The cyclotomic lIwasawa main conjecture
for Hilbert cusp forms with complex
multiplication
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Abstract We deduce the cyclotomic Iwasawa main conjecture for Hilbert modular cusp
forms with complex multiplication from the multivariable main conjecture for CM num-
ber fields. To this end, we study in detail the behavior of the p-adic L-functions and the
Selmer groups attached to CM number fields under specialization procedures.
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1. Introduction

The cyclotomic Twasawa main conjecture for elliptic cusp forms describes the
mysterious relation between the Selmer groups (algebraic objects) and the p-adic
L-functions (analytic objects) attached to elliptic cusp forms. When the cusp
form f under consideration does not have complex multiplication, the cyclotomic
Iwasawa main conjecture for f is valid under some technical conditions thanks
to [26, Theorem 17.4] and [50, Theorem 3.6.4]. When the cusp form f under
consideration has complex multiplication, one can deduce the validity of the
cyclotomic Iwasawa main conjecture for f from the two-variable Iwasawa main
conjecture for an imaginary quadratic field F' via the cyclotomic specialization.
Such an observation has already been made, for example, in [44] for the case in
which f is a cusp form of weight two associated to an elliptic curve with complex
multiplication. The main purpose of this article is to generalize this procedure and
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deduce the cyclotomic Iwasawa main conjecture for Hilbert modular cusp forms
with complex multiplication from the multivariable Iwasawa main conjecture for
CM fields.

Let p > 5 be a prime number which is fixed throughout the article. We also
fix a complex embedding o, : Q = C and a p-adic embedding ¢, : Q — @p of an
algebraic closure Q of the field of rationals Q. Let F' be a CM number field of
degree 2d, and let '™ be its maximal totally real subfield. We assume that all
prime ideals of F'T lying above p are unramified over Q and split completely in
the quadratic extension F'/F+. We denote by I (resp., Ir+) the set of all embed-
dings of F' (resp., F*) into the fixed algebraic closure Q of the rational number
field. We choose and fix a p-ordinary CM type X of F, which is a nonempty
subset of I satisfying several conditions (see Section 2.3.1 for the definition of
p-ordinary CM types).

We denote by F the composition of all Zy-extensions of F (in Q). It is well
known that Gal(F'/F) is isomorphic to the free Zpy-module of rank d+ 1+ 05,
where 05, denotes the Leopoldt defect for F' and p. We abbreviate the composite
field of F and F(up) as Fo. For each finite abelian extension K of F which
contains F'(y,) and is linearly disjoint from F over F , we define RSOM as the
composite field KE.

We consider a Y-admissible grofiencharacter n of type (Ag) on F. Assume
that 7 is ordinary with respect to the (fized) p-ordinary CM type 3, or, in other
words, assume that n is unramified at the set X, of places of F' corresponding
to the p-adic embeddings ¢, o o for ¢ in X. By virtue of global class field theory,
there exists a canonical p-adic Galois character n8*: Gp — @: corresponding to
1 whose construction we shall review in Section 2.1.1. Then, as we shall recall
in Section 3.1.4, there exist a finite abelian extension K/F'(u,) and a character
v: Gal(K/F) — @; of finite order such that 7%*4~! factors through the Galois
group of Foo /F. Throughout Section 1, we denote by O the ring of integers of
an appropriate finite extension of @, which contains the image of nsal,

Now let us briefly explain our main results without precision of notation. In
Section 2.3 we shall introduce the notion of Katz, Hida, and Tilouine’s p-adic
L-function ﬁKHT( ) for the CM number field F', which is constructed as an

element of (’)‘”[[Gal(ngoo /F)]] (see Theorem 2.19 for details on L33 (F)). Here

O™ denotes the composition of O and Z};r. We denote by £§(¢) the i-branch
of EKHT( ), which is defined as the image of EEET(F ) under the -twisting
map (’)ur[[Gal(F¢poo/F)]] — (’)ur[[Gal( Eoo/F)]], g (g )9|p_ - For an arbitrary
continuous character p: Gal(F/F) — O, we denote by Tw, the p-twisting
map

O [[Gal(Fuo/F)]] — O™ [[Gal(Foo/F)]], g plg)g.

Under these settings, we state our main results as follows. The first theorem
concerns the analytic part of our main results.
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THEOREM A (=COROLLARY 2.25)

Let n be a groflencharacter of type (Ag) on F which is admissible and ordinary
with respect to a p-ordinary CM type . We choose a finite abelian extension K
of F and a character ¢ of Gal(K/F) so that n84y~" factors through the Galois
group of ﬁoo/F Then the image of (a certain modification of ) Tw, a1, (ﬁf (¥))
under the cyclotomic specialization map

@ur[[Gal(ﬁm/F)H - @ur“Gal(F(Np‘”)/FﬂL 9’_>9|F(;Lpoo)

coincides, up to a (componentwise) nonzero constant multiple, with the cyclo-
tomic p-adic L-function L3Y°(f,) € @‘“[[Gal(F(upoc)/F)]] ®z, Q, associated to
the Hilbert cusp form f, = 9(n)P=" obtained as the p-stabilization of the theta lift
of n. Furthermore, if the conjecture on the ratio of complex periods (see Conjec-
ture 2.20 for details) is true for f,, then they coincide up to a (componentwise)
p-adic unit multiple.

The algebraic parts of our main results consist of two ingredients: the exact con-
trol theorem for the Selmer groups (Theorem B) and the triviality of pseudonull
submodules for the Pontrjagin duals of the (strict) Selmer groups (Theorem C).
We denote by ASM (resp., by Aj¥¢) the cofree module of corank one over
O[[Gal(Fso/F)]] (resp., over O[[Gal(F(pp~)/F)]]) on which an element g of the
absolute Galois group G acts as the multiplication by 7%%!(g)g| 7. (resp., by
n&(9)g| jipo0))- Liet us define A€ as the kernel of the cyclotomic specialization
map O[[Gal(Fa/F)]] = O[[Gal(F(up=)/F)]], g — 9lF(uye)- Then we note that
A€ coincides with the maximal (%°-torsion submodule ASM [A¥e] of ATC,M. By
a general recipe due to Greenberg, we define the Selmer group Seligm (resp.,
Seli%yc) as a subgroup of the global Galois cohomology H!(F, ASM) (resp.,
H(F, A;Y¢)) satisfying local conditions obtained by ordinary filtrations (refer
to Definition 3.1). The following ezact control theorem describes the behavior of
the Selmer group SeligM under specialization procedures.

THEOREM B (=THEOREM 3.18)

Letn, K, and 1 be as in Theorem A. Assume further that the following condition

is fulfilled:

(ntr) for each mazimal ideal M of the semilocal Iwasawa algebra O[[Gal(Fay /F)]]
and for each prime ideal P of F lying above p, .AS,M[SDT] is nontrivial as a
Dp-module.

Then the natural map
Seli%yc = Seligm [Aeye] — Seligm [Qlcyc]
induced by the inclusion AY® = ASM[AY] — ATM is an isomorphism.

Let My, be the maximal abelian pro-p extension of K CM ynramified outside the
places of K OCOM above the set of places X, of F' corresponding to X. We denote
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the Galois group of MEP/IN(SOM by Xs,. Then the O-module Xy o defined
as Xz, ®z, O is naturally regarded as a compact O[[Gal(KSM/F)]]-module.
We denote by Xs (y4) the ¢-isotypic quotient of Xy o; namely, it is defined

as the scalar extension Xgp’? R o[[Gal(RSM /FY)) O[iGal(Foo/F)]] with respect to
the ¢-twisting map O[[Gal(KM/F)]] = O[[Gal(Fuw /F)]], g = ¢(9)g|5_- Then
one observes that the Pontrjagin dual of the Selmer group SelagM is pseudoiso-

morphic to Tw,ea, -1, (X5, (y)) as a module over O[[Gal(Fs/F)]] (see Proposi-
tion 3.16 for details on notation). The next theorem implies that Xs () has no
nontrivial pseudonull submodules under certain conditions, which is analogous to
results on the algebraic structure of Iwasawa modules in classical Iwasawa theory
mainly due to Iwasawa and Greenberg [12].

THEOREM C (=COROLLARY 3.33)

Let n, K, and ¥ be as in Theorem A. Assume that the cardinality of Gal(K/F')
is relatively prime to p and the character v satisfies the nontriviality condi-
tion (ntr)y, which is described analogously to the condition (ntr) in Theorem B
(see the statement of Lemma 3.21 for details). Then Xy (4) has no nontrivial

pseudonull O[|Gal(Fx/F)]]-submodules.

Note that O[[Gal(Fa/F)]] is a semilocal Iwasawa algebra, each of whose compo-
nents is isomorphic to O[[Gal(F/F)]], and the completed group algebra
O[[Gal(F/F)]] is isomorphic to the formal power series ring in d 4 1+ Opp vari-
ables over O. Thus, the statement above means that Xy  (4) has no nontrivial
pseudonull submodules over each of such components.

Theorem C shall be used to study the base-change compatibility of the char-
acteristic ideal of Twza,—1 (X5, (y)) (o1, equivalently, of the characteristic ideal
of the Pontrjagin dual of SeligM) under specialization procedures. We carefully
discuss this problem by utilizilng Theorem C and certain inductive arguments,
which is one of the technical hearts of this article. For details, see Section 3.4.

Combining these results, we finally obtain the following theorem, which is
the main result of this article.

THEOREM D (=THEOREM 3.41)
Let n be a grofiencharacter of type (Ag) on F which is admissible and ordinary

with respect to a p-ordinary CM type ¥. Assume that all of the following condi-
tions are fulfilled:

e the gréflencharacter n satisfies the nontriviality condition (ntr) introduced
in Theorem B;

o the Iwasawa main conjecture for the CM number field F is true for the
branch character 1 chosen as above; that is, the equality

(Q?W)) = Char g cap /) (Xz,.)
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holds as an equation of ideals of O™ [[Gal(Fx/F)]] (see Definition 5.22 for the
definition of the characteristic ideal Charo[[Gal(ﬁm/F)]](XEP,(w)) over the semi-

local Twasawa algebra O[[Gal(Fyx/F)]]);
e in each component of the semilocal Iwasawa algebra O™ [[Gal(F/F)]], the
cyclotomic p-adic L-function LY(f,)) of fn =19(n)P** does not vanish.

Then the cyclotomic Twasawa main conjecture for the p-stabilized Hilbert eigen-
cuspform f,, =9(n)P=" with complex multiplication is true up to p-invariants; in
other words, we have the equality of ideals of O™ [[Gal(F(pp~)/F)]] ®z, Qp,

(£57°(fn)) = Charogar(u,e)/F (SeLe),

where the superscript V denotes the Pontrjagin dual. If the conjecture on the ratio
of complex periods (Conjecture 2.26) is true for f,, then the equality above holds
as the equality of ideals in O[|Gal(F(up=)/F)]].

Recently, Fabio Mainardi and Ming-Lun Hsieh thoroughly studied the multivari-
able Iwasawa main conjecture for CM number fields, and Hsieh’s results combined
with the Leopoldt conjecture imply its validity for Fo /F under certain technical
assumptions (see Remark 3.42 for details). Hence, Theorem D combined with
Hsieh’s results and the Leopoldt conjecture guarantees the existence of Hilbert
modular cusp forms with complex multiplication for which the cyclotomic Iwa-
sawa main conjecture is true.

The detailed content of this article is as follows. After a brief review on basic
facts of grofencharacters of type (Ag) and (adelic) Hilbert modular cusp forms,
we shall introduce in Section 2 two p-adic L-functions of different types: the
cyclotomic p-adic L-functions associated to (nearly p-ordinary) Hilbert modular
cusp forms (in Section 2.2) and Katz, Hida, and Tilouine’s p-adic L-functions for
CM number fields (in Section 2.3). We compare their interpolation formulae in
detail in Section 2.4 when the Hilbert modular cusp form under consideration has
complex multiplication, and we then verify Theorem A based on this compari-
son. Section 3 is devoted to the algebraic parts of our results. There we introduce
various Selmer groups and compare them at a certain extent of precision in Sec-
tion 3.1. We then prove the exact control theorem (Theorem B) in Section 3.2
and, after reviewing results of Greenberg on the almost divisibility of the Selmer
groups in Section 3.3, we discuss the base-change compatibility of characteristic
ideals of the Pontrjagin duals of Selmer groups by recursively applying Green-
berg’s criterion in Section 3.4. In this process, Theorem C is proved as the first
step of our induction argument (see Section 3.4.4 for details). Combining all the
results obtained in Sections 2 and 3, we deduce in Section 3.5 the cyclotomic
Iwasawa main conjecture for Hilbert modular cusp forms with complex multi-
plication (at least up to a nonzero constant multiple) from the multivariable
Iwasawa main conjecture for CM number fields via the cyclotomic specialization
(Theorem D). In Appendix A, we verify several basic properties of Galois repre-
sentations associated to Hilbert modular cusp forms with complex multiplication
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after Ribet’s [41] arguments for elliptic cusp forms with complex multiplication.
Appendix B is devoted to the verification of Proposition 3.40 in Section 3, which
is one of the technical keys to our algebraic main results.

1.1. Notation

We mainly use the fraktur v for the ring of integers of an algebraic number field
(which is often regarded as the base field of a certain motive); the calligraphic O
is kept to denote the ring of integers of a p-adic field (which is often regarded as
the coefficient field of the p-adic realization of a certain motive). We denote the
absolute norm of a fractional ideal a of an algebraic number field by Na.

Throughout this article p denotes a prime number which is larger than or
equal to 5. We fix an algebraic closure Q of the rational number field Q and
regard all algebraic number fields (i.e., all finite extensions of Q) as subfields of
Q. We also fix an embedding to.: Q < C of Q into the complex number field C
and fix an embedding ¢, : Q= @p of Q into a fixed algebraic closure @p of the
p-adic number field Q,,, respectively.

For an algebraic number field K, we denote by Ak (resp., A) the ring of
adeles (resp., the group of ideles) of K. The finite part (resp., the archimedean
part) of the ring of adeéles Ak is denoted by Ai (resp., A®). We associate a
modulus [], vorde(@) to every idele z in Ay, where v runs over all places of K.
In this article we only consider moduli associated to finite idéles, and hence, we
always identify a modulus [[, v°'4(®) with the corresponding fractional ideal
IL fpﬁrd”(‘”) of K, where *J3,, denotes the prime ideal associated to v.

We shall fix the notion of the standard additive character throughout this
article. For each archimedean place v of an algebraic number field K and for each
z, € Ky, we define the local additive character ek, : K, - C* by

- {exp(27n/1xv) if v is real,

€K, (Lo e
( exp(2nv/—1x,Z,) if v is complex,

where Z, denotes the complex conjugate of z,. For each nonarchimedean place
v of K, we define ek, as

ex, (z,) = exp(—2mv/—1 Trk/q(iv))-

Here %, denotes an arbitrary element of | J,—, B, ™ (regarded as a tx-submodule
of K) such that &, — z, is contained in the ring of integers of Ky, . The adelic
standard additive character ey, : Ax/K — C* is defined as the product of local
additive characters ek, for all places v of K. We also define eag as the product
of all archimedean local additive characters.

Let C, be the p-adic completion of the fixed algebraic closure @p of Qp, and
let Oc, be its ring of integers. For the ring of integers O of a finite extension
of Q,, we denote a discrete valuation ring Oi;r by (’3‘”, where Z;r is the p-adic
completion of the maximal unramified extension of Z,.

In this article we adopt the geometric normalization of global class field
theory; more precisely, let L/K be a finite abelian extension of algebraic number
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fields. Then the reciprocity map (-,L/K): A — Gal(L/K) is normalized to map
a uniformizer w, of a prime ideal p relatively prime to the conductor of the
extension L/K to the geometric Frobenius element Frob, in Gal(L/K); that is,
a(@v /K7 = gehar(e/p) (mod p) holds for each a in tk, where char(ty /p) denotes
the characteristic of the residue field vk /p.

If K is an algebraic number field, then the absolute Galois group Gal(Q/K)
is denoted by Gk. For a place v of K, we denote by D,, and I,, the decomposition
group and the inertia group at v, respectively. For a (possibly infinite) abelian
Galois extension L/K of K and the ring of integers O of a finite extension of Q,,
we define O[[Gal(L/K)]J* as the free O[[Gal(L/K)]]-module of rank one on which
Gk acts via the universal tautological character

Gk — O[[Gal(L/K)]]™, g gl

We finally remark that, as for Hodge—Tate p-adic Galois representations, the
Hodge—Tate weights are normalized so that the Hodge—Tate weight of the p-adic
cyclotomic character xp cyc equals —1.

2. The analyticside

We shall develop in this section the analytic parts of our main results. We first
present a brief overview of classical theory on (adelic) Hilbert modular cusp forms
in Section 2.1, and we introduce the notion of the p-adic L-functions associated
to Hilbert modular cusp forms in Section 2.2. We then introduce another type of
p-adic L-function in Section 2.3: Katz, Hida, and Tilouine’s p-adic L-functions
for CM number fields. In Section 2.4, we consider the cyclotomic specialization
of (appropriately twisted) Katz, Hida, and Tilouine’s p-adic L-function, and we
compare it with the p-adic L-function of a Hilbert modular cusp form with com-
plex multiplication.

2.1. Classical theory on Hilbert modular cusp forms

This section is devoted to an overview of classical (complex) theory on adelic
Hilbert modular cusp forms. After a brief review of grofiencharacters of type (Ag)
in Section 2.1.1, we define Hilbert modular cusp forms of double-digit weight after
Hida, and we summarize basic facts on their Fourier expansions and associated
(complex) L-functions in Section 2.1.2. Section 2.1.3 is a survey of the theory
on Hecke operators for Hilbert modular cusp forms. We then introduce in Sec-
tion 2.1.4 the notion of Galois representations associated to Hilbert modular cusp
forms. We finally present the notion of Hilbert modular cusp forms with complex
multiplication in Section 2.1.5, which play central roles in the present article.

2.1.1. Generalities on grifiencharacters of type (Ap)

In this paragraph K denotes a number field. Later we only consider the cases
where K is either a totally real number field F* or a CM number field F. We
denote by Ik the set of all embeddings of K into Q. Let Sk(R) (resp., Sk(C))
denote the set of real places of K (resp., the set of complex places of K), and let
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Sk,00 denote the set of archimedean places of K; that is, Sk .o = Sk(R) U Sk(C).
Recall that each real place corresponds to a unique element of Ix and each
complex place corresponds to a unique pair of elements in Ik. For each real
place, we denote by 7, the corresponding element in Ix. For each complex place
v, we specify one of the corresponding pairs in Ik as 7, and identify K, with the
complex field C via the embedding 1o, 0 7, : K< C. Then the composite of the
other one, which we denote by 7,, with ¢, is the complex conjugate of 1o, 0 7.
An idele class character n: A /K™ — C* is called a gréfencharacter of type
(Ap) (or also called an algebraic Hecke character) of K if its archimedean part is
algebraic; namely, there exists an element p=3__, u.7 of Z[Ik] such that

"7(3300 =z H o H ay He gy B

veSK(R) vESk(C)

holds for each 2 = (z4)vesy .. in the identity component of the archimedean
part AR = (K ®g R)* (ie., for each element oo = (Zy)vesc .. such that
(7y)vesc(r) is totally positive). Here Z, denotes the usual complex conjugate
of z, in C. We identify K, with C via the specified identification ¢, o 7, for each
complex place v. The element p as above is called the infinity type of n. It is
widely known that n(x)z, is an algebraic number for each x in Ak where z
denotes the archimedean part of z.

