M1)+) the standard form of M1. Since 〈M1,B〉
= (JM1BJM1)′∩B(L2(M1)), the Hilbert space L2(M1) is a 〈M1,B〉-B-bimodule.

Thus, the Hilbert space L2(M)� L2(M1) = L2(M1)⊗B K is naturally endowed

with a structure of a 〈M1,B〉-M1-bimodule. We denote by π0 : 〈M1,B〉 →
B(L2(M)�L2(M1)) the unital faithful normal ∗-representation arising from the

left action of 〈M1,B〉 on L2(M)� L2(M1). Using the identification

B
(
L2(M)� L2(M1)

) ∼= e⊥M1
B

(
L2(M)

)
e⊥M1

and precomposing with π0, we obtain a nonunital normal ∗-representation π :

〈M1,B〉→B(L2(M)) such that:
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• the range of π is contained in 〈M,M1〉,
• π(eB) = PK, and

• π(x) = xe⊥M1
for every x ∈M1 ⊂M .

It follows that Ψ :=Θ ◦π : 〈M1,B〉→Q∩M1 is a (Q∩M1)-(Q∩M1)-bimodular

completely positive map. We claim that Ψ is normal on M1. Indeed, let ψ ∈
(Q ∩M1)∗ be any positive linear functional. Let (xi)i∈I be any net in M1 such

that xi → x σ-strongly as i→∞. By the Cauchy–Schwarz inequality applied to

ψ ◦Θ, we have∣∣(ψ ◦Ψ)(x− xi)
∣∣ = ∣∣(ψ ◦Θ ◦ π)(x− xi)

∣∣
=

∣∣(ψ ◦Θ)
(
e⊥M1

(x− xi)
)∣∣

≤ ‖e⊥M1
‖ψ◦Θ ‖x− xi‖ψ◦Θ → 0 as i→∞.

This shows that ψ ◦Ψ is σ-strongly continuous on M1, and hence, ψ ◦Ψ is normal

on M1. Since this holds true for every positive linear functional ψ ∈ (Q ∩M1)∗,

we infer that Ψ is normal on M1.

Since Q∩M1 �M1 B, Theorem 2(iv) implies that Ψ|M1eBM1 = 0. In particu-

lar, for every u ∈ U(M1), we obtain that

Θ(uPKu
∗) = Θ

(
ue⊥M1

PK (ue⊥M1
)∗

)
=Θ

(
π(u)π(eB)π(u

∗)
)

=Θ
(
π(ueBu

∗)
)

=Ψ(ueBu
∗) = 0.

This finishes the proof of the lemma. �

SinceQ is amenable relative toM1 insideM and sinceQ⊂M is with expectation,

there exists a conditional expectation Φ : 〈M,M1〉→Q such that Φ|M is faithful

and normal.

CLAIM

We have Φ(x) = Φ(EM1(x)) for every x ∈M .

Indeed, fix a faithful normal conditional expectation F :M →Q ∩M1, and put

Θ := F◦Φ : 〈M,M1〉 →Q∩M1. Observe that Θ is a conditional expectation such

that Θ|M is normal. By Lemma 3, since Q∩M1 �M1 B, we have F(Φ(uPKu
∗)) =

Θ(uPKu
∗) = 0 for every u ∈ U(M1). Since F is faithful, we obtain Φ(uPKu

∗) = 0

for every u ∈ U(M1). In particular, the projection 1 − uPKu
∗ belongs to the

multiplicative domain of Φ for every u ∈ U(M1).

It suffices to prove the claim for x being a word of the form x= ux1 · · ·xp v ∈
M �M1, where p≥ 1, x1 · · ·xp is a reduced word starting and ending with letters

x1, xp ∈M◦
2 , and u, v ∈ U(M1). Indeed, first observe that Φ(x) = Φ(EM1(x)) for
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every x ∈M1. Second, the linear span of such words as above is σ-strongly dense

in M �M1, and Φ|M and Φ ◦EM1 are both normal on M .

Fix such a word x = ux1 · · ·xp v ∈ M � M1 as above. We will prove that

Φ(x) = 0. Observe that the subspace L2(M)�K is the closure of the linear span

of the elements y1ξϕ with y1 ∈M1 and y1 · · ·ynξϕ, where n≥ 2 and y1 · · ·yn is a

reduced word in M starting with a letter y1 ∈M◦
1 . Since x1 · · ·xp is a reduced

word starting and ending with letters x1, xp ∈M◦
2 , we obtain

x1 · · ·xp (1− PK) = PK x1 · · ·xp (1− PK),

from which we infer the equality

(1− uPKu
∗)x (1− v∗PKv) = u (1− PK)x1 · · ·xp (1− PK)v = 0.

Applying Φ to this equality and using the fact that 1− uPKu
∗ and 1− v∗PKv

belong to the multiplicative domain of Φ, we obtain

Φ(x) = Φ(1− uPKu
∗)Φ(x)Φ(1− v∗PKv) = Φ

(
(1− uPKu

∗)x (1− v∗PKv)
)
= 0.

This finishes the proof of the claim.

Now fix a faithful state ψ ∈M∗ such that ψ = ψ ◦ (Φ|M ). The above claim

shows that ψ = ψ ◦EM1 . For every x ∈Q, we have

‖x‖ψ =
∥∥Φ(x)∥∥

ψ
=

∥∥Φ ◦EM1(x)
∥∥
ψ
≤

∥∥EM1(x)
∥∥
ψ
≤ ‖x‖ψ.

This shows that ‖EM1(x)‖ψ = ‖x‖ψ , and hence, ‖x − EM1(x)‖2ψ = ‖x‖2ψ −
‖EM1(x)‖2ψ = 0. We conclude that x = EM1(x) ∈ M1 for every x ∈ Q; that is,

Q⊂M1. �

REMARK 4

Let us mention that our main theorem yields an analogous result for Higman–

Neumann–Neumann (HNN) extensions of von Neumann algebras. To avoid tech-

nicalities, we only formulate it in the tracial setting. Following [18, Section 2], for

any inclusion of tracial von Neumann algebras N ⊂M and any trace-preserving

embedding θ :N ↪→M , denote by HNN(M,N,θ) the corresponding HNN exten-

sion. Using our main theorem and [18, Proposition 3.1], we can show that, for

any von Neumann subalgebra Q⊂HNN(M,N,θ) which is amenable relative to

M inside HNN(M,N,θ) and such that Q∩M �M N , we have Q⊂M .

REMARK 5

Recall that, when a probability measure–preserving equivalence relation R
defined on a standard probability space (X,μ) splits as an amalgamated free

product R1 ∗R0 R2 in the sense of [4, Définition IV.6], the associated von Neu-

mann algebra satisfies L(R) = L(R1) ∗L(R0) L(R2). Hence, our main theorem

shows that any amenable subequivalence relation of R that has a sufficiently

large intersection with R1 must be contained in R1. In the case when the amal-

gamR0 is the trivial relation, such a result follows from [1, Théorème 1]. However,

our result is more general as it applies to arbitrary amalgams R0.
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