For each prime ideal [ of K, we define e([) as the minimum among nonnegative
integers e such that the local component 7;: K — C* of 5 at [ factors through
K{/(1+1¢) — C*. When 7 is unramified at [, we define e(l) as 0. The integral
ideal €(n) = [],1°V is called the conductor of n. We denote by n* the ideal
character associated to n; namely, n* is the character defined by

(21) H n ord[ a)

He(n)

for each fractional ideal a of K relatively prime to the conductor €(n), where
denotes a uniformizer of K;. Note that the associated ideal character nn* does not
depend on the choice of uniformizers since 7 is unramified at each [t &(n).

EXAMPLE 2.1 (NORM CHARACTER)

The adelic norm |- |4, is naturally regarded as a gréfiencharacter of type (Ap)
by virtue of Artin’s product formula. It has the infinity type — > 1, T and the
conductor tk. The ideal character associated to |-|a, is Njc ', the inverse of the
absolute norm defined on K. When K is totally real, an arbitrary groBencharacter
of type (Ap) defined on K is described as ¢|-[} for a certain gréBencharacter ¢
of finite order on K and a certain integer n.

Now we associate to 7 a p-adic idele class character 7): Ag /K* — @: as follows.
For each prime ideal p of K lying above p, we denote by Ik, the subset of Ik
consisting of embeddings 7 such that ¢, o 7 induces the place associated to p.
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Then we put

_ -2, pr
x, = H Ty Sfke 7T for Tp = (Zp)plpea €A™ = (K®g Qp)~.
plprx

For each idele z of K, we define 7(x) as

(2.2) nx) =1y (n(w)xg‘o)x;“,

where z, and z, respectively denote the p-component and the oco-component
of x. Obviously, 7 is trivial on K* and factors through the nonarchimedean
part of the idele class group Aﬁ’x /K* by construction. The p-adic idele class
character 7 constructed as above is called the p-adic avatar of 7, whereas the
(complex) character 7 is called the complex avatar of 7). Note that, via global
class field theory, the p-adic avatar 7 corresponds to a unique p-adic Galois
character 75" defined on Gal(Ke(,))/K) characterized by n8*((z, Ke(y) /K)) =7i(z)
for an arbitrary element z in Ay, where €(n) denotes the conductor of n and
Ken) denotes the ray class field modulo €(n) over K. Refer to Section 1.1 for
our normalization of the reciprocity map (-, Kg(y) k). In particular, we see that
7%l (Froby) = n(w) = A(wi) = n*(I) holds for each prime ideal [ of K relatively
prime to €(n), where w denotes a uniformizer of the local field K;.

2.1.2. Hilbert modular cusp forms of double-digit weight

Let us recall the definition of adelic Hilbert modular cusp forms. We basically
follow Hida’s description of adelic Hilbert modular forms in [20] and [22], although
there might be several different ways to introduce them. In particular, we adopt
his double-digit weight convention (refer to [22, Section 2.3.2]).

Let '™ be a totally real number field and tz+ the ring of integers of F*.
We define an algebraic group G over Z as the Weil restriction of scalars of the
general linear group G[L(Q)/tF+ over tp+ from tp+ to Z. Let Ty be the diagonal
torus of GL(2)/., ., and let T be its Weil restriction of scalars from vp+ to Z.
The character group X (T¢) of T¢ is identified with Z[Ip+] x Z[Ig+]; specifically,
an element k = (k1,k2) of Z[Ip+] X Z[Ip+] corresponds to a unique algebraic
character Tg /g G /0 which induces

0 . . — .
(5 2)marar, ar= [T vl €@ friz12
T2 TEIF+
on Tg(Q) = FT* x FHX. Here k; denotes an element of Z[Iz+] defined by
ZTelﬁ ki,rT for each i =1,2 satisfying the following condition:

(2.3) K1,r + ko,r is a constant independent of 7 in Ip+.

We denote by [k] the constant value %1 - + ko, when condition (2.3) is satisfied.
Note that the diagonal torus Tz contains the center Z of G, namely, the subgroup
consisting of all scalar matrices. Let us define another algebraic torus 7' as the
Weil restriction of scalars of the multiplicative group Gy, ., from tp+ to Z.
For an integral ideal 91 of F'™, we consider the following congruence subgroups
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Fo() ::{(i Z) cG(2) cemfp+},

Py () = {(i Z) cG(2)

Let ep: Ap, /FH* — C* denote a gréfencharacter of type (Ag) on F*
with infinity type k1 + k2 — t, where the symbol t denotes the “trace” element
ZTGIﬁ 7 in Z[Ir+]. We often identify the adelic points Z(Ag) of the center Z of
G with the idele group AX+ of F* and regard e as a character on Z(Ag). We
denote by e: T(Z) — C* the restriction of the finite part of e, to T(Z) = ths,
where t ., denotes the profinite completion of t7, . Then one easily observes that
if the conductor €(g) of € contains 91, then the map

(Cc‘ Z) s e(am)

defines a continuous character ['(9%) — C*, for which we use the same symbol
¢ by abuse of notation. Here ay denotes the projection of a to Fyf = H[\‘J?FIJF'
We denote the pair of characters (¢,64) by g, which shall play the role of a
nebentypus character.

Let h C C be the Poincaré upper half-plane which consists of all complex
numbers whose imaginary parts are positive. Then the identity component G(R)™
of the R-valued points G(R) = GLa(R)!r+ of G acts on hir+ via the coordinate-
wise Mobius transformation. We now introduce the automorphy factor of weight
k= (k1,Kk2) by

Ji(g,2) = det(g)™ "ji(g, z)™ T

a—1€m€p+,cemﬁp+}.

a b
for g = (c d) €GR)" and z = (ZT)TQIFJr eplrt,

where j(g,2) denotes the vector defined by (c;z; + dr)rer,, . Here we use the
following abbreviations on multi-indices:

det(g)™ "t = H det(g, )"~

T€El Lt

Jlg,z) ittt = H (Crzy +dy)R2r —Frrtl

T61F+

DEFINITION 2.2 (HILBERT MODULAR CUSP FORMS)

Let x be an element of Z[Ip+] X Z[Ip+] for which condition (2.3) is satisfied,
and let £ = (¢,e4) be as above. A complex-valued function f: G(Ag) — C on the
adelic points G(Ag) of G is called a Hilbert modular cusp form of weight &, level
N, and nebentypus ¢ if it satisfies the following three conditions.
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(HC1) (automorphy) Let C; denote the stabilizer subgroup of the vector
i=(v—1,...,v/—1) € h’r+, which is by definition a subgroup of G(R)*. Then
the equality

flazuw) = eq (w)e(up) f (2) T (oo, 1)

holds for each o in G(Q), w in Z(Ag), and u = ufus in Io(N)C.
(HC2) (holomorphy) For each z in hir+ let us choose an element us, of
G(R)™ satisfying 1o (i) = 2. Then the function

IE hIF+ —C, 2 f(guoo) Sk (Uoo, 1)

is holomorphic with respect to z for every g in G (A({D) Note that f, is well defined
independently of the choice of each us by virtue of the automorphy (HC1).
(HC3) (cuspidality) The integral

Joowt (o 5)) e

vanishes for every z in GLQ(A£+) where du is an additive Haar measure on
Ap+ /FT.

We denote by S, (91, ¢;C) the complex vector space spanned by all Hilbert mod-
ular cusp forms of weight x, level 91, and nebentypus &.

It is well known that the space of Hilbert modular cusp forms S, (91,¢;C) is of
finite dimension. We often impose the following constraints on weights of Hilbert
modular cusp forms.

DEFINITION 2.3
Let k = (k1,k2) be an element of Z[Ip+] x Z[Ir+] for which condition (2.3) is
satisfied.

(1) The element & is called a cohomological weight if the inequality k1 < Ko
holds.

(2) The element « is called a critical weight if it is cohomological and the
inequality x; < 0 < ko holds.

Here inequalities among elements of Z[Ir+] abbreviate corresponding coefficient-
wise inequalities. For instance, we use the inequality notation k1 < ko to express
that the inequality k1 . < k2, holds for every 7 in Ip+.

From now on we assume that all double-digit weights considered in this article
are cohomological.

Now let f denote a Hecke eigencuspform of cohomological weight x = (k1, K2),
level 91, and nebentypus €. We shall give a brief review on Hecke theory in the next
section. To each eigencuspform f, Blasius and Rogawski [4] attached a motive
M(f);p+ defined over F* with coefficients in the Hecke field Q associated to
f, which we will introduce later (see the paragraph after Definition 2.7). The
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motive M(f),p+ is pure of weight [x]. For each 7 in Ip+, the Hodge type of
M(f),p+ with respect to the complex embedding tos 0 7: F7 < C of the field
of definition F'* is given by {(k1,,K2), (k2 k1,-)}. In other words, Hida’s
double-digit weight convention is adapted to the Hodge type of M(f),p+, and
the weight of the cusp form f is critical if and only if the associated motive
M(f)/p+ is critical in the sense of Deligne [9].

REMARK 2.4 (ON NEBENTYPUS CHARACTERS)

Hida [22, Section 2.3.2] introduced a more general notion on nebentypus char-
acters; namely, he considers as a nebentypus character a triple (e1,e2;¢64) con-
sisting of finite characters e, €5 on T(Z) and a grofencharacter € of type (Ao)
on Z(Ag) with certain constraints. The nebentypus introduced here is a special
version of Hida’s general notion. Indeed, our notion of the nebentypus £ = (¢,£4)
corresponds to a triple (e, 1T(Z)3 €4 ), which satisfies all the required conditions.
The space of Hilbert modular cusp forms S, (0M,g;C) with nebentypus of the
form g = (e,e4) is indeed contained in the space of Hilbert modular cusp forms
Sk (f‘l(‘ﬁ), C) of weight x and level fl(‘ﬁ), and hence, we can apply to them gen-
eral theory on Hilbert modular forms and Hecke algebras of I';-level structure
developed in [48] and [20]. In particular, the (adelic) Fourier coefficients depend
only on fractional ideals of F'* under such constraints on the nebentypus (as we
shall see later in Proposition 2.5), and hence, our convention on nebentypus char-
acters seems to be well suited to arithmetic problems concerning the L-functions
associated to Hilbert modular forms.

We next recall the notion of the Fourier expansions of Hilbert modular forms, and
then we finish this section by introducing the (complex) L-functions associated
to them.

PROPOSITION 2.5

Let 0 =0p+ denote the absolute different of FT, and let Fj:’x denote the set
of all totally positive elements of FT. Then each Hilbert modular cusp form f
belonging to Sx(M,g;C) has the (adélic) Fourier expansion of the following form
for each x € Ap+ and y € A, :

H((5 7)) =l T Cleminiens) ess, (Vlenen,  (€0)

+, %
ceFy

The correspondence a— C(a; f) defines a complex-valued function on the group
of fractional ideals of F'T, which vanishes unless a is integral.

This is [20, Proposition 4.1], the proof of which essentially depends on Shimura’s
classical computation [48, (2.18)]. Refer also to [22, Proposition 2.26]. We call
C(+; f) the Fourier coefficient of f. A Hilbert modular cusp form f is said to be
normalized if its Fourier coefficient C(tp+; f) at tp+ equals 1. For a Q-subalgebra
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A of C, we denote by S, (M, g; A) the A-subspace of S (M, g;C) spanned by cusp
forms with all Fourier coefficients contained in A.

Now let us assume that the Hilbert modular cusp form f under consideration
is a normalized eigenform. The (complex) L-function associated to f is defined
as (the meromorphic continuation of) the Dirichlet series

= Y Cwd)

For a grofencharacter ¢: Ay, /FT>* — C* of type (Ag), we also define the
L-function associated to [ twisted by ¢ as (the meromorphic continuation of)

T C(ai/\‘]zf*(a)7

L(f,¢,5) =

(0)5£3gtp+

where ¢* is the ideal class character which was associated with ¢ in (2.1) and
¢*(a) is defined to be zero if a is not relatively prime to the conductor of ¢.

2.1.3. Review on Hecke theory

We shall briefly recall Hecke theory on adelic Hilbert modular cusp forms after
[20, Section 2]. As in the previous paragraph, we consider the space S, (I,¢;C)
of Hilbert modular cusp forms of weight x, level 91, and nebentypus e. Recall
that it is contained in the space S, (I'y(M);C) of cusp forms of weight 91 and
level T'; (91). Now let us define the following monoids:

Ao(N) = (‘c‘ Z)eMQ(eF+)mG(A@

an € I_Itlfﬂ+ LCENps o,
[n

Ay() = { (‘2 Z) € My (ip+) N G(AL)

a—lefF+,C€mfF+}.

Then Ag (M) contains I'o(N), and A; () contains T'; (), respectively. We thus
consider the action of the double coset algebra R(I'; (M), A1 (D)) on S, (', (N); C).
We refer readers to [49, Section 3] for details on the theory of double coset alge-
bras. The action of R(I'; (D), A1(MN)) on S, (T'1(N); C) is defined as follows. For a
cusp form f in S, (I'; (N); C) and an element [y ()T’ (DN)] of R(I'1(N), Ay (N)),
we set
h
Tl oy o) (9) = Z flay ),
i=1

where {y;}i=1,..n IS a representative set of the left coset decomposition of
Dy (M)yl' (N):

h
Iy (M)yly (M) = U Iy (M)y;.
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Then one easily observes that the action of R(I'y(9), A1(9)) preserves the sub-
space S, (M, g; C) of Hilbert cusp forms with nebentypus . To describe the struc-
ture of the double coset algebra R(I';(91),A1(M)), we introduce here typical
double coset operators, which are often quoted as Hecke operators. Choose a uni-
formizer @ of the local field F|* for each prime ideal [ of F*, and regard (§ .2, )
as an element of A (91) whose local component is the identity matrix at every

place except for [. Then we define

T(1) =14 (M) ((1) 72[) Iy (M) if [ does not divide N,
1 0
0 (It

U)=T1(M) ( ) (M) if [ divides N,

for each prime ideal [ of F'*. They are determined independently of the choice
of uniformizers. Next let b be an integral ideal of F'* relatively prime to 91. For
such an ideal b, choose a finite idele b € tp+ N A}, so that it is congruent to 1

modulo NMtr+ and its associated modulus coincides with b. Then we set

T(b,b6) =T1(M) (8 g) M),

which does not depend on the choice of the auxiliary idele b. We also use the
notation S(b) for T'(b,b) as in [48]. By virtue of the general theory, the dou-
ble coset algebra R(I';(91), A1(MN)) is commutative and is freely generated as a
Z-algebra by T(l) for prime ideals relatively prime to 9, U(I) for prime ideals
dividing 9, and S([) for prime ideals relatively prime to 91. Moreover, we obtain
the following formula, which one can adopt as the definition of the operator T'([¢)
when [ is relatively prime to 91:

TOT) =T + N()SHT (1) for each e > 1.

It is also known that U(I¢) = U([)¢ holds for every prime ideal [ dividing 9 and
an arbitrary natural number e.

REMARK 2.6
In [22] and many other articles of Hida, the action of R(I'o(91), Ag(MN)) is defined
as follows. We first extend the nebentypus character € = (g,e4) to Ag(9) by

setting
b
(CCL d) — e(am).

For each & in A¢(M), we define an action of the double coset [[o(9)zTo ()]
on a Hilbert modular cusp form f belonging to S, (9,g;C) by
h/

Flipo oryatoo (9) = D (@) f(gz7h),

i=1
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where {x;};,=1,_n is a representative set of the left coset decomposition of
Lo(9M)2To(N). For an element y of A;(N), one easily checks that the action
of the I'y (M)-double coset [I' (M)yl1 (MN)] on S, (M, g; C) is compatible with that
of the I'g(9)-double coset [Io(M)yLo(9M)] by comparing representatives of their
left coset decompositions.

DEFINITION 2.7 (EIGENFORMS)
A Hilbert modular form f belonging to S, (9,&;C) is called an eigenform if it

is a common eigenvector with respect to all double coset operators (or Hecke
operators) belonging to R(I'1 (1), A1(1)).

By the well-known formula (see [20, Corollary 4.2] for instance)

(2.4) C(a; flrw)) = > N(6)C(b™%na; fls(p)),

bla, bln, (b,9)=1

one observes that the Fourier coefficient C([; f) of an eigencuspform f at a prime
ideal [ is obtained as the product of C(tp+; f) and the eigenvalue with respect
to the Hecke operator T'(I) (or U([) if [ divides D). Recall that the eigenvalues
of the Hecke operators acting on S, (91,¢;C) are algebraic numbers due to [48,
Proposition 2.2]. Therefore, an eigencuspform f belongs to S.(M,e;Q) if it is
normalized. We denote by Q the field which one obtains by adjoining to Q all
the eigenvalues of the Hecke operators acting on f, which we call the Hecke field
associated to f.

To introduce the notion of near ordinarity, we recall the notion of normal-
ized Hecke operators after [20, Section 3]. Let Q(x1) denote the field which one
obtains by adjoining to Q all the elements of the form z* for x in F'™X. Then
Q(k1) is a finite extension of Q. Note that x; naturally induces group homo-
morphisms F™* — Q(k1)* and Ay, — A&m). It is known that there exists an
tQ(r,)-Subalgebra A of C satisfying the following condition:

e for each element z in A{,’f, the modulus associated to ™! is principal as

a fractional ideal of A.

Refer to [20, p. 310] for details on the existence of such an algebra A. Let us
choose a uniformizer wo; of F; [Jr for each prime ideal | of F*. We take a generator
of the modulus associated to @w;" (as a fractional ideal of A) and denote it by
{I"1}. We also define {a™ } for an arbitrary fractional ideal a =[] . (¢ by

H[: plrime{vil }e([) .

DEFINITION 2.8 (NORMALIZED HECKE OPERATORS)
We define elements Ty(l), Up(l), and So(b) of R(I'1(FM), A1(MN)) ®z A in the fol-

lowing manner:
To(1) = {I"*}71T(1) for a prime ideal [ which does not divide 9;
Uo(l) = {I"}~1U(I) for a prime ideal [ which divides 9;
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Sop(b) ={6"1}725(b) for an integral ideal b which is relatively prime to 9.

The operators Ty([), Up(l), and So(b) are called normalized Hecke operators.

DEFINITION 2.9 (NEAR ORDINARITY)
Let p be a prime ideal of F'T lying above p. A normalized eigencuspform f
belonging to S, (M, £; Q) is said to be nearly ordinary at p (or nearly p-ordinary) if
the eigenvalue of f with respect to the normalized Hecke operator Tp(p) (or Ug(p)
if p divides the level 9) is a p-unit under the specific embedding ¢,: Q- @p.

A normalized eigencuspform f which is nearly ordinary at all prime ideals p
lying above p is said to be nearly ordinary at p (or nearly p-ordinary).

Note that the notion of the normalized Hecke operators does depend on the choice
of a generator of {p”*}, but the notion of the near ordinarity does not depend
on it since the p-adic valuation of {p"'}, which is regarded as an element of
@p via the fixed embedding ¢, is well defined independently of the choice of its
generator. The normalization of Hecke operators discussed above is crucial in
Hida’s theory on p-adic Hecke algebras. One of the reasons why it is important is
that normalized Hecke operators preserve the space of cusp forms with rational or
integral coefficients. We omit the details (see [20, Section 4], [22, Section 2.3.3]).
We finally introduce the notion of p-stabilization. Define an operator

V(b): S.(M,gQ) = S (6N, Q)

for every integral ideal b of F'* by

—1
fv@ =l 7 (o (% 0)):

where b is a finite idele of F* whose associated modulus coincides with b. We
readily see that the Fourier coefficient of f|y () at a is given by C(b~'a; f). Now
let f denote a normalized eigencuspform belonging to S, (M,&;Q), and assume
that f is nearly ordinary at p. Let p be a prime ideal of F'* lying above p, and
suppose that the level 1 is not divisible by p. Note that the eigenvalue of f with
respect to the Hecke operator Tp(p) is calculated as {p*1}~1C(p; f), which we
denote by Cy(p; f). The eigenvalue of f with respect to Sp(p) is also calculated as
{p"1}~2e% (p). Consider the Hecke polynomial of f with respect to the normalized
Hecke operator Ty(p); in other words, consider the quadratic polynomial defined
by

1= Co(p; /)X = Np{p™} 72 (p)X? = (1 — agp X)(1 = Fop X).

We denote two roots of this polynomial (regarded as elements of Q) by ag,p and
Bo,p- Since f is nearly ordinary at p, the Hecke eigenvalue Cy(p; f) = ao,p + Bop
of f with respect to Typ(p) is a p-adic unit. This implies that one of the roots has
to be a p-adic unit (under the fixed embedding ¢, ), which we specify as ag ;. Let
us consider the cusp form f — {p**}Bo, f|v(p) € Sk(pM,; Q). Since {p*1} 5o, is
a root of the quadratic polynomial 1 — C(p; f)X + Npe’ (p)X?, the cusp form
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J—1{p"}Bo,pflv(p) does not depend on the choice of a generator of {p**}. It has
the same eigenvalues as those of f everywhere except at p and has the eigenvalue
ap,p with respect to Up(p); hence, it is nearly ordinary at p. Repeating the same
procedure for all prime ideals lying above p which do not divide the level 9t of f,
we obtain the p-stabilization fP*' of f, which is a normalized eigencuspform of
level ‘ﬁ]_[p‘ptﬁ,pmp. A normalized nearly p-ordinary eigencuspform is called a
p-stabilized newform if it is obtained as the p-stabilization of a certain primitive
form (in the sense of Miyake [32, p. 185]). In particular, the level of a (nearly
p-ordinary) p-stabilized newform is divisible by every prime ideal p of F'T lying
above p.

2.1.4. Galois representations associated to Hilbert modular cusp forms
We here introduce the notion of Galois representations associated to Hilbert mod-
ular cusp forms.

THEOREM-DEFINITION 2.10

Let f be a normalized eigencuspform of cohomological weight k, level N, and
nebentypus €. Let K be a finite extension of Q, containing the Hecke field Qf
of f (under the fized embedding t,,: @f—)@p). Then there exists a 2-dimensional
Galois representation Vi of Gp+ with coefficients in K such that the equal-
ity

det(1 — FrobaX;Vy) =1—C(q; /)X + Nge’(9) X

holds for every prime ideal q which does not divide p9t. Moreover, Vs is an irre-
ducible representation of G p+. The Galois representation Vi of G g+ is called the
Galois representation associated to f.

The existence of such a Galois representation has been established due to the
results of many people, including Ohta [38], Carayol [6], Wiles [57], Taylor [53],
and Blasius and Rogawski [4]. The irreducibility of V; is verified due to Taylor
[54, Theorem 3.1] by the same argument as Ribet used in [41]. Note that the
Galois representation V; is uniquely determined up to scalar multiples by virtue
of its irreducibility combined with Cebotarev’s density theorem.

When the Hilbert cusp form f is nearly p-ordinary, we can also obtain precise
information on the local behavior of the associated representation Vy at places
above p.

PROPOSITION 2.11

Let f be a normalized eigencuspform of cohomological weight k, level M, and
nebentypus € which is nearly ordinary at p, and let the other notation be as in
Theorem-Definition 2.10. Then, for each place p of F+ lying above p, the Galois
representation Vi associated to f contains a unique 1-dimensional Dy-stable
K-subspace Fil;Vf on which the decomposition group D, of Gp+ at p acts via
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the p-adic character 6,: Dy, — K> satisfying

(2.5) dp(Frobg, ) = as(wy)

for every uniformizer w, of Fp+. Here Frobg, = (wP,F;’ab/F;‘) denotes the
Frobenius element corresponding to the uniformizer w, via the local reciprocity

map. The value ay(wy,) appearing in (2.5) is a unique p-adic unit root of the
quadratic polynomial

L=y " O /)X — " Npe () X
= (1= ay(@p) X) (1= B (wp) X),

where C(p; f) denotes the eigenvalue of the Hecke operator U(p) with respect to
f and where k1, = > m, y=p Rl denotes the summation of k1, over
P

all 7: Ft — Q such that tp o T induces the place p.

(2.6)

7: (tpor)~1(

Note that the near p-ordinarity of f guarantees that the quadratic polynomial
(2.6) indeed has a unique p-adic unit root. We also remark that the character d,
is not unramified in general, and hence, the equation (2.5) does depend on the
choice of a uniformizer w, of FpJr , contrary to the cases of p-ordinary modular
form (of parallel weight).

Proposition 2.11 was first observed by Mazur and Wiles [31, Chapter 3,
Section 2] for p-ordinary elliptic modular forms of weight 2 and then verified for
p-ordinary Hilbert modular forms of parallel weight by Wiles in [56, Theorem 2.2]
and [57, Theorem 2]. The general cases have been verified by Hida [21, Theorem IJ.
The D,-stable filtration Fﬂ;Vf C V5 is used to define the local condition at p of
Greenberg’s Selmer group (see also Section 3.1.1).

2.1.5. Hilbert modular cusp forms with complexr multiplication

In this section we introduce the notion of Hilbert modular cusp forms with com-
plex multiplication. The following definition is due to Ribet [41, Section 3] for
elliptic modular forms.

DEFINITION 2.12 (CUSP FORM WITH COMPLEX MULTIPLICATION)

Let v: A /FT* — C* be a nontrivial grofencharacter of finite order on F7.
A Hilbert modular eigencuspform f of weight k, level 91, and nebentypus ¢ is
said to have complex multiplication by v if the equality

(2.7) cf)=v(HC( f)

holds for all prime ideals [ in a set of prime ideals of density 1 in tp+.

A Hilbert modular eigencuspform f of weight &, level 91, and nebentypus ¢ is
said to have complex multiplication if f has complex multiplication by a certain
nontrivial gréfencharacter v: Ay, /F*>* — C* of finite order on F.

The right-hand side of (2.7) is naturally regarded as the Fourier coefficient at [ of
f ®wv: the cusp form f twisted by the grofilencharacter v of finite order (see [48,
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Proposition 4.5] for the definition of f ® v). The nebentypus of f ® v is easily
calculated as v?¢, and by comparing eigenvalues of the Hecke operator S(I) at f
and f ® v, we obtain the equality

() =v (e ()
for every prime ideal [ prime to levels of f and f ® v. Then Cebotarev’s density
theorem forces v/ to be trivial, and consequently, v must be a quadratic character
if f has complex multiplication by v.

An example of Hilbert eigencuspforms which has complex multiplication is
obtained as the theta lift of a gréfencharacter of type (Ag) of a CM number field.
In order to introduce the notion of theta lifts, let us consider a totally imaginary
quadratic extension F of Ft, which is by construction a CM number field. We
denote by ¢ a unique nontrivial element of the Galois group Gal(F/F*), which
is none other than the complex conjugation. Now let ¥ denote a CM type of
F, that is, a subset of Ir such that I is decomposed into the disjoint union
of ¥ and ¥°={coc|o € X}. Then we have a canonical bijection ¥ — I+
via the restriction o — o|p+. Since each complex place corresponds to a unique
element o of the fixed CM type X, we identify ¥ with the set of archimedean
places of F', and for each o € 3, we specify the identification of F, with C
via the embedding ts 0 0: F'— C; in other words, we identify A = F ®g R
with C* via the isomorphism induced by  ® 1 — (10 © 0())sex. Under these
identifications, the infinity type u of a grofencharacter n: A% /F* — C* of type
(Ao) is described as =) s (4s0 + p150), where & = o o ¢ denotes a unique
element in X¢ corresponding to o € 3. A groflencharacter 1 of type (4g) on F
is said to be X-admissible (or admissible with respect to X) if its infinity type u
satisfies pu, < pz for every o in 3. Given an X-admissible infinity type p on F,
we define a cohomological double-digit weight k,, = (K1, Ky,2) € Z[Ip+] X Z[Ip+]
on F't by
(2.8) = (3 1o0lpe, S naoles ).

cEX oEY
Given a grofencharacter n: Ay /F* — C of type (Ag) on F, we define the neben-
typus g, = (&4,€5,+) by
&= (VF/F+77\T(Z)’ VF/F+77)7
where 7] is defined to be n|A;+| . |A;+ and vg/p+ denotes the quadratic charac-
ter on Ay, /FT associated to the quadratic extension F/F via global class

field theory. Finally, let D r/p+ denote the relative discriminant of the quadratic
extension F/F*.

PROPOSITION-DEFINITION 2.13 (THETA LIFTS)

Let F be a totally imaginary quadratic extension of Ft, let ¥ be a CM type of F,
and let € be an integral ideal of F. Let n: Aj/F* — C* be a gréfencharacter of
type (Ag) with modulus €, and suppose that the infinity type u of n is X-admissible.
Then there exists a unique normalized cusp form¥(n) of weight ki, level ® p/ p+€C°,
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and nebentypus g, such that its Fourier coefficient C(a;9(n)) at an integral ideal
a of FT is given by ngtp7(m7¢):1;mm(,:a n*(A). The cusp form 9(n) is a com-
mon eigenvector of T(I) for every prime ideal | relatively prime to ® p/p+ €.
Furthermore, if the modulus € of n coincides with the conductor €(n) of n, then
the resulting cusp form 9(n) is primitive in the sense of Miyake [32, p. 185].

The normalized Hilbert modular cusp form 9(n) defined as above is called the
theta lift of the grofencharacter n of type (Ap) on F. See [11, Section 7B] for the
proof of the proposition, which is based upon Hecke theory on GL(2) through
representation-theoretic arguments.

By its explicit description, the Fourier coefficient C(I;9(n)) of J(n) at a
prime ideal [ equals 0 if [ is ramified or inert in F'; in other words, C(l;9(n))
vanishes when vz, p+ (1) equals 0 or —1. We thus readily observe that ¥(n) has
complex multiplication by vp,r+. Conversely, if a Hilbert cusp form f belonging
to S.(M,e; Q) has complex multiplication by a quadratic character v, then there
exists a totally imaginary quadratic extension F' of F'* such that v is the qua-
dratic character associated to F/F' and f is described as a linear combination
of theta lifts of appropriate gréfencharacters of type (Ag) on F. We strongly
believe that this fact is fairly well known, but we shall give a proof of this fact
with the language of Galois representations as Proposition A.1 in Appendix A.

In order to let the theta lift ¥(n) be nearly p-ordinary, we must impose
the following ordinarity condition on the totally imaginary quadratic extension
F/Ft:

e (ordp,p+) all places of F* lying above p split completely in F'.

Then due to the ordinarity condition (ordp,p+), there exists a p-ordinary CM
type ¥ of F'; that is, X is a CM type such that two embeddings ¢, o0 and t,000c¢
of F into @p define different places of F (lying above p) for each o in . See
Section 2.3.1 for details on p-ordinary CM types.

Now, under the ordinarity condition (ordp,p+), let ¥ be a p-ordinary CM
type of F, and let n: A} /F* — C* be a Y-admissible groBencharacter of type
(Ap) on F. We say that n is ordinary with respect to ¥ (or L-ordinary) if n is
unramified at every place P induced by ¢, o o for certain o in 3. Then the theta
lift 9(n) of n is nearly p-ordinary when 7 is ordinary with respect to .. Conversely,
if f is a nearly p-ordinary p-stabilized newform with complex multiplication, then
there exist a totally imaginary quadratic extension F' of F'* satisfying (ord g, p+ ),
a p-ordinary CM type ¥, and a ¥-admissible and ¥-ordinary groflencharacter n
of type (Ap) on F such that f is described as f, :=9(n)P=*. We think that one
can verify these facts by looking at the local component at p of the automorphic
representation 7y associated to f, but later we shall give a brief proof as Propo-
sition A.3 in Appendix A based upon the local study of the Galois representation
V} associated to f.
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2.2. The cyclotomic p-adic L-function for Hilbert modular cusp forms
We introduce the notion of the cyclotomic p-adic L-function associated to Hilbert
modular cusp forms in this section. We first define the (complex) p-optimal peri-
ods in Section 2.2.1, and then we discuss the p-adic L-functions after the result
of the second-named author [36] in Section 2.2.2.

Throughout this section F' denotes a totally real number field satisfying
the following unramifiedness condition:

e (unrp+) the prime p does not ramify in F'*.

In particular, F* does not contain primitive pth roots of unity.

2.2.1. The p-optimal complex periods

We recall the definition of the p-optimal complex period associated to a normal-
ized eigencuspform f of weight k, level M, and nebentypus ¢ in this paragraph
after [36, Definition 3.5]. Let x1*** denote the maximum of the integers x; , over
7in Ips, and set f(z) = f(z)| det(z) Z;+ ! for every element  of G(Ag). Then

we readily see that f is a Hilbert modular eigencuspform of weight &, level 0N,
and nebentypus €, where k and € are defined as

R= (R, o) = (k1 — (K7™ 4 1)t kg — (7 + 1)),
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o4
ot el [ ))-

= (el o
In particular, the weight % of f is critical in the sense of Definition 2.3. The cusp
form f is sometimes called a critical twist of f. For a subalgebra A of C con-
taining all Hecke eigenvalues associated to f, let hz(91,&; A) denote the image of
R(T1 (D), A1 (N)) @z A in End 4 (S (M, Z; A)). Then, as an element of hz (9, £; A),
the Hecke operator S(b) is naturally identified with &% (b) =% (b)Nb—2(-1"+1),
Consider a linear map Af: hz(M,&; A) — A which sends the Hecke operator T'([)
(resp., U([)) to the eigenvalue Az([) of T'(I) (resp., U([)) with respect to the
eigencuspform f for every prime ideal [ which does not divide 9t (resp., which
divides I). Note that A¢(I) equals NT=ETFDNL(1) by construction, where Az ()
is the eigenvalue of T'(I) (or U(I) if [ divides 1) with respect to f.

Let Y1(9),/q denote the Hilbert-Blumenthal modular variety of level 91. It
is an algebraic variety defined over Q and obtained as the canonical model of
the complex analytic variety Y7 (91)(C) = G(Q)\G(Ag)/T'1(M)C;. Note that if we
choose a set of representatives {c;}?_; of the strict ray class group Cl;+ of It
then we can decompose the Hilbert-Blumenthal modular variety Y;(91)(C) as

h
(2.9) Y1(M)(C) = | | ri(on\pe,
=1
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where b denotes the Poincaré upper half-plane and, for each i with 1 <i < h,
'} (M) denotes the arithmetic subgroup of G(Q) defined as
-1

ri(m)a(@m((g (1’) one: (B ?))

Corresponding to the decomposition of the Hilbert—Blumenthal modular variety
(2.9), the space of cusp forms Sz (I'1 (91); C) of level T'1 (M) is also decomposed as

h
(2.10) Sx(11(M);C) =P Sx (M1 (M:C), [ (=) iz

where Sz (I (91); C) denotes the space of cusp forms of weight & and level I'¢ (1)
on hir+ (see, e.g., [36, Definition 2.5 and Lemma 2.6] for details on the decompo-
sition (2.10)). In the rest of the article, we choose and fix a set of representatives
{e;}r, of Clj‘,;+ so that the p-component of each ¢; equals 1 for all the places p of
F* lying above p. Next, we define a standard local system Z(F; A) on Y1 (M)(C)
for a subring A of C satisfying the following condition (x):

(*) the subring A contains the normal closure of v+ [0} ¢; '] for each i with

1 <4< h, where 0p+ denotes the absolute different of F'*.

For each element 7 of Ir+, let L(k.;A) = @';2;;70'%“71AX;”*Yf”i'%“ilfm’
denote the free A-module spanned by all two-variable homogeneous polynomials
of degree Ry, — R1,r — 1 with coefficients in A. Let g = (¢ Z) be an element of
GLy(F ™) such that all conjugates of the matrix components a,b,c,d of g are

contained in A. Such an element g acts from the left on L(%,; A) by
XmTYR/Z,T_Rl‘T_l_mT
T T

Ror—R1,r—1—m,

> T(dct(g)'?”l’*) . (T(a)XT + T(C)YT)mT (T(b)XT + T(d)YT)

for each m, with 0 <m; <Ro,—R1,—1. Set L(K; A) = ®reIF+ L(R;;A). Then
we define the standard local system Z(&; A) on Y1(91)(C) as the sheaf of contin-
uous sections of the following covering map:

G(Q\G(Ag) x L(R; A)/T1(MC; = GQ\G(Ag) /I (MCi = Y1 (N)(C).

Here we consider that L(#;A) admits the trivial right action of I'y(9)Cs, and
we let G(Q) and T';(M)C; act on G(Ag) x L(; A) diagonally. The Hecke algebra
bz (M, E; A) then acts on the Betti cohomology group H¢(Y;(MN)(C), L (%; A)) via
the Hecke correspondences. Note also that, via the decomposition (2.9), we can
regard the local system .Z(&; A) as the sheaf of continuous sections of

LI\ (b'r* x L(F; A)) — T ()\p'r+

on each connected component I} (DN)\b'r+ of Y7 (9N)(C).
Next let Q} be the composite field Q; F 8 and let t’f be its ring of integers.
Let us denote by t’f ) the localization of t’f at the p-adic place induced by the

specific p-adic embedding Q} cQ SN @p. Note that an arbitrary t'f (p)—algebra
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satisfies the condition (%) since 0p+ is a p-adic unit due to the assumption
(unrp+ ), and there exist representatives {c;}"; which are relatively prime to p.
Therefore we can take the maximal submodule H?(Y;(9)(C), £ (&; A)) [Af] of the
Betti cohomology group H%(Y1(M)(C), £ (; A)) (resp., the maximal submodule
HA(Y1(MN)(C), L (k; A))[A 7] of the compactly supported Betti cohomology group
HA(Y1(M)(C), £ (k; A))) for an arbitrary t’f’(p)—algebra A, on which the Hecke

algebra hz(91,&; A) acts as the multiplication of the eigenvalues at f. Now let €
be an element of {£1}/r+ which we regard as a character defined on the group
of connected components of the archimedean part GLy(R)/r+ in GLy(Ap+). We
consider the composite map

1) HE(Vi(W)(C), £ (R} ,))) — HE(Y1(M)(C), £ (% C))

— HE (Yi(M)(C), Z (7 C)) A fl°,
where the first map is a natural one and the second map is the projection. As is
well known, the group of connected components acts on HZ(Y;(9)(C), £ (%;C))
in a way compatible with the action of hz(91,;C), and the e-eigenspace
HA(Y,(M)(C), ZL(&; C))AF]e of Hgl(Yl(m)(C),Z(/%;(C))[/\f] with respect to this
action is of dimension 1 over C for each e. Thus, the image of the map (2.11) is free
of rank one over the discrete valuation ring t’f ») for each ¢; or, in other words,
each HA(Y1(M)(C), &L (&; C))[Af]° is equipped with an t}7(p)—ir~1tegra1 structure.

We are now ready to associate the Hilbert cusp form f to a cohomology
class [f]. Let (fi(2))1<i<n denote the element of EB?:l Sz(T'% (91); C) correspond-
ing to f via the decomposition (2.10), and let us consider the vector-valued
differential form wy = (w7 )i1<i<n on Y1(MN)(C) defined as

W :fi((zf)relﬁ) H (XT+ZTYT)%2,77%1,T—1 /\ dz.

T€lpy 7€l pt
on each connected component '} (M)\h/r+ of Y3 (9N)(C), where (z;)r¢r,. denotes
the standard coordinate of h’#+. The integration of wj on a d-cycle of Y1 (9)(C)
then defines a cohomology class [f] of H%(Y1(91)(C),.Z(#;C)), which we call the

Eichler—Shimura class associated to the critical twist f of f. We use the same

symbol [f] for its image under the composition
- proj ~
HY(Y1(M)(C), Z(%;C)) — H(Y1(M)(C),Z(#;C))[Af]
EHf(Yl(m)(C),f(%;(C))[/\f]
by abuse of notation.
DEFINITION 2.14
For each €, let us choose an t’f (p)—basis b¢ of the image of the rank one free

v (y-module Hg(Yl(m)(C),ﬁ(/%;t’f,(p))) under the map (2.11). Then we define
a p-optimal complex period C}m € C* of signature € of f to be the constant
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given by
(2.12) [f]°=C% o - b5,
where [f]¢ denotes the projection of [f] onto HZ(Y;(M)(CT), .2 (%;C))[A 7] The

p-optimal complex period C¢ % oo depends on the choice of b¢, which has an ambi-

guity of a multiple of an element in (v/ " (p)) Hence, we often regard C§ , as an

element of C* /(v 1)~

2.2.2. The cyclotomic p-adic L-functions

We here introduce the notion of the cyclotomic p-adic L-functions associated to

Hilbert modular cusp forms and their interpolation formulae (Theorem 2.15).
Let CIJPC+ (p*°tp+) be the strict ray class group of F* modulo p>®tp+, which is

defined as the projective limit CIF+ P>Ptp+) Ln_mo woi/(F)<I prt,y - Here

the subgroup Ipn, , of A% 4 18 defined as
_ nm X
Ipn tpy — H tF+ X H 1 +p ey p) H (tF+7u))+
Wpr ot plptpt w: archimedean place of F+

when prp+ is decomposed as prp+ = leptF+ p™». For an archimedean place w,
we denote by (t;+7w)+ the connected component of t;”r,w containing 1, which is
isomorphic to R+ (. We denote by Fpﬁctﬁ the strict ray class field modulo p>tp+
over F'T, the field corresponding to Cl;+ (p>=tp+) via global class field theory.
For a ray class character ¢: Cllfur (p>®tp+) — C* of finite order, we associate
its signature sgn(¢) € {£1} 7+ in the following manner. Observe that there is a
canonical homomorphism from {£1}/#+ to the archimedean part of the ray class
group Clf, (p™tp+). Via this homomorphism, we associate a character (¢, )¢ It
on {+1}r+ to ¢. We define as sgn(¢) = (pr(=1))rer,, -

We next define the Gaussian sum G(¢) for a ray class character of finite
order ¢ : Clf, (p™tp+) — C* as

(2.13) G(¢) = > p(x) exp(2mV/ =1 Tr g+ (),

2E(€($) " /ept)

where we denote by (€(¢)~!/tp+)* the subset of €(¢)~!/tp+ consisting of ele-
ments whose annihilators exactly coincide with €(¢). In the defining equation of
G(¢) we evaluate ¢ at an element z of (€(¢)~1/tr+)* via the following compo-
sition:

(€(@) " eps) ™ S (e /€(9)) = (vps /€(0)) " r)y < CLE, (€(9)).

For a Galois character ¢: Gal(Fjk, +/FJF) — Q" of finite order, we use the
same symbol ¢ for the corresponding ray class character on Cl;+ (p=tp+).

We now state the existence of the cyclotomic p-adic L-function associated
to a Hilbert modular cusp form, which is originally due to Manin [29, Sections 5
and 6]. For an element k of Z[Ip+], we define the integer k™2* (resp., kmin) as
the maximum (resp., the minimum) among its coefficients.
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THEOREM 2.15

Let f be a normalized nearly p-ordinary eigencuspform in S.(M,e; Q) stabilized
at p. We fiz a discrete valuation ring O finite flat over Z, which contains tf )
Then there exists an element LY°(f) of O[[Gal(F T (up~)/F*)]] ®z, Qp charac-
terized by the interpolation property (recall that we have put d = [F+ Q])

7 cyc _ F(]tf ‘V‘:l)
XP,CyC¢(£p (f)) - F((Fcrlnax + 1)t _ Kl) G(¢)

(2.14) L(f.6.)

(—QW\/——l)d(j*”?‘axfl)C’;‘f’;
for an arbitrary integer j satisfying k7' +1 < j < Ko min and an arbitrary char-
acter ¢ of Gal(F T (upe)/F1) of finite order. Here C;“’Oé denotes a p-optimal

complex period of signature ey ;, which is defined as (—1)7~"1" ~Lsgn(¢p).
The p-adic multiplier Ay (f; qb,j) is defined as

x TT 4p(f56.4)

plprp+

Np' if p does not divide €(¢),

1 N
o, (1) ®
Ap(fi,3) = { (A )ords (€O if p divides €(g),

ap(

where o, (f) denotes the eigenvalue of f with respect to the Hecke operator U(p).
The gamma factor is abbreviated as

L(mt — k1) H I'(m—ki1,) for each m satisfying m > k7" + 1.
TGIF+

REMARK 2.16

The construction of [29] is based upon modular symbols over Hilbert modular
varieties, which is a generalization of the work by Manin himself, Mazur and
Swinnerton-Dyer, and Visik, Amice, and Vélu for the elliptic modular case (see
[30] for historical reviews). The construction of Theorem 2.15 is revisited by [10]
and [36] in the context of generalizing it into nearly ordinary Hida deformations.

REMARK 2.17

There is another fashion of construction of p-adic L-functions associated to
(Hilbert) modular forms which is based upon the theory of Rankin—Selberg con-
volutions. The methods of the construction of p-adic L-functions in this direction
have been discussed by Panchishkin [39], Dabrowski [8], Mok [33], and so on. The
complex period appearing in thier theory is of Shimura type; namely, it is defined
by using the self Petersson inner product of the given cusp form.

2.3. Katz, Hida, and Tilouine’s p-adic L-functions for CM number fields

In this section we introduce the p-adic L-function (or the p-adic measure) for a
CM number field which was first constructed by Katz [27] for grofiencharacters
of type (Ap) with conductors dividing p>° and then by Hida and Tilouine [23,
Theorem II] for general groBencharacters of type (Ap).
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2.8.1. p-ordinary CM types
Asin Section 1, let F' be a CM number field of degree 2d with the maximal totally
real subfield F*. We denote by ¢ the complex conjugation of F, that is, the
unique generator of the Galois group of F/F+. We impose the two assumptions
(unrp+) and (ordp/p+) on F/FT and p, which are introduced at the beginning
of Section 2.2 and a little bit before Proposition-Definition 2.13, respectively.
By virtue of the assumption (ordp,p+), one can consider a p-ordinary CM
type ¥ of F (also called a p-adic CM type). Namely, X is a subset of I satisfying
the following two conditions:

e we have I =X U X° (disjoint union), where 3¢ ={coce€ lp|o € X};

e we have {places of I lying above p} =¥, UX7 (disjoint union), where ¥,
is the set of places of I' induced by embeddings ¢, oo for all o in ¥, and ¥ is
the set of their complex conjugates.

It is not difficult to see that there exists a p-ordinary CM type X if and only if
the condition (ordp,p+) is satisfied and that the number of p-ordinary CM types
is equal to 2f{places of I " lying above p} 0t yi5 take a p-ordinary CM type X, and
fix it once and for all. Then it is well known that the sum u, + sz has the same
value for every o in 3. We denote this constant by —w (the weight of ). The
infinity type p of i thus has two expressions as follows:

w= Z(uoo + ps0) = —wt — Z ro(0— 7).

ceY oeEX

2.8.2. The CM periods of Katz, Hida, and Tilouine

We next introduce the complex and p-adic periods which appear in the inter-
polation formula of the p-adic L-functions for CM number fields. Let € be an
integral ideal of F' which is prime to p, and let us choose and fix an element ¢ of
F which satisfies the following two conditions:

(1) the imaginary part Im(c(d)) of ¢ is positive for all o in ¥;

(25) the alternating form defined by (u,v)s = (uv® — uv)/26 induces an iso-
morphism between tp A¢,, tr and 0,
prime to p&Ce.

F}r ¢! for a certain fractional ideal ¢ of F'T

Here dp+ denotes the absolute different of F*. We embed tr into C* diag-
onally via the fixed (p-ordinary) CM type ¥ and denote its image by X(tp),
which becomes a Z-lattice in C*. We denote the complex torus C*/%(xg) by
X (tp). Then the pairing (-,-)s defines a c-polarization on X (tp), and thus, the
pair (X(tp),(-,-)s) gives rise to an abelian variety (X (tg),As) equipped with
a c-polarization As: X (vp)"! = X(tp) ®., . ¢. By construction, the c-polarized
abelian variety (X (tg), As) is equipped with complex multiplication by tp. Note
that the element 26 locally generates the fractional ideal ¢dr of I’ by the polar-
ization condition (2s) (see also [27, Lemme (5.7.35)]). In particular, if we embed
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26 into the idele class group Aj/F* diagonally and denote by (26),, the com-
ponent at a place w, then we can take (20)q as a generator of 9p ®.,. tpq for
every prime ideal 9 of F' relatively prime to c.

Next we endow (X (tr), \s) with a Lo (f2p>)-level structure. In order to do
so, we first decompose € into a product ¢ =3§:J so that §F. is a product of
prime ideals completely split over F'T, J is that of prime ideals inert or ramified
over F* §F and §,. are relatively prime, and §¢ (the complex conjugate of §.)
contains §. We fix such a decomposition of € once and for all. We put f as INEFT
and f. as I N FT; then f and f. are integral ideals of F* and f. contains f. We
choose a differential idele dp+ = (d, ), of F'*, a finite idele of ' whose associated
modulus coincides with 3+, so that the following conditions are fulfilled:

e the local component d, equals 1 unless v divides pfd 4 ;

e if 9 is a prime divisor of § and q is the unique prime ideal of F'T lying
below £, then the local component dq of d is given by (20)q, where we identify
Fq+ with Fq via the isomorphism induced by the canonical inclusion F'T < F.

Choose a rational integer fop in § which is relatively prime to p. Then the com-
position

(72054 /0pk @2 Gl f3p™])(C) = 20,1 /ot @z fo 2™ *Z/Z

d
ety F 2 [tpr @z fo 2p L)L

;> H miw 372372tF/tF

RUSHI
— (CE/E('CF) = X(tp)

induces a g (f2p>)-level structure i(vx) over C. The theory of complex multipli-
cation enables us to find a model of the triple (X (tg), As,i(tF)) over a valuation
ring which is obtained as the inverse image under ¢, of a certain finite inte-
gral extension O’ of O, Moreover, since we admit the unramifiedness condition
(unrp+), we can take O as O™ itself due to the fundamental theorem of the
theory of complex multiplication combined with Serre and Tate’s criterion for
good reduction. Let us denote the inverse image of O™ under tp by W and take
a tr @z W-basis w(tr) of the module of invariant differentials w x(,,.) /- Recall
that wy(y,),w 18 an invertible module over v ®z W since X (rr) has complex
multiplication by tp.

By construction, X (tp) admits a complex uniformization I1: C* — X (tp)
defined as the quotient with respect to the lattice ¥(tp). It induces an isomor-
phism between the modules of invariant differentials

IT*: ('—‘)X(tp)/(C l> @(Cdug,
oex

and we can take Wyans(tr) =, o5 dig as a tp ®z C-basis of the right-hand side.
We define the complex CM period Qcm.co = (oM c0.0)oex € (tp @z C)* =C*=
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by the following equality:
H*W(tF) - QCM,oowtrans (tF)-

On the other hand, (the p-part of) the T'go(f?p°°)-level structure induces an
isomorphism 4, : (01 ®2Gyn)" = X (tr)" between the formal completions along
the identity sections over O™, and hence, we obtain the isomorphism

3 ~ Aur dTU
i Wy (epy0m — DO -
oex 7
We take Wean(tr) =D ey d15 /Ty as atp ®z, O™ _basis of the right-hand side, and
define the p-adic CM period Qom,p = (QcM p,o)oes € (tr 2z @ur)x = ((5‘““)E
by the following equality:

i;w(tF) = QCM,}/JWcan(tF)-

REMARK 2.18

One readily observes by the construction above that, when one replaces w(tr)
with another vty ®7z W-basis of WX (ep) /W5 both QcM,o and Qcm,p are multiplied
by the same value contained in (tp ®z W)*; therefore, the ratio of the pair
(QcM 00, Qom,p) is well defined independently of the choice of a basis w(tr) of

WX (xrp)/ W+

2.8.8. The p-adic L-functions for CM fields

In order to state the interpolation formula of the p-adic L-function for the CM
number field F', we here introduce the notion of dual gréfiencharacters; for a
groflencharacter 7 of type (Ap) on F, the dual groflencharacter 7 of 1 is defined
by n(z)n(xz) = |z|s, for every x in Aj. In the language of ideal characters, it
is characterized as n*(2)7*(2A¢) = NA~! for every fractional ideal A relatively
prime to €(n).

THEOREM 2.19 ([27, THEOREM (5.3.0)], [23, THEOREM II])

Let p be an odd prime number and F a CM field of degree 2d with mazximal totally
real subfield F*. Assume that F, FY, and p satisfy both the conditions (unrp+ )
and (ordp/p+ ). Let us choose and fix a p-ordinary CM type ¥ of F'. Let € = §§.J
be an integral ideal of F relatively prime to p, and let § be a purely imaginary
element of F satisfying both the conditions (15) and (25) stated at the beginning
of Section 2.5.2. Then there exists a unique element £§I§T(F) in the Iwasawa
algebra @“r[[Gal(ngoo /F)]], where Fepeo denotes the ray class field modulo €p>
over F, satisfying

s (LS (F)) (—1)?(27) "D (wt + 1)

=(tp it )W,
e A RN 1 O]
0 T -} A2
gle Pex, CM,00
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for each grifiencharacter n of type (Ag) with conductor dividing €p™> such that

(i) the conductor of n is divisible by all prime factors of §;

(ii) the dnfinity type p= —wt — > s 7r5(0 — &) of n satisfies either of the
following statements:

(a) w>1andrs >0 for all o in X;

(b) w<l andw+r,—1>0 for all o in X.

The local e-factor Wy,(n) at p is defined as

= [T M3 ®up@p™®) Y ap(@)ep (wy ™ (20)512),

Bex, ze(tp,qg/&Be(m)X

where wy denotes a uniformizer of the local field Fyy and e(B) denotes the expo-
nent of B in the conductor of n. In the equation above we diagonally embed 2
into the idéle group Ay and denote its PB-component by (26)yp

In Theorem 2.19 we use the following convention on multi-indices:

wt+2r w+2rs _ _
Q2 _HQCM,?,U for 7=CM or p,|r| = E To,
cEX ocx

s(wt+r)=[[Tw+r,),  m25) =[] m(o(25

oED ceX

REMARK 2.20

The p-adic L-function EKHT( ) does depend on the choice of § satisfying con-
ditions (15) and (25), but we can explicitly describe effects on the interpolation
formula when we replace § by another purely imaginary element §’ satisfying the
polarization conditions (15) and (25). In particular, we readily observe that the
p-adic valuation of EKHT( ) does not change after such a replacement of §. Refer,
for example, to [27, Section 5.8]. We also remark that the assumption (unrp+) is
not required in Katz, Hida, and Tilouin’s original construction of EﬁgT(F ). How-
ever, without (unr g+ ), the constructed p-adic L-function EE%T(F ) might not be

an element of @”r[[Gal(F¢poo /F)]] but an element of Oc, [[Gal(Fepe /F)]].

2.4. Comparison of the p-adic L-functions

In this section we specialize Katz, Hida, and Tilouine’s p-adic L-function for a
CM number field E?%T(F ) to a fixed arithmetic weight parameterization and
obtain an element of the cyclotomic Iwasawa algebra which interpolates critical
values of the L-function associated to a Hilbert modular cusp form with complex
multiplication. At the end of this section, we compare the specialized element
with the p-adic L-function L5¥°(f) constructed by the second-named author,
and formulate a certain conjecture on the relation between Katz’s complex CM
periods and modular symbolic complex periods.
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2.4.1. Comparison of the interpolation formulae

Let the notation be as in the previous section. Recall that, in particular,  denotes
a Y-admissible grolencharacter of type (Ap) on F for an appropriate p-ordinary
CM type X. Now assume that 9(n) is a primitive form; in particular, 9(n) is
an eigenvector with respect to the Hecke operator T'(p) (or U(p)) for each p
lying above p. Then, as we have already seen at the end of Section 2.1.5, the
cusp form 9(n) is nearly p-ordinary if and only if n is ordinary with respect
to ¥; that is, n is unramified at every 8 contained in X,. Assume that 7 is
ordinary with respect to 3, and let 9(n)P* denote the p-stabilization of 9(n). In
particular, the eigenvalue with respect to the normalized Hecke operator Uy(p)
is given by {p"=1}~1n*(P) for each prime ideal p lying above p; here B is an
element of 3, satisfying PP = p. One readily observes that the p-adic valuation
of {p"#1}~1n*(P) coincides with that of the evaluation of the p-adic avatar 7
introduced in Section 2.1.1 at a uniformizer wsy of Fi. Since the p-adic avatar 7
takes values into p-adic units, we see that 9(n)P" is indeed nearly ordinary at p.

PROPOSITION 2.21

Assume that we have chosen and fixed an element § of F satisfying conditions
(1s) and (25) in Section 2.3.2. Then under the settings and the notation as above,
there exists an element L’¢\(n) of O™ [[Gal(F™ (up)/FT)]] characterized by
the interpolation property

X;{Lcyc¢(£;€,(ch(n))
(2.15) LGt — . )G(0) oipe, . A (907, 6, 5) L0 (1), 6, j)
= — 1 - —

" (—2mv/ =17 (= o0) ™2 (— Qa0 ) 501
for an arbitrary natural number j satisfying k5 +1<j < (Kp,2)min and an
arbitrary character ¢ of finite order of Gal(F™ (upe)/F*1). Here Qom oo denotes
Katz’s complex CM period introduced in Section 2.5.2 and Qcm,oo denotes the
modified complex CM period defined by ((20)™1 ® 2mv/—1) " QoM 00, which we

regard as an element of (F* ® C)*. The Gaussian sum G(¢~1) is defined as
(2.13), and the p-adic multiplier Ay(9(n)P=, ¢,7) is defined by

Np? . .
A, (9, 6,7) — 1 TR if p does not divide €(¢),
(Mp_)ordo (€(9) if p divides €(e).
n* (%)
REMARK 2.22
Prasanna and the second-named author [37, Theorem 2.4] have already con-
cyc

structed an object corresponding to £’ (n) in elliptic modular cases, and our

modified complex CM period QCM,OO is a counterpart to the CM period QSM
defined there.

We first prepare two elementary lemmata required for the construction of the
p-adic measure L£”(n).
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LEMMA 2.23
The index (vy : ¢y, ) is relatively prime to p.

Proof

Let Wg (resp., Wr+) denote the group of roots of unity contained in F' (resp., in
F*). Then we have (v : vy ) = Qp(Wr : Wp+ ), where Qp is Hasse’s unit index
defined as (v : Wpty, ). It is known that Qp can take only two possible values 1
or 2 (see [18, Satz 14], [55, Theorem 4.12]). In particular, @ is not divisible by
p, because we assume that p is odd. Moreover, the unit group t} contains none
of the p-power roots of unity, since F//Q is unramified at every place lying above
p due to the assumptions (unrp+) and (ordp,p+). Hence, the index (Wg : Wp+)
is not divisible by p either. This completes the proof. O

LEMMA 2.24

Let 6 be an element of F satisfying conditions (15) and (25) from the beginning
of Section 2.5.2. Then the product |[,cx, 0(20) is an element of Z,; .

Proof

Recall that 2§ is a generator of the p-part of the absolute different of F', or in
other words, 26(tp ®z Z,) =0p Qz Z;, holds (refer to [27, Lemma (5.7.35)]). The
assumptions (unrp+ ) and (ordp, p+) imply that 9p ®7Z,, is trivial, and hence, 26
is a p-adic unit; that is, the image of 20 in F ®z Z,, is contained in (vr ®z Zp)*.
Then the image of 26 under the composition

fecti Nr ®id
% Projection X ~ % Ft/Q X
(vr © L)< B0, TT o 2 (e @2 Z,) —— 5 2

RUSHIA
coincides with ] .y, 0(20) by definition, where the middle isomorphism in the
diagram above is the identification induced by the fixed p-ordinary CM type X:
tpt ®g Ly — H tEp, 2@ 1 (1p00(x))
RUSHIA

Therefore, [], x5 0(26) is an element of Z. O

Lpoo €Y,

Taking the bijection ¥ =5 I'p1;0 + o|p+ into account, we abbreviate the product
[I,cx 0(20) as (20)" in the following arguments.

We now explain how to construct the p-adic measure L;TéM (n). Let € denote
the prime-to-p part of the conductor of  and consider Katz, Hida, and Tilouine’s
measure LEUT(F) introduced in Theorem 2.19, which is by construction an ele-
ment of (5‘"[[Gal(F¢poo /F)]]. Define a p-adic integer d = d(d) to be (—1)%(20)t,
which is indeed a p-adic unit in Z;; by Lemma 2.24. Hence, there exists a unique
element z; of Gal(F(pp=)/F) corresponding to d via xpcyc-

Let oo denote an element of ¥ such that y,(=£,1,4|,, ) takes the maximum
k9%, and let Py denote the corresponding element of ¥,: the prime ideal of F

w1 -
induced by the embedding ¢, 00g: F'— Q,. We denote the lay class field modulo
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QH*}S*G(ZPUEC)\{‘BD} (PB*)°>° over F by Fé(;)oo . Since 7 is ordinary with respect to X,

the p-adic avatar of 7| - |Z‘;’1 is unramified at Py by its construction, and there-

max

fore, the corrcsponding Galois character ngalxp ¢yc factors through the Galois
group Gal( / F). The ray class field F( )OQ is contained in Fgpeo by definition.
On the other hand7 the p-adic cyclotomic extension F(ppe )/ F is totally ramified
at Po, since F' does not contain any p-power roots of unity due to the condi-
tions (unrp+) and (ordp,p+). By comparing ramifications, we see that Fég)oo is
linearly disjoint from F'(ppe) over F. The Galois group of F(ppe) g;))oo JF is
thus decomposed as the direct product of Gal(F(up~)/F) and Gal(Fég)(x, /F).

Via this decomposition we regard (z;,1) as an element of Gal(F(Mpoc>Fé(;)oo /F)
and let Z; denote its arbitrary lift to Gal(Fepe /F). Then we define £3)¢(n) as

the product of a power of Katz’s p-adic CM period Qcﬁ/'ff #u1) and the image

of the element Ex(F, 6)£§I§T(F) under the map
O [[Gal(Fep=/F)]] = O [[Gal(F(j1p)/F)]] = O [[Gal(F* () /F)]]

defined as g > 78! (9)9lF+ (00 ) for each element g of Gal(Fepe /F). Here Ex(F, §)
denotes an element defined by the product (v : 5, )~ /| Dp+[(—20)~ mxtédf(éy
which we call the extra factor. Note that L£'¢y;(n) is indeed p-adically integral,
since Ex(F,0) is a p-adic unit by virtue of Lemmata 2.23 and 2.24 and the

assumption (unrp+).

Proof of Proposition 2.21
We shall deduce the desired interpolation formula of £'¢y;(n) from the inter-
polation formula of EKHT(F ) (see Theorem 2.19). Note that the evaluation of
LY\ (1) at Xy s exactly the same as the evaluation of Ex(F, )L 3" (F) at
the character ngalxncycqﬁ by definition.

Eztra factor. The evaluation of the extra factor Ex(F,d) at the character

nEXT e is calculated as
ngalxp CquS(EX(F, (5))
= (tp: t;”r)_IM(—Q(s) Rt ngdlxp Cyc(b(z;l)

max

= (e ) VD [(—20) G T (a7 D e (1)
= (vp i t) TV IDp+ [o(29) 71 (-20) 7"

At the second equality, we just replace Z; by the corresponding element (zz,1)

. . 0

in the direct product Gal(F'(pp)/F) x Gal(Fép)oo/F). 4
Interpolation region. The infinity type p; of the groBencharacter ngalx%’cyc(b

is given by > v {(ttoc —j)o + (s — j)7}. We then define integers w; and r; ,

by the equation

(2.16)

py=—wit— rjo(0—a).



Iwasawa main conjecture for CM Hilbert cusp forms 33

More concretely, w; and 7;, are defined as follows:

wj =27 — [K,) and Tjo = e — ] —j for each o in X.

= K/IL7270"F+

The interpolation region of Katz, Hida, and Tilouine’s measure for grofiencha-
racters of the form ngalxg,’cycqﬁ is given by

(wj21andrj7620VJ€E) or (wjglandrj’g—&—wj—lzovaez).

The solution of the simultaneous inequalities above with respect to j is then
calculated as max{y, |0 € ¥} +1 < j <min{us | o0 € ¥}, which coincides with
the desired interpolation region 9" +1<j < (Ku,2)min by the definition of
Fop = (K15 Fp2)-

Periods. The equality Qg{vt[;zrj = Qg’f\f?—ﬂ‘l holds for rj =% 7,0 and
? = 00, p. In particular, the contribution of the p-adic CM period appearing in the
interpolation formula of LEGT(F) is canceled by the construction of £y (7).
Moreover, we obtain

(|
Uiioe Vi
(2.17)
_ (D)l (2 1

(—2my/—1) k2l (—QCM,OO)F”“‘2(—QCM,OO)—%J .

L-value. First note that the Galois character ngaIX;,CM(b corresponds to the
ideal character n*N ~7¢*. Here we define ¢*(2A) for a fractional ideal A of F' by
&* (N r/r+ ). The gréBencharacter 7 is ramified at every prime ideal £ dividing
¢, since € is by definition the prime-to-p part of the conductor of 1, and hence,
the local term 1 —n*N ~7¢*(£) at such £ equals 1. Comparing the Dirichlet series
expressions, we can readily check that the L-value L(n*N =7 ¢*,0) exactly equals
L(9(n),¢,7) by the construction of the theta lift. For each place p of FT lying
above p, the local factor of L(¥(n),®,j) at p is given by

Ly (9(n), ¢.4) = {1~ C(9(n),p) 6" (DND 7 + 1" (pep)v pe (¢*) *(0)NP =2}
= (L= "¢ (BINP ) (19" (F)NF) )
for p =PP° with P in ¥,,. Therefore, the equality
(1= 0" 6" (BYNR) ) Ly (9(n), 6,5) = (1 — " 6" (BINR ) "
holds, and the right-hand side of this equation is no other than the local compo-

nent at p of the L-value L(9(n)?P™, ¢, j) by the definition of the p-stabilization of
J(n). Finally we obtain by the definition of the dual groBencharacter an equation

X . 1— M
_ (n*N—J¢*)(q30) — { n*(PB)o*(p)

1 otherwise,

when ¢ is unramified at 3,

for each place P in X, (recall that n* N =7 is unramified at B due to the assump-
tion (unrp+)), and it commdes with the p-adic multiplier A, (9(n)P™", ¢, ) when
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p =Np/p+P does not divide the conductor €(¢) of ¢. Consequently, we have

[10-nNer(e)

gle

X { H (L—n"N"7¢* () (1 - (U*Njcb*)v(‘l‘c))}
(2.18) yex,
x L(n* N7 ¢*,0)

= I  400"e.)LOm"" ;).
plptF-F ,pf€(¢)
Local e-factor at p. Recall that, for each 9 in ¥, and p = PP, we obtain a
specified identification

(2.19) Tpt g ;tpgp

induced by 7,(z) — oy (z) for each element z of tz+, where oq: F < Q denotes
an arbitrary embedding contained in X such that ¢, o oo induces B, and 7,
denotes the restriction of oy to FT. Then (20)yp = oq(20) corresponds to a
unique element (24), of ¢y +,p under the identification (2.19). We define @, as
an element of tp+ ,, corresponding to the fixed uniformizer @y of Fiy via (2.19),
which is also a uniformizer of F,f.

Note that the idelic character corresponding to &7 ¢ is 7| - &Fqﬁ, where
|- |4, denotes the idelic norm character on F' (see Example 2.1 for details). Since
n|- \kF is unramified at each place B in 3, by ordinarity of n with respect to
Y, the exponent e(P) of P € X, in the conductor of 7] - |£F¢ exactly equals the
exponent of p =PP in the conductor of ¢, which we denote by e, (p). By using
these facts, we calculate the local e-factor W, (n|- |£F ¢) in the following way. For
each B in 3, set

Wy (nl -4, ¢)
:ngfeqb(r‘) (17| . |AF ¢)q3(wq—36¢(!3))
x> (10 g@en (wy ™ (20)5 ).

xe(tFﬁ-,y/ped)(V))x

Then Wy (n)|- |ng ¢) obviously equals the product J[pey, W (|- |ng ¢). Note also
that, when ey (p) equals 0, or in other words, when ¢ does not ramify at p, the
local term Wi (n] - |AF ¢) at P is trivial by its definition.

Now assume that ¢ is ramified at p = PR°. Then by direct computation, we
have

Npi—t
n*(B)

= A, (0(n)7, 6, 1) by (a P,

j —e e (p) e
Nm_w(p)(m . HAF‘b)qs(wm ¢(p)) _ ( ) ¢ N+ ¢(p))
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*®) for each p of F* lying

above p. Note that (n]- |£F )p(x) is trivial for each P in ¥, and an arbitrary

Next let us take an element « of F'* satisfying ap, = w;

. N i . . .
element x in vy since n|- |4, is unramified at such B. By using this, we can
calculate as

B (wp—e¢>(P)) Z (77| . |£F¢)m(x)qu (w;ge“’(p)(Z(S)%lm)

w€(vp,q /P P))x

_ ¢p(u_jp—€¢>(¥7)) Z ¢p($)€p (w;%(p)@&);lx)

w€(vpy , /po0P))x

=y ((—26),) > dp(way e (—zay ).

w€(tpy , /P P))x

(2.20)

In the third equality we change the variable of the summation using the fact that
the correspondence x — z(—24), induces an automorphism of (vp+ ,/pcs#))>
Since 2§ is a p-adic unit, the evaluation of the p-adic avatar of the norm char-
acter |-|a,, at the idele of F* defined as (=20)pe,, = ((=20)p)p|pe,, I8 calcu-
lated as H‘IJEE,, o (—28)F% | which coincides with d = Xeye,p(2g)- This implies
that the idele (—20),.,, corresponds to the element z; of Gal(F™ (upe)/F¥)
via the reciprocity map in global class field theory. In particular, the product
Hp\ptFJr ¢p((—20)) coincides with ¢(z;). Taking the product of (2.20) over prime
ideals p of tp+ lying above p, we obtain the equality

H by ((_25)13) Z ¢p($ap_1)ep(_37ap_l)

plpt et xe(tp_;_,p/pe‘i’(’j))x
= ¢(23) Z gb(xofl)eXp(27T\/—1TrF+/Q(xofl)),
€ (et /€(9))

and the last term is no other than the product of ¢(z;) and the Gaussian sum
G(¢) defined as (2.13) under the isomorphism

(€(¢)_1/tF+)X = (tF+/¢(¢))X, za .

Consequently, we obtain

Wyp(nl-15,¢) =[] Wa@l-li,¢)

PeX,

=(z)G(e) [ A0, 6.5).

plptF+ 7p|€(¢)

(2.21)
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Other coefficients. One calculates
(=1)"s¢(2m) s (wjt + 1))
[Dyoe [T (20)"
1) @i=lkuDd( o /—T)®u2 =3t (it —
(2.22) :(t;:r;+)( D (Z2rv—1) Ut = K1)
V1D (~20)mat
_ T(@t—rua) (DM e ) (<2 y/=T) ezl (—26)
(—2my/—1)id V| Dp+|(—28)rm2

Combining (2.16), (2.17), (2.18), (2.21), and (2.22), we obtain the desired
interpolation formula (2.15) of the p-adic measure L3¢y (7). O

(vpivpy)

As in Section 2.2.2, we identify the archimedean part of C1F+ (p>°rp+) with
{£1}/r+, and we denote its element defined as ((—1)%+") er. by w, for each 7
TClp

in I+, where &, ,+ denotes the Kronecker delta. Set eX = (1 £ w,)/2, and define
an idempotent e. of O[[ClL, (p>tp+)]] by

T€l L+

for each € = (e;)rer,, in {£1}!r+; then for an arbitrary ray class character
o: CIJ};+ (p°tp+) — C* of finite order, we have

1 when € coincides with sgn(¢),
Plec) =

0 otherwise.

By abuse of notation, we also use the same notation e, for the image of e. under
the composite map

O[[Cls (p®tr+)]] = O[[Gal(Ff

e,y [FT)]] = O[[Gal(FF (upe=) /FT)]].
Then, by comparing the interpolation formulae (2.14) for f,, = 9(n)P=* and (2.15),
we can conclude that the following equality holds between the two different p-adic

L-functions L3¢y (1) and L5Y°(f,) in O [[Gal(F* (ppee )/ FH)):

e DR+ D= ) 05, o
‘prCM( ) = Z (—Q )K[LQ(_Q )jﬁul
ee{i1}1F+ CM, 0 ’ CM, 0

L3 (fn)-

In particular, we obtain the main result of the analytic part.

COROLLARY 2.25 (THEOREM A)

The p-adic measure Ep "on () is a monzero constant multiple of the cyclotomic
p-adic L-function L3Y°(f,) associated to f, = I(n)P-st in each component of the
semilocal Twasawa algebra @“r[[Gal(F+(upoo)/F+)]], and each of the two p-adic
L-functions generates the same ideal in O™ [[Gal(F (pup)/F1)]] @z, Qp.
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It is widely believed that Corollary 2.25 holds even in O™ [[Gal(F T (tpee ) /F )]
(or in other words, £'¢y(n) and L£Y(f,) have “the same p-invariants”), and
this speculation leads us to make a conjecture on the ratio of two complex periods
constructed in completely different ways.

CONJECTURE 2.26
The ratio of the complex periods
P((Rp9+ Dt — K’Mal)c;n,oo
(—On,00) 12 (—Qom, 00) 001
is a p-adic unit for an arbitrary element € in {£1} r+ with respect to the fized
embedding 1p: Q — Q,,.

REMARK 2.27

In the case where F'T is the rational number field Q (elliptic modular cases), the
second-named author and Prasanna [37, Theorem 6.1] have obtained a partial
result for this conjecture using the nonvanishing modulo p of special values of the
L-functions associated to elliptic cusp forms (due to Stevens [51, Theorem 2.1]
and Ash—Stevens [1]) and the modular parameterization of an elliptic curve with
complex multiplication. However, the nonvanishing modulo p of special values of
the L-functions has not been generalized to general Hilbert modular cusp forms
yet, and there seems to be no generalization of the theory of modular parame-
terization to Hilbert—Blumenthal modular varieties. Hence, it seems difficult to
generalize the proof of [37, Theorem 6.1] to general Hilbert modular cases at
present.

3. The algebraic side

We establish algebraic parts of our main results and apply them to the Iwa-
sawa main conjecture for Hilbert modular cusp forms with complex multiplica-
tion in this section. We first introduce the Selmer groups associated to nearly
p-ordinary Hilbert cusp forms with complex multiplication and compare them
with the Iwasawa module obtained as a certain Galois group Gal(Msyx,/ KSM)
(Section 3.1). Then we verify the (exact) control theorem (Theorem 3.18) which
describes the behavior of the (multivariable) Selmer groups under specialization
procedures (Section 3.2). We finally discuss the almost divisibility of the strict
Selmer groups and base-change compatibility of the characteristic ideals of their
Pontrjagin duals (Sections 3.3 and 3.4). As an application, we discuss the validity
of the cyclotomic Iwasawa main conjecture for Hilbert modular cusp forms with
complex multiplication (Section 3.5).

3.1. Selmer groups

This section is devoted to the definition of various Selmer groups and the compar-
ison among them. In Section 3.1.2 we first recall the general definition of Selmer
groups Sel 4 associated to deformations of Galois representations after Greenberg
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(Definition 3.1), and then define the Selmer group Sel A by applying this gen-
eral recipe to the cyclotomic deformation A(}yc of the Galois representation A‘}yc
associated to a nearly p-ordinary Hilbert eigencuspform f. When the Hilbert cusp
form f has complex multiplication or, in other words, when f is represented as
(the p-stabilization of) the theta lift ¥(n) of a gréBencharacter n of type (Ao)
defined on a certain totally imaginary quadratic extension F of Ft, we identify
Sel A with the Selmer group Seligyyc associated to the cyclotomic deformation
of 1 defined with respect to a fixed CM type ¥ of F (see Lemma 3.5). In Sec-
tion 3.1.4, we introduce the (multivariable) Selmer group Seligm associated to the

deformation of 7 along the field extension Fo /F and prove in Proposition 3.16
that the characteristic ideal of the Pontrjagin dual of SeligM coincides with (a
certain twist of) the characteristic ideal of the 1-isotypic quotient Xy (4 of
the Iwasawa module Xy defined in a classical way. Here v denotes a branch
character associated to 7 (see Lemma 3.7 for details on the branch character ).

3.1.1. General settings
We first recall the general notion of Selmer groups for deformations of Galois
representations, which was introduced by Ralph Greenberg [14, Sections 3 and 4].
Let R be a complete, Noetherian semilocal ring of characteristic 0, and sup-
pose that the residue field R/9% of R is a finite field of characteristic p for each
maximal ideal 91 of R. Let K be a number field and 7 a free R-module of
finite rank on which the absolute Galois group Gk of K acts continuously and
R-linearly. We impose the following constraint on the G-representation 7T :

e the Galois action on 7T is unramified outside a finite set S of places of K
which contains all the places lying above p and all the archimedean places.

Then the action of Gk on T factors through the Galois group Gal(Kg/K) of
the maximal Galois extension Kg over K which is unramified outside the places
of S. For each prime ideal p of K lying above p, we specify an R-direct summand
Fil;rT of 7 which is stable under the action of the decomposition group D, of
Gk at p. In many cases, there exists a canonical (and unique) choice of such
a direct summand FilgT for each p. If the Galois representation 7 is ordinary
(or nearly ordinary) at each place p above p, for example, then there exists a
canonical direct summand Fil;T of 7 induced from what is called the ordinary
filtration at each p. In Section 3.3.2 we shall introduce a more general notion
of local conditions concerning the definition of Selmer groups. We denote the
Pontrjagin dual Homes(R,Qp/Z,) of R by RY. Now let us consider the discrete
‘R-module A defined as A =T ®% R". The absolute Galois group Gk acts on A
via the first factor, and we regard A as a discrete R-linear Galois representation of
Gal(Kg/K). Note that A is equipped with the specified direct summand Fil;rA at
each place p above p which is induced from the specification of direct summands
of T; namely, FilJ A is defined as Fil7 T @ RY.
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DEFINITION 3.1 (GREENBERG'S SELMER GROUP)
The (Greenberg’s) Selmer group Sel 4 associated to A is defined as the kernel of
the global-to-local morphism

H'(Kg/K,A)— [[ H'(In,A) x [] H' (1, A/Fil] A)

Aes peS
AMpoo plprx

induced by the restriction maps of Galois cohomology groups. Here I, denotes
the inertia subgroup of the absolute Galois group Gk at each finite place v of K.

3.1.2. Selmer groups for cyclotomic deformations

Let us recall the following theorem, which is due to many people including Ohta
[38], Carayol [6], Wiles [57], Taylor [53], and Blasius and Rogawski [4]. We quote
[57, Theorems 1, 2] and [21, Theorem I] for nearly ordinary situations as follows.

THEOREM 3.2
Let f be a nearly p-ordinary normalized eigencuspform defined on a totally real
number field F* satisfying (unrp+ ), which is of cohomological weight k, level M,
and nebentypus €. Let K be a finite extension of Q, containing the Hecke field
Qy of f, and let O be the ring of integers of K.

Then there exists a 2-dimensional Galois representation Vi of Gp+ with
coefficients in IC satisfying the following properties.

(1) For every prime ideal q which does not divide pN, the following equation
holds:

det(1 — Froby X; V}) = 1 — C(q; £)X + Nqe (q) X2

(2) For each place p of Ft lying above p, we have a unique Dy-stable sub-
space Fil;Vf of dimension 1 on which D, acts via the character §,: D, — O*
satisfying (2.5).

The Galois representation V; of G+ is called the Galois representation associ-
ated to f.

We define S as a finite set of places of F'™ consisting of all the archimedean
places and all the finite places dividing p9t. Then the action of G+ on Vy factors
through the quotient Gal(Fg, /F*) of Gp+. Let AZ® denote the Iwasawa alge-
bra O[[Gal(F T (ppe)/FT)]] over O. Note that AJ® satisfies all the conditions
which we have imposed on the coefficient ring R of a general Galois represen-
tation in Section 3.1.1. For a G p+-stable O-lattice Ty of V (i.e., a Gp+-stable
O-submodule of V; satistying T ®o K = V}), set

7}Cyc = Tf XKoo A?gyc’ﬁ,

and let Gp+ act on 7,7 diagonally (refer to Section 1.1 on the superscript £).
The G p+-module 7 is called the cyclotomic deformation of Ty. For each place
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p of F'T lying above p, we define Fil;7}cyC as
Fill T = Fil] Ty ®0 AG*

equipped with the diagonal action of G+, where we define Fil;Tf as the inter-
section of Ty and Fill V.

DEFINITION 3.3 (SELMER GROUP SelA;yc)

The Selmer group SelA;yc associated to the cyclotomic deformation T;*° of f
is the Selmer group defined as in Definition 3.1 for the discrete Ag°-linear
G p+-representation A7 =T @ qe AZY.

Note that Sel A does depend on the choice of Gp+-stable O-lattices T¢. When
Vy is residually irreducible, the G p+-stable O-lattice T’ is uniquely determined up
to isomorphisms, and hence, the Selmer group Sel A is also uniquely determined
up to isomorphisms (independently of the choice of TY).

3.1.8. Cyclotomic deformations of Hilbert modular cusp forms with complex mul-
tiplication
From now on let us assume that f is a nearly p-ordinary p-stabilized newform
with complex multiplication. Then by definition there exist a totally imaginary
quadratic extension F' of F'T satisfying the ordinarity condition (ordp/p+), a
p-ordinary CM type ¥ and a ¥-admissible and Y-ordinary groflencharacter n
of type (4g) on F such that f is represented as the p-stabilization 9(n)Pst
of the theta lift J(n) of n (see Proposition 2.13). Since Hecke eigenvalues of
9(n)P5 coincide with those of 9(n) away from prime ideals lying above p, the
Galois representation associated to 9(n)P™* is isomorphic to the Galois repre-
sentation Vi, associated to 9(n) by virtue of Cebotarev’s density theorem. We
shall recall in Appendix A that the Galois representation Vy ) associated to 9(n)

is isomorphic to the induced representation Ind§+lC(77gal) of the 1-dimensional
G p-representation K(n8%!), and hence, there is a canonical G p+-stable O-lattice
of Viy(y, namely, Ind5 O(#Y). We thus adopt Inds O(5#) as the lattice Ty
used in the construction of the Selmer group. The ordinary filtration Fil;Tﬁ(n)
at p above p is then identified with O(n%*!|p,, ), where P is a unique element of
Yp which lies above p.

We here introduce another Selmer group Selﬁglyc which we associate to a
groflencharacter 1 of the CM number field F. The restriction of the action
of Gal(F(pp=)/F) on F(up=) to FT(up~) induces an isomorphism between
Gal(F(pp=)/F) and Gal(FT (upe)/F*), which enables us to identify the Iwa-
sawa algebra O[[Gal(F (upe)/F)]] of Gal(F(ppso)/F) with AZ® in a canonical
manner. Now consider the cyclotomic deformation of 7%

7:7cyc _ O(ngal) R0 Aggyc,ﬁ

equipped with the Dp-stable filtration Fil7'§7:7"y° for each prime ideal P of F' lying
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above p defined by

T,¥¢ if P is contained in ¥,
0 otherwise.

(3.1) Fil57,%¢ = {

As usual we let G act diagonally on 7,7¢. Let S denote the set of places of
F lying above those of F'™ in ST. Then one readily observes that the diagonal
action of G on 7,7¢ factors through the quotient Gal(Fs/F') of GF.

DEFINITION 3.4 (SELMER GROUP Selicyc)
n

The Selmer group Seli%yc associated to the cyclotomic deformation AP of neal
(with respect to the p-ordinary CM type X) is the Selmer group in the sense
of Definition 3.1 constructed for the discrete G p-representation A;¥¢ defined as
7;7<:yc ®Agc A((:ch,\/.

Then one easily sees that the Selmer groups defined in Definitions 3.3 and 3.4
coincide for f, =9 (n)Ps*.

LEMMA 3.5
For the cusp form f, =9(n)P=', the Selmer group SelA?yc 18 isomorphic to the
In

Selmer group Seli;yc as a AZ°-module.

Proof
This is a direct consequence of Shapiro’s lemma. Indeed, we may identify A%

with the induced representation Indf::Jr AYe of AFY¢ by construction (under the
canonical identification O[[Gal(F (pp)/F)]] = AZ), and we therefore obtain
the following isomorphisms by virtue of (generalized) Shapiro’s lemma (see [45,
Proposition B.2] for details):

HI(F;+/F+7A;ZC) = Hl(FS/F7A;:7yC)7
H (I APS) = [T Y (Lo, ATY©)F B
2|1
for every [in S which does not divide poo,

where F¢ and Fy denote the residue fields vty /£ and v+ /I, respectively. Moreover,
at each place p of F'T lying above p, we obtain the equality

H' (I, AT [FilY AT) = H' (I, 0% p,,. ) ®0 AZF @4 AGY)
= H'(Ipe, AY°),

where prp = PP with P in X, and B¢ in X7 Hence, SelA;yf) is canonically
identified with the kernel of the global-to-local map

H'(Fs/FAY) = [ H'(Lw, AY),
weS\X,

which is none other than the Selmer group Selizyc by Definition 3.4. (]
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3.1.4. Selmer groups associated to CM fields and Iwasawa modules of classical
type

Recall that we have introduced the field Fi,, = F (pp) in the basic notations given

before Theorem A of Section 1. Let us first define the multivariable Selmer group

SeligM over AGM := O[[Gal(Fs/F)]] similarly to the Selmer group Seli%yc over

AFC. Set .M = O(n#) o Ag"™* and equip it with the diagonal G p-action.

DEFINITION 3.6 (SELMER GROUP SeliCM)
n

gal

The Selmer group Selicm associated to the deformation ASM of n%* along the
n

extension Foo /F (with respect to the p-ordinary CM type ) is the Selmer group
defined as in Definition 3.1 for the discrete G p-representation .AgM defined as

CM CM,Vv
7:7 ®A8M AO .

In the rest of this section we relate the Selmer group Selicm with a certain
n

Iwasawa module Xy () defined in a classical manner by means of the notion of

a branch character associated to n.

LEMMA 3.7

Let n be a grifiencharacter of type (Ag) on F. Then there exists a p-adic Galois
character ¥: Ggp — @: of finite order such that n#¢~': Gp — @; factors
through the quotient Gal(ﬁoo/F) of Gr. Furthermore, we may choose such a
character ¢ so that the composite field of F(u,) and Ky is abelian over F and
linearly disjoint from F over F, where Ky, denotes the field corresponding to the

kernel of 1.

Proof

Let us construct a character ¢ satisfying the desired properties. First note that
the continuous character 752! factors through the Galois group Gal(Fe(yype /F)
of the ray class field Fg(y)p modulo €(n)p> over F, where &(n) denotes the
conductor of 7. Let A" denote the maximal torsion subgroup of Gal(Fe(,)pe /F),
which is known to be finite. Then the subfield of Fg (), corresponding to A’
coincides with F by definition, and we obtain the exact sequence of abelian
groups

(3.2) 0— A" — Gal(Fe(ype /F) — Gal(F/F) — 0.

This short exact sequence splits, since the Galois group Gal(ﬁ /F) is a free
Zpy-module of rank d 4+ 1+ 6p, by definition. Now we take an arbitrary sec-
tion s: Gal(F/F) — Gal(Fg(p)pe/F) and denote by K’ the intermediate field
of F(yype /F corresponding to s(Gal(F/F)). By construction Gal(K'/F) is iso-
morphic to A’. We then define 1) as the composition

—X

¥ Gp - Gal(K'/F) = A 12 @
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By construction, it is obvious that n8*y~1: Gp — @; factors through the Galois
group Gal(Fs/F) and that K, is contained in K'.

Since the short exact sequence (3.2) splits, the fields K’ and F are lin-
early disjoint over F. Furthermore, since [F'(u,) : F| is prime to p, the Galois
group Gal(F(u,)/F) should be a quotient of the torsion part Gal(K'/F) of
Gal(Fg(y)p/F), and therefore, the field K’ contains F(u,). The composite field
of F(u,) and Ky, which is a subfield of K’, is thus abelian over F' and linearly

disjoint from F' over F. O

DEFINITION 3.8 (BRANCH CHARACTER)

Let 1 be a groflencharacter of type (Ag) on F. We call a character ¢¥: Ggp — @:
of finite order satisfying the assertions proposed in Lemma 3.7 a branch character
associated to 7.

We denote by K the composite field of F'(u,,) and Ky, and we denote by K oM
the composite field of K and Fi, as in Section 1. We set A = Gal(K/F) and
r= Gal(ﬁ/F). The cardinality of A is then the product of the order of ¢ and
the extension degree [K : Ky] of K over K. Note that [K : K] is relatively
prime to p since it divides p — 1.

Now let us consider the following commutative diagram with exact rows and
columns:

HY (A, (ASMOR) — [ H' (I, (AZM)650)
weS\Xp
inf¢ ilnf
0—> SelﬁgM —= H'(Fs/F,A™) 1 H'(rw AS™M)
weS\Xp
(33) ¢ res\L &5\ ¢Res

¢
0 = Ker(¢p /i) = H (Fs /K, ASM)A 55 1‘{ 1"[ H' (I, A7)
¢ weS\Xpw|w

HQ(A7 (ASM)GK)

where ¢, i denotes the global-to-local map induced from the restriction mor-
phisms. The rows are exact by definition. The middle column of the diagram
(3.3) is induced from the inflation-restriction exact sequences associated to the
short exact sequence

1 —— Gal(Fs/K) —— Gal(Fg/F) — A ——= 1

of abelian groups.

The map Res in the right-hand column is induced from restriction maps,
and the exactness of the right-hand column is also deduced from the inflation-
restriction exact sequence. More precisely, we define the map Res = (Res) ¢ S\S,
in the following manner. First we choose and fix a decomposition group D ,, of
Gal(Fg/F) for each place w in S\ X,. We always consider the inertia subgroup
Ir., of Gal(Fs/F) to be contained in the fixed decomposition group Dp,, at
such a place w. There exists a unique place wg of K lying above w which is fixed
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under the action of Dp,,. We identify the intersection of D, and Gal(Fs/K)
(resp., the intersection of Ir,, and Gal(Fs/K)) with the decomposition group
Dk 4, (resp., the inertia subgroup I g,) of Gal(Fs/K) at w. We identify the
quotient group Ir./Ik @, with the inertia subgroup Ix/p., of A= Gal(K/F)
at w. Note that the inertia subgroup of A at w is well defined since A is abelian.
For each place w of K lying above w, we also fix the decomposition group D  of
Gal(Fg/K) (and denote its inertia subgroup by Ik ), and choose an element oy
of Gal(Fs/F) so that amlp,walgl contains Ik . Then the map Res,, is defined
as the composition

Resy: H' (Ipuw, ASM) = [ H' (Irw, ATM)

w|w
S [ H (oalrwog', ASM) = [ H (I, ASM),
w|w wlw

where the first map is the diagonal map, the second one is an isomorphism
induced by the conjugation with respect to (04 )a|w, and the last map is the
usual (componentwise) restriction map. It is easy to observe that the kernel of
Res,, coincides with that of the restriction Hl(IF,w,.AgM) — Hl(IK,u;O,.ASM)7
and hence, the right-hand column of diagram (3.3) is also exact.

Under these settings we shall compare the Selmer group SeligM with

Ker(¢ps /i )-

REMARK 3.9

Since all the cohomology groups H'(A,(ASM)9x), H2(A,(ATM)Cx), and
HY(Ix)puw, (.ASM)IK%) are p-torsion modules annihilated by the cardinality of
A, all of them vanish when the order of v is relatively prime to p; recall that
[K : Ky is not divisible by p. In this case, one may immediately conclude that
SelagM is isomorphic to Ker(¢g, k) by applying the snake lemma to (3.3).

LEMMA 3.10

The G -invariant (ASM)GK of ASM is a co-pseudonull AgM-module; that is,
its Pontrjagin dual is a pseudonull ASM-module. In particular, the cohomology
group H'(A, (AgM)GK) is co-pseudonull as a AGM-module for i=1,2.

Proof

Since Gk is a subgroup o£ G of finite index, its image Q§~under the nat-
ural surjection Gp — Gal(Fw/F) is also a subgroup of Gal(Fu/F) of finite
index. Moreover, since the free part Gal(F/F) of Gal(Fw/F) is isomorphic

to Z;‘f“””, we may choose a basis {vi,...,Vd41+465,} Of Gal(F/F) so that

el Cd+1+6p . .
Yy P } forms a basis of the free part of & for certain nonnega-
tive integers e1,...,€q11465, (due to elementary divisor theory). The Pontrjagin

dual of (.ASM)GK is then isomorphic to a certain quotient of AgM /J, where J
is the ideal of AGM generated by ngal(yfej )er] . —lfor 1<j<d+1+0py.
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Let @ denote a uniformizer of O. Then the AGM-module AGM/(wASM + J) is
clearly finite, which implies that the height of J is greater than or equal to
d+ 1+ 65, because the Krull dimension of AGM is d + 2 + §p,,. The Pontrjagin
dual of (ASM)GK is obviously annihilated by J, and it is thus pseudonull as a
AgM—module since d is a positive integer. O

LEMMA 3.11

The local cohomology group Hl(IK/Rw, (.ASM)IK'@O) is co-pseudonull as a module
over AgM for each place w of F' in S\ Eyp.

Proof
First we assume that w is a place of F' contained in ¥7. We shall prove that
(,ASM)IK@O is co-pseudonull as a AgM—module, which immediately implies the
desired conclusion on the local cohomology group at w. Since K is a finite exten-
sion of F and w is totally ramified in the cyclotomic extension F(up~)/F, the
image of Ik g, in Gal(F(up=)/F) is infinite. We take an element = of Ik g,
whose image in Gal(F(upe)/F) is of infinite order. Let Fééu)/F be the compos-
ite of all Z,-extensions over F' unramified outside w, and take an element y of
Ik, whose image in Gal(Féé”)/F) is of infinite order. Comparing the ramifica-
tion at an arbitrary place above p distinct from w, one readily sees that F'(j,e )
and Fo(f,u ) are linearly disjoint over F'. The Pontrjagin dual of (.ASM)I Ko ig then
isomorphic to a certain quotient of AgM /Jw, where J,, is an ideal of ASM gener-
ated by ngal(m)x|ﬁx —1 and 7753‘1(34)y\15oo — 1. Furthermore, the linear disjointness
of F(upe) and F{ over F implies that ngal(x)x\ﬁw —1and ngal(y)yb;x —1 form
a regular sequence in AgM. The height of J,,, which is contained in the anni-
hilator ideal of the Pontrjagin dual of (ASM)IK"‘DO, thus equals two, and hence,
(AgM)IKv"DO is co-pseudonull as a ASM-module.

Next assume that w is a place of F' contained in S but not lying above
p, and let £ denote the residue characteristic at w. The inertia subgroup I s,
acts on ASM trivially, because Fy /F is unramified at w. The definition of the
branch character v implies that 8¢ ~! is ramified only at places lying above p.
Hence, K is unramified outside p over the field K corresponding to the kernel
of 1), and the inertia subgroup I, 5., of Gal(K/F) at w is naturally regarded as
that of Gal(Ky/F). Under this identification the inertia subgroup Ix,/r., acts

on ASM via the composition Ix /g, — Gal(Ky/F) Y5 0% We shall prove that
HY(Ix)pou, ASM) is trivial. When w is unramified in the finite abelian extension
K/F, the inertia subgroup Ix,p,,, is trivial and there is nothing to prove in
this case. Hence, we assume that w is ramified in K/F. The restriction of ¢ to
Ir/Fw is then not trivial, since ¢: Gal(Ky/F) — @X is injective by definition.
Let II“(’/FM be the /-Sylow subgroup (the wild part) of Ix/p.,, and let I}(/F,w
be the tame quotient IK/F,w/I[“(,/Ew of I'x/F,w- Note that the cohomology group

H! (I}’g/F w? .ASM) is trivial, because it is annihilated by the cardinality of II‘@/F w?
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which is relatively prime to p. By the inflation-restriction exact sequence
W t
0— H'(Ijg ) (AT 5700 ) = HY (I s APM) = HY (IR g0 AG ) i1

combined with the triviality of the cohomology group H!(I ot JFw ASM), we can
identify HI(IK/FU,,ASM) with HI(I;(/FW(ASM)IX/FM). Therefore, it suffices
to verify that Hl(I}(/F w? (ACM)I%/F ») is trivial in order to prove the vanishing
of H' (IK/F,.ASM) If the action of IK/Fw on ,ASM is not trivial, then there
exists an element z of I}?/F,w such that ¥®(z) — 1 does not equal zero. Since
18%(2) is a nontrivial £-power root of unity in O, we easily see that ¢8(z) —1is a
nontrivial unit of O. By definition 1/8%(2) — 1 annihilates (ACM)IK/ rw and hence,
it is trivial. This obviously implies the triviality of H(I! K/ Fw (ASM)IEV(/FYU’). If
Iy JFaw BCtS trivially on .ASM7 then the nontriviality of the action of Ix/p,, on
ASM implies that the tame quotient I} o ACtS nontrivially on ASM. In other
words, if we denote a generator of the cyclic group I, /o by z’, then & (2") — 1
is a nonzero element of AGM. The first cohomology group H!(I} K/ Fw,.ACM)

the finite cyclic group I} /pw 18 described as AM /(g (') = 1) ATM, and we
thus deduce its triviality from the divisibility of ASM as a AGM-module. |

Diagram (3.3) combined with Lemmata 3.10 and 3.11 implies that both the kernel
and the cokernel of the natural map Sel Acm Ker(¢p,/k) are co-pseudonull
ACM
o
AGM

-modules. In particular, the characteristic ideals of Pontrjagin duals of these
-modules coincide with each other. Now we investigate the kernel of ¢p, /x
more precisely, by generalizing Greenberg’s arguments made around [14, (7)] to
multivariable cases. For this purpose we prepare the following technical lemma.

LEMMA 3.12

Let G be a profinite group, and let p: G — O be a continuous character, where
O denotes the ring of integers of a finite extension of Q,. Suppose that G admits
a free abelian pro-p quotient I of finite Zy,-rank, and that p factors through the
quotient T' of G. We denote by T, a continuous G-representation O(p) ®e O[[I'])*
equipped with the diagonal action of G, and we denote by A, its associated discrete
G-representation defined by T, ®oyry O[[L]]Y. Then for an arbitrary free pro-p
subgroup I of T', the first cohomology group H*(I', A,) is trivial.

Note that, in the statement of Lemma 3.12, the free abelian quotient I" naturally
acts on 4, thanks to the assumption on p.

Proof

We verify the claim by induction on the Z,-rank n of I''. First consider the case
where n equals 1. If we choose an element 4 of G so that its image v in I" topo-
logically generates I, then the first cohomology group H*(I”, A,) is described as
the quotient A,/(p(5)y —1).A,. Therefore, the claim holds since A, is a divisible
O[[I']]-module and p(¥)y — 1 is a nonzero element of O[[T']].
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For general n, let us choose an arbitrary free pro-p subgroup I'’ of IV of
Z,-rank n — 1, and consider the inflation-restriction exact sequence

"

(34) 0 —= HYI/T"A") —= HYI',A,) — HYI", A,)T/T".

The induction hypothesis implies the triviality of H'(I” ,Ap). We readily see
that the cohomology group Hl(I"/F”,ASN) is also trivial; indeed, since the
I'"'-coinvariant (7,)r~ of T, is isomorphic to O[[I'/T"']] as an O[[I'/T"]]-module,
its Pontrjagin dual .Afl:” is a divisible O[[I"/T"]]-module. Thus, Hl(F’/F",AE”)
vanishes for the same reason as in the case where n equals 1. Consequently,
the exact sequence (3.4) implies that the cohomology group H'(I",A,) is also
trivial. (]

Applying Lemma 3.12 for G = Gal(Fs/K) and I = Gal(KSM/K) to both the
source and the target of the local-to-global morphism ¢p,/k, we obtain the
following corollaries.

COROLLARY 3.13
The restriction map induces an isomorphism between HI(FS/K,.ASM) and
Hl(FS/f(SOM,ASM)F. Here we identify I = Gal(F/F) with the Galois group

Gal(KSM/K) in the canonical manner.

Proof
Due to the inflation-restriction exact sequence

0—H (T, AM) —» H' (Fs /K, ASM) - H'(Fs/KSM, ASM)T — H2(T, ASM),
it suffices to show that Hi(f,ASM) is trivial for ¢ =1,2. Note that the Galois

group Gal(Fs/KSM) acts trivially on ASM, and hence the first cohomology van-
ishes by a direct consequence of Lemma 3.12. The second cohomology vanishes
since T is a free abelian pro-p group, and thus, its cohomological dimension is
equal to or less than 1. This completes the proof. O

COROLLARY 3.14
Let w be a place of F contained in S\ X,. Then for each place w of K lying
above w, the restriction morphism
(3.5) H' (I 5, AM) — HHl(IR’gOM,w’ASM)
|

is injective. Here Izzc\ , denotes the inertia subgroup of Gal(FS/I?OCOM) at .

Proof

By the inflation-restriction exact sequence, we see that the kernel of the restric-
tion map (3.5) is isomorphic to H'(I(KSM/K)., ASM), where we denote by
I(KSM/K),, the inertia subgroup of Gal(KSM/K) at w. Since I(KM/K),, is
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a Zy-submodule of the free Z,-module T' = Gal(KSM/K) of finite rank, it is
also free as a Zp-module. Applying Lemma 3.12 to HI(I(KgM/K)m,ASM), we
conclude that it is trivial. g

Corollaries 3.13 and 3.14 imply that the kernel of ¢, /i is isomorphic to that of
Hl(Fs/R—OCOM,ASM)AXF_) H HHl(I}\(/DCOM7w7ASM>
weS\XZp w|w
or, in other words, the kernel of the restriction map
Opy o s Homy i (Gal(Fs/KOM)™, ATM) = IT 11 Hom([%bgoM’w,A,C,M).
weS\Xp w|w

Let My, denote the maximal abelian pro-p extension of K SOM unramified outside
the places lying above X, and let Xy, denote the Galois group of My, /KSM.
As in classical Iwasawa theory, an element g of Gal(K{M/F) acts on Xy, by

@+ grg~', where g denotes an arbitrary lift of g to Gal(Msy,, /F). We define the
mazimal Y-isotypic quotient Xy (y) of Xz, as

CcM
X5, = (Xsz, ®z, 0) @p(gaimen/ry Ao -
Here the second tensor product is defined with respect to the ¥-twisting map
O([Gal(KSM/F)| =AM, g (9)glp  for g in Gal(KSM/F).

Since an element § of A acts on ASM via the multiplication by 1(0)d|r(,,), the
kernel of QSFS JReM is calculated as

Ker(gi)Fs/ﬁch) = Homcts(Xgp,ASM)AXF

= Homo[A] (Xgp ®Zp O,ASM)F

= Homo (Gai(F(u,) /7)) (X5, Ay ™)'

In order to investigate the structure of Homoqai(r(u,)/F)) (sz,(w),ATC]:M)f‘, we
introduce the notion of a twisting of a finitely generated AgM—module. Recall
that we have defined the p-twisting map

Tw,: AG" =5 AGM, g—p(g)g for every g in Gal(Fu/F)

for an arbitrary continuous character p: Gal(Fu/F) — O* in Section 1. For an
arbitrary AGM-module M, we define the p-twist Tw,(M) of M as the O-module
M on which an element r of AGM acts as the scalar multiplication by Tw,(r).
The following lemma describes basic properties of twistings of AgM-modules.

LEMMA 3.15
Let p: Gal(Fao/F) — O* be a continuous character and M a AGM-module.

(1) The Pontrjagin dual (Tw,(M))Y of Tw,(M) is isomorphic to Tw,(M"),
the p-twist of the Pontrjagin dual MV of M, as a ASM-module.
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(2) For an arbitrary AgM -module N, we obtain an equality of A%M -modules
HOInAgM (TWP(M), N) = HomAgM (]\47 TWp—l (N))

(3) Assume that M is finitely generated and torsion as a AGM-module. Then
Tw,(M) is pseudonull if and only if M itself is pseudonull. Furthermore, we
obtain the following equality of ideals of ASM:

Chargm (Tw,o(M)) =Tw,- (CharAgm (M)).

In the statement of Lemma 3.15(3), the characteristic ideals of finitely generated
torsion modules over the semilocal ITwasawa algebra AGM are defined component
wise. We shall recall the precise definition of them in Definition 3.22. Note that
the Pontrjagin dual M = Homes(M,Q,/Z,) of a AGM-module M is equipped
with the AGM-module structure defined by r¢(x) := ¢(rz), which is unfortunately
incompatible with the usual action of Gal(Fs /F) on Homes (M, Qp/Z,) defined

by go(z) == p(g~ ).

Proof
Assertions (1) and (2) directly follow from the definition of p-twisting. For asser-
tion (3), assume that M is a pseudonull module. By definition there exist dis-
tinct nonzero elements r; and r, in the annihilator ideal of M which are rela-
tively prime to each other. One then readily observes that both Tw,-1(r1) and
Tw,-1(rz) annihilate Tw,(M) and are relatively prime to each other, which
implies that Tw,(M) is also pseudonull. Similarly one readily verifies the con-
verse implication.

Now let us consider the statement on characteristic ideals in assertion (3).
We first reduce the claim to the case where M is an elementary ASM—module
of the form AgM/ (a), by considering the situation componentwise and using the
structure theorem of finitely generated torsion O[[Gal(F/F)]]-modules. Then the
reduced claim obviously holds, since there exists an isomorphism

AgM/(TWp—l (a)) = Tw, (AgM/(a)),
r mod (Tw,-1(a)) = Tw,(r) mod (a)

of AgM—modules. O

By using the Gal(l?goM/F)—module structure of ASM, we can regard ASM as the
free A8M~—module of rank one defined as Tw,za1 -1 (O[[Gal(f{goM/F)HE/@), where
O[[Gal(KSM/F)]](y) is the maximal t-isotypic quotient of O[[Gal(KSM/F)]]
defined in the same manner as Xy () and (’)[[Gal(f{goM/F)]]E/w) is its Pontrja-
gin dual. We may thus calculate, by using Lemma 3.15 (1) and (2), the kernel
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of ¢FS/}§CM as

Ker(¢p, ieon) = HomoGa(r u,)/ 1)) (X5, 00, Ay )

1) ~
O Hom o (X5, () TWysany -1 (O[[Gal (KM F)]l ) ")

= Hom g (TWeu-1 (O[[Gal(KSM/F)]) (), X% ()

@) ~
= Homygu (O[[Gal(KZM /F)] (), TWysar -1 (X530, ()

— Twngal,—lw(X2p7(¢))v.

The last equality follows from Lemma 3.15 (1) and the fact that the AGM-module
O[[Gal(KSM/F)]](y) is free of rank one. As a consequence of this calculation and
Lemma 3.15 (3), we obtain the following proposition.

PROPOSITION 3.16
The Pontrjagin dual of the Selmer group Selicm is pseudoisomorphic to
n

Twngal,—lw(XEp’(w)) as a ASM-module. In particular, we obtain the following
equality among characteristic ideals:

CharAgM Seli’g;/M = CharAgM (Twngal,—lw(XZP7(w)))

= Twnga1w_1 (CharAgndsz,(w))~

REMARK 3.17

We can define AgM-modules 7,7 and AGM similarly to 7,° and AS™M, namely,
we set T,°M = O(¥) @0 AGMH and AGM = TN @ pgu AGMY. Then we readily
verify that the Pontrjagin dual of the Selmer group SeligM associated to AgM
and the maximal ¢-isotypic quotient Xs  (y) of X5, ®z, O are pseudoisomorphic
as AgM—modulcs by the same argument as above (and they are isomorphic when
the cardinality of A is relatively prime to p). In other words, SclﬁSM is co-

pseudoisomorphic to Tanal,flw(Selig]\A) as a ASM-module.

We have defined the finitely generated AgM—module Xx, ®z, O in a similar way
to the manner in which one defines the (classical) Iwasawa module Xy, for an
algebraic number field K: namely Xy, is the Galois group Gal(M,y /K(ppe)) of
the maximal abelian pro-p extension M,y of K(ppe) which is unramified out-
side places lying above p. Proposition 3.16 describes the relation between Selmer
groups (of Greenberg type) and Iwasawa modules constructed in a classical way.
The algebraic structure of the Iwasawa module Xy, () has been thoroughly stud-
ied by Perrin-Riou [40] (for imaginary quadratic fields) and Hida and Tilouine
[24] (for general CM fields).
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3.2. Exact control theorem

We prove in this section the exact control theorem (Theorem B) for the Selmer
group SeliSM associated to a groencharacter 7 of type (Ag) defined on a CM field
F (see Definition 3.6). Recall that the Iwasawa algebra AGM = O[Gal(Fso/F)]]
is a semilocal ring, each of whose components is isomorphic to the ring of formal
power series over O in d + 14 6y, variables. Therefore, there exists a regular
sequence {x1,...,%dq15p,} in ASM such that each x; belongs to the kernel AY¢
of the augmentation map ASM — AZ = O[[Gal(F (up=)/F)]]. Such a regular
sequence {Z1,..., %4155, } is contained in the Jacobson radical of AgM, and thus,
its arbitrary permutation is also regular. For each j with 0 < j <d+dpy, let 2;
denote the ideal of AGM generated by 1, ... , Ty

(36) Qlj:(xl,...,a:j).

As the convention we use the symbol 2, for the zero ideal of AGM. Let ASM[RA;]
denote the AGM-submodule of ASM consisting of all the elements annihilated
by Q[j.
We here introduce the following nontriviality condition (ntr)q on ASM for
each place B of F' lying above p:
(ntr)y for each maximal ideal 91 of the semilocal Iwasawa algebra AGM, the max-
imal 9M-torsion submodule ASM[SIR] of ASM is not trivial as a Dg-module.

THEOREM 3.18 (EXACT CONTROL THEOREM, THEOREM B)
Assume that the nontriviality condition (ntr)y is fulfilled for every place B con-

tained in Xy Let {x1,...,2aysp,} be an arbitrary reqular sequence in A8M, all of

whose elements belong to A<, and let us define 2; as the ideal of ASM generated
by x1,%32,...,x;. Then the natural map

SeligM (2051 — SGI§SM [Q(J]

induced by the natural inclusion ASM[QIJ-] — AEM is an isomorphism for each j
with 0< j < d+ 6p,.

For the proof of Theorem 3.18, we first replace our Selmer group SeliCM by
n
the strict Selmer group Seli’gﬁ defined below. We then control the strict Selmer
n

group under specialization with respect to the regular sequence {z1,...,z;}.

DEFINITION 3.19
For each j with 0 <j < d+ dF,, we define the strict Selmer group Seli’gﬁ[%] as
n
the kernel of the global-to-local map
H'(Fs/F,AM2,)) — [] H' (I, AMRGY) x [ B (F, AMRL]).

AeS Pexe
Apoo P
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Since, for the strict Selmer group Seligl\}" 21,]° only the local conditions at places

contained in X7 are modified compared to the definition of the usual Selmer
group SelacM[mJ] in Definition 3.6, we have the following comparison result.
n

LEMMA 3.20

Let the notation be as in Theorem 5.18, and assume that the condition (ntr)yp
is fulfilled for each place B contained in X7. Then for every 0 <j < d+dp, the

natural injection SelAgﬁ[Ql 1< SelACM[m mduces an isomorphism.

Proof
We consider the following commutative diagram:

0 — Selicsi/lr[m] - Hl(FS/FzASM[mJ]) - Rstr(FvAgM[Q[j])

(3.7) |
0 — Seljon, — H'(Fs/FAMRY]) — R(F,AMR,]),

where we use the following abbreviations on the direct products of local coho-
mology groups:

5tr( ACM H Hl ACM H Hl ;ASM[QLJD7
R(FAMRG]) = T H' (In, ATV [ H H' (Iyg, AMRL]).

The rightmost vertical map «; of diagram (3.7) is defined as the usual restriction
maps on the 37-components and as the identity maps on the other components.

The snake lemma implies that the natural map Seliéﬁ[Ql ) SelagM[mj] is an

injection whose cokernel is isomorphic to a certain submodule of Ker(c;). On
the other hand, Ker(«;) is isomorphic to H,BEZ;HI(D(;:;/I%ASM[Q(J-]I‘B) due to
the inflation-restriction sequence.

We now verify that each component H'(Dys /Iy, ASM[20;]™) of the direct
product above is trivial. Since the the Pontrjagin dual (ASM)V of ASM is isomor-
phic to AGM as a AGM-module, we have (ASM[R(;]7%)Y = AGM/ Jys with the anni-
hilator ideal Ji of (ASM[R(;]7#)Y. We denote by fy the value of the (geometric)
Frobenius element at 3 acting on AgM[Qlj}I‘ﬁ. Then the unramified cohomology
group H' (D /Iy, ASM[2U,]7%) is described as ASM[RA;]7% /(fon — 1) AGMRA;] 7
and hence, it is trivial if and only if the multiplication by foz —1 on ASM[Qlj]I‘J’ is
surjective; in other words, it is trivial if and only if the multiplication by fp —1
induces an injective endomorphism on AGM/ Jgs. The latter condition is obviously
fulfilled when fogz —1 is invertible in AgM /Js or, equivalently, when it is invertible
in AGM /9 for each maximal ideal of AGM containing Jy. The condition (ntr)g
thus implies the triviality of each cohomology group H'(Dgyp /Isp,ASM[i’lj}Im),
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since (ntr)y asserts that the value of fy does not equal 1 in AGM /9. Conse-

quently, the strict Selmer group Seli’gﬁ[%] is isomorphic to Selicm 2] for every
n J n

j with 0 <j <d+ dp, when we assume the condition (ntr)y for each place P
contained in 37. (]

Let us return to the proof of Theorem 3.18.

Proof of Theorem 5.18
In order to control the strict Selmer group Seli’;ﬁ[%], we consider the following
diagram for each j:
(3.8)
0—> Seligﬁ[%m —— H'(Fs/F, AJM [ 41]) — Rete (F, ATM[541])
o) |

U Seli;;ii[mj] [2)41] = H' (Fs/F, A7MR5]) [wj41] = Rewr (F ATV ]) 2441,
where the symbol Rg, (F, ASM[Qlk]) denotes the groups introduced in diagram
(3.7). The middle and rightmost vertical maps «;,; are induced from the long
exact sequence in Galois cohomology associated to the following short exact
sequence of Gal(Fg/F)-modules:

(3.9) 0 — ASM[RL 4] — ASM[1;] ZH ACM[R1) — 0.

In particular o is surjective by construction. It thus suffices, by the snake lemma
applied to (3.8), to verify that the map «; (resp., §;) is injective in order to prove
that the map Seligﬁ[mﬁl] — Seli’;ﬁ[%][scjﬂ] under consideration is injective
(resp., surjective).

As for the kernel of «;, we first observe that it is isomorphic to the quo-
tient module H°(Fs/F, ASM[;]) /41 HO(Fs/F, ASM[2,]) by the long exact
sequence of cohomology of Gal(Fs/F’) obtained from (3.9). Obviously, the global
zeroth cohomology group H(Fs/F, ASM [2(;]) is a submodule of the local zeroth
cohomology group H(Fy, ASM[QLJ-]) for an arbitrary place 3 in X7. As we shall
see in the next paragraph, the latter cohomology group H(Fy, .ASM[QlJ]) is triv-
ial under the condition (ntr)q. This implies that Ker(c;) is trivial.

Next we verify the triviality of the kernel of 3;. For each place w in S, let
Bj,w denote the map induced by §; on the w-component of Rg.(F), ASM [241]).
Then by the long exact sequence of group cohomology for D,,- or I,,-modules
associated to the short exact sequence (3.9), we have

Ker(ﬂj)w)
o JHO(Fuy ASMRG]) /251 HO(Fy, APMIRL]) - for w e ¢,
 HO (L, AAMR]) f2j 41 HO (Lo, ASM0]) for we S\ (8, USE USy).

For a place w in X, the cohomology group HO(Fw,ASM[Qlj]) itself is trivial
under the condition (ntr),,. In fact, it is easy to redescribe H(F,, ASM[2;]) as
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HO(Dy /1y, AJM[24;]7) by definition. We denote by f,, the value of the Frobenius
element at w acting on ASM[Qlj]IW. Then we readily see that the Pontrjagin dual
of HO(Dw/Iw,.ASM[Qlj]IW) is isomorphic to the cokernel of the multiplication
of fu —1 on AGM/J,, where J, is the annihilator ideal of (ASM[2;]7)Y. The
element f,, — 1 is, however, a unit of ASM/J,, thanks to the condition (ntr),,
as discussed in the proof of Lemma 3.20, and in particular, the cokernel of the
multiplication of f,, — 1 is trivial. This completes the proof of the triviality of
the kernel of 8;,..

For a place w in S'\ (¥, UXJ UX), the inertia subgroup I,, acts on O(n)
through a finite quotient and acts on AgM"ﬁ trivially. Let E,, denote the (finite)
image of I,, under the Galois character 7%%!, and let @™ O denote the ideal of
O generated by every element of the form ¢ — 1 with ¢ belonging to E,,. Here
w denotes a uniformizer of O. Then one readily sees that the cohomology group
H O(Iw,ASM[Q[j]) is none other than the maximal w™-torsion submodule of
ASMIR(;]. The Pontrjagin dual of Ker(f;,,) is thus isomorphic to the kernel of the
multiplication of ;41 on AgM/(w"w ,1,...,%;). The sequence x1, ...,z 41, w™
is, however, a regular sequence contained in the Jacobson radical of A%M7 and
thus, its permutation w",xq,...,2;41 is also a regular sequence in A(CQM. We
therefore see that the kernel of j3; ., is trivial. O

We finally remark that, by applying the arguments from the proof of Lemma 3.20
to the discrete AGM-module AgM, we obtain the following result.

LEMMA 3.21

The natural injection Sel>5

AGM
AGM -modules. Furthermore, if the following condition (ntr)y g on .AiM is ful-
filled for each place P € X7, then the injection above is an isomorphism.

— Selicm is a co-pseudoisomorphism of discrete
b

(ntr)y sy For each mazimal ideal M of ASM, the mazimal M-torsion submodule
AgM[im] of AgM is not trivial as a Dg-module.

Proof

We may verify that (Aij)I‘l‘ is a co-pseudonull AgM—module for each place
B of F'in X7 by arguments similar to the proof of the AGM-co-pseudonullity of
(.ASM)IK*DO (see the proof of Lemma 3.11). Therefore, the first half of the claim is

true because the cokernel of the natural injection Seli’gf\}r — SeligM is a submod-
¥

ule of the direct product of unramified cohomology groups H'(Dy /Iy, (ASM)I‘B)
for places ‘B in X7, which are all co-pseudonull.

The second half of the claim is verified by the same argument as the proof
of Lemma 3.20. O
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3.3. Greenberg’s criterion for almost divisibility

As is well known, the characteristic ideal of a finitely generated torsion mod-
ule over a complete Noetherian regular local domain is mot necessarily pre-
served under base-change (or specialization) procedures. Indeed, the existence
of a nontrivial pseudonull submodule causes peculiar behavior of the character-
istic ideal under specialization. Therefore, when we discuss specialization of the
multivariable Iwasawa main conjecture (or, in particular, specialization of multi-
variable Selmer groups), it is crucial to check whether the Pontrjagin dual of the
Selmer group contains nontrivial pseudonull submodules or not. Greenberg [17]
has recently presented certain sufficient conditions for the pseudonull submodule
of the Pontrjagin dual of the Selmer group to be trivial, which is applicable to
quite general situations. In this section we introduce various hypotheses which
are necessary to state Greenberg’s criterion, and then we briefly review the main
results of [17].

3.8.1. Algebraic settings

Let Ag be the ring O[[T1,...,T},]] of formal power series over the ring of integers
O of a finite extension of @), and let R be a Ag-algebra which is isomorphic to
the direct product of a finite number of copies of Ag. For each cofinitely gener-
ated discrete R-module A, we define the R-corank corankg (A) of A as a finite
set (corankpg, (€;A));c; of nonnegative integers, where each R; denotes a local
component of the semilocal ring R cut out by an idempotent e;. We endow the
set of the coranks of cofinitely generated discrete R-modules with the compo-
nentwise partial order; namely, the notation corankg (A;) < corankg (A2) means
that corankg,(e; A1) < corankg, (e;.42) holds for every 4 in I. The characteristic
ideal of a finitely generated torsion R-module for the semilocal ring R is also
defined componentwise as follows.

DEFINITION 3.22 (CHARACTERISTIC IDEAL OF R-MODULES)

Let M be a finitely generated torsion R-module. Then we define the (R-)character-
istic ideal Charg (M) of M as the ideal of R corresponding to [[;.; Charg, (e; M)
ser Ri of R. Here Charg, (e; M)
denotes the characteristic ideal of the finitely generated torsion module e; M

under the indecomposable decomposition R =]

over the complete Noetherian regular local ring R;, which is defined in the usual
manner.

By definition the characteristic ideal Charg (M) is a principal ideal of R.

REMARK 3.23

Greenberg [16], [17] assumes that the coefficient ring R is a local ring equipped
with several good properties (which Greenberg calls a reflexive ring). In our
setting the coefficient ring R is a semilocal ring and is no longer local. However,
each local component of R is a complete Noetherian regular local ring isomorphic
to Ag, which is compatible with Greenberg’s setting. Indeed, it is not difficult at
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all to extend Greenberg’s results from [16] and [17] to our semilocal coefficient
case by using the decomposition of the coefficient ring R and R-modules. In
Section 3.3.3 we shall introduce statements of Greenberg’s results of [16] and [17]
extended to the semilocal coefficient case.

Now let K, S, and 7 be as in Section 3.1.1. Since the semilocal ring R =[[;; R:
satisfies all the conditions introduced in Section 3.1.1, we can consider the Selmer
group of R-linear Gk-representations. For the discrete R-module A=T7 @z RY
associated to T, we specify an R-submodule L(K,,.A) of the local Galois coho-
mology group H'(K,,.A) for each v in S, which we call a local condition at v. We
denote such a specification of local conditions by £ for brevity. Set Qr(K,,.4)
as the quotient H'(K,,A)/L(K,,A) for each v in S. We define L(K,.A) as the
product of the R-submodules L(K,,.A) for all places v in S, and similarly we
introduce notation on products of local cohomology groups as follows:

P(KA) =[] H' (Ki,A),  Qc(K A) =[] Qc(Ky, A).
veS veS
The L-Selmer group Selz (K, A) associated to A is defined to be the kernel of the
natural global-to-local homomorphism

(3.10) b HY (Ks/K, A) = Qr (K, A)

induced by restriction morphisms of Galois cohomologies. Then, by definition,
Selz (K, .A) is an R-submodule of the first cohomology group H!(Kg/K,A) of
the Galois group Gal(Kg/K) with coefficients in .A. When we take the trivial
specification Ly, or, in other words, when we impose the minimal local con-
dition L(K,,.A) =0 on each place v in S, the Liiy-Selmer group is denoted by
II* (K, S,.A) in [15] and [17] and is referred to as the fine S-Selmer group asso-
ciated to A after Coates and Sujatha [7].

Concerning the algebraic structure of the £-Selmer groups, the following two
statements are known to be equivalent (see [15, Proposition 2.4] for the proof):

e the Pontrjagin dual Sel}.(K,.A) of the £-Selmer group Sel.(K,.4) does not
contain nontrivial Ag-pseudonull submodules;

e the £-Selmer group Sel. (K, A) is almost divisible as a discrete Ag-module;
that is, the equality PBSels(K,.A) = Selz(K,.A) holds for all but finitely many
prime ideals B of height one of Ag.

3.3.2. Various hypotheses
Greenberg has thoroughly studied the almost Ag-divisibility of the L£-Selmer
group and established certain useful criteria for almost Ag-divisibility in [15],
[16], and [17]. Now let us introduce various hypotheses which are necessary to
state Greenberg’s criteria (see also [17, Section 2]).

The first two hypotheses concern the Kummer dual (or sometimes denoted by
Cartier dual in the literature) 7* = Homcys (A, ftpe ) of A. For a place v contained
in S, we consider the following two statements:
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(LOCS?U) the local Galois invariant submodule HS (K, 7*) of T* is trivial;
(LOCE?U) the quotient module 7*/HS (K., T*) is reflexive as an R-module.

The next hypothesis concerns the generalized second Tate-Safarevic group
II1%(K, S, .A) defined as the kernel of the global-to-local morphism

H?(Ks /K, A) = [T H? (Ko, 4)

veS
induced by usual restriction morphisms. Then we consider:

(LEO4) the generalized second Tate-Safarevic group II?*(K,S, A) is cotorsion
as an R-module.

One of the significant features concerning the hypothesis (LEO4) is that it
behaves well under specialization procedures with respect to height-one prime
ideals; namely, the condition (LEO 4) holds if and only if the condition (LEO 4(z)
holds (as a condition on the Ag/(IT)-module A[II]) for all but finitely many prime
ideals (IT) of height one of Ay (generated by a prime element IT). Here we denote
by A[IT] the maximal II-torsion submodule of A. We refer to [15, Lemma 4.4.1
and Remark 2.1.3] for the proof of this property.
Finally, we introduce the hypothesis on the global-to-local morphism ¢:

(SUR4,z) the global-to-local morphism ¢ is surjective.

3.3.3. Greenberg’s criterion

The following criterion for the almost divisibility of Selz(K,.4) is due to Green-
berg [17]. We state it for modules over the semilocal ring R =[],.; Ri, contrary
to the settings in [17].

el

THEOREM 3.24 ([17, PROPOSITION 4.1.1])

Let R be a finite Ag-algebra which is isomorphic to the direct product of finitely
many copies of Ao, and let K, S, and A be as above. Assume that the local
condition L(K, A) (C P(K,A)) is almost Ag-divisible, and all the conditions
(LOCS?UO) (for a certain nonarchimedean place vy in S), (LOCf?U) (for every
place v in S), (LEO4), and (SUR 4 ) hold. Furthermore suppose that at least
one of the following conditions is fulfilled:

(a) for each mazimal ideal M of R, the mazimal M-torsion submodule AN
has no subquotient isomorphic to yi, as a Galois representation of Gal(K/K) over
Fp;

(b) the discrete module A is cofree as an Ag-module, and for each mazimal
ideal M of R, the mazimal M-torsion submodule A[IM] has no quotient isomor-
phic to p, as a Galois representation of Gal(K/K) over F,;

(c) there emists a place vy contained in S such that HS (Ky,, T*) is trivial

and such that Qg (Ky,,.A) is coreflexive as a Ag-module.

Then the L-Selmer group Selz (K, A) is almost divisible as a Ag-module.
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REMARK 3.25

Among various assumptions of Theorem 3.24, the almost Ag-divisibility of the
local condition L(K,.A) and the hypotheses (LEO 4) and (SUR 4 ) are rather
nontrivial and not so easy to verify. In fact, the hypothesis (LEO 4) is closely
related to the weak Leopoldt conjecture in classical settings and is quite nontrivial
(see [15, Introduction and Section 6.D] for further discussion and for several
examples where the hypothesis (LEO 4) is not valid). The surjectivity condition
(SUR 4,) of the global-to-local morphism ¢, is closely related to the triviality
of the dual Selmer group, as discussed later in Section 3.3.4. Finally, the local
condition L(K,.A) often tends to be not almost divisible; even in our CM setting,
the unramified cohomology group H&r(ngc,AgM) at a place B¢ in 3¢ might not
be almost divisible in general, and we cannot directly apply Greenberg’s criterion
to SeligM. This is one of the reasons why we replace our Selmer group SeligM

with the strict Selmer group Seli’csg in Section 3.4.
n

8.8.4. Dual Selmer groups and the surjectivity hypothesis
By virtue of Poitou and Tate’s [34, (8.6.10)] long exact sequence on Galois coho-
mology groups, the cokernel of the global-to-local homomorphism ¢, is rep-
resented in terms of the dual Selmer group Selg«(K,T*) of Selz(K,.A), which
enables us to check the hypothesis (SUR 4 ) by investigating the triviality of
Selz« (K, T*). We here define the dual Selmer group Selz- (K, 7*) and introduce
a criterion for its triviality, which is also due to Greenberg [16]. In the following
paragraphs the subscript “cts” denotes the Galois cohomology groups of contin-
uous cocycles.

Let 7* = Homes (A, tip ) denote the Kummer dual of A. Then the natural
pairing A x T* — pipeo combined with the cup product of the Galois cohomology
induces the local Tate pairing

(3.11) HY (Ko, A) x Hogo (Ko, T) = Qp/Zy

for each v in S, which is a perfect pairing as is well known. We specify a sub-
group L*(K,,T*) of HL.(K,,T*) as the orthogonal complement of L(K,,.A)
under the local Tate pairing (3.11). We denote such specifications of submod-
ules of the local Galois cohomology groups HX (K., T*) by £*. The dual Selmer
group Selg« (K, 7*) for T* is then defined as the kernel of the global-to-local

homomorphism

Gt Hclts(KS/KvT*) - Qﬁ*(K>T*)=
where Q-+ (K, T*) is defined as the direct product [, . g Hes (Ko, T%)/L* (Ko, T).
Meanwhile the fine S-Selmer group I_Hl(K,S, T*) associated to T* is defined as
the local-to-global map HY (Ks/K, T*) = [],cq Hbs(Ky, T*). Then one readily

verifies that the Pontrjagin dual of the cokernel of ¢, is isomorphic to the quo-
tient Selz« (K, 7*)/III* (K, S, 7*), and the Pontrjagin dual of the cokernel of ¢ -
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is isomorphic to Selz(K,.A) /I (K, S,.A) (see [16, Proposition 3.1.1]). In partic-
ular, the triviality of the dual Selmer group Selz(K,7™*) implies the validity of
the hypothesis (SUR 4 ¢).

Greenberg himself has given a sufficient condition for the dual Selmer group
Selz« (K, T™) to vanish. In order to state it, we here introduce another hypothesis:
(CRK 4,z) the following equality among R-coranks holds (recall the definition

and conventions on the R-corank in Section 3.3.1):

corankr H'(Ks /K, A) = corankg Sel. (K, .A) + corankzr Q. (K, A).

Recall that we have the following equality on R-coranks by the definition of the
L-Selmer group as the kernel of the global-to-local morphism (3.10):

corankr H'(Kg /K, A)
= corankg Selz (K, A) + corankg Q- (K, A) — corankg Coker(¢,).
Hence, it is obvious that the following inequality always holds:
corankr H'(Kg /K, A) < corankg Sel. (K, .A) + corankr Q. (K, A).

It is also obvious that the condition (CRK 4 ) is valid if and only if the cokernel
of the global-to-local morphism ¢, is cotorsion as an Ag-module.

PROPOSITION 3.26 ([16, PROPOSITION 3.2.1])

Suppose that A is a divisible R-module, and both of the conditions (LEO4) and
(CRK A,) hold for A and a specification L. Furthermore, assume that at least
one of the conditions (a), (b) in the statement of Theorem 3.2/ or the following
condition (¢') is fulfilled:

(c') there exists a place vy contained in S such that HO (K, T*) is trivial
and such that Qz(Ky,,.A) is divisible as a Ag-module.

Then the dual Selmer group Selg« (K, T*) is trivial; in particular, the surjectivity
condition (SUR 4 z) holds for A and L.

Obviously the condition (c) in Theorem 3.24 implies the condition (c¢’) above.

3.4. Inductive specialization of the characteristic ideals

In the rest of this section we shall state the main result of the algebraic side of
this article (Theorem 3.27) and prove it. As in Section 3.1.2, we denote by F*
a totally real number field of degree d which satisfies the condition (unrp+). Let
f be a p-ordinary p-stabilized newform of cohomological weight «, level 91, and
nebentypus € defined on F*, and suppose that f has complex multiplication.
We denote by n the groBencharacter of type (Ag) defined on a totally imaginary
quadratic extension F' over F'T satisfying the ordinarity condition (ord /Pt ) to
which the cusp form f,, = 9(n)P™* is associated. As we have already mentioned,
it is always possible to assume that 7 is admissible and ordinary with respect
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to an appropriate p-ordinary CM type X of F'. We choose a branch character ¢
associated to 7 and fix it (see Definition 3.8).

Recall the ¥-branch 55(1/1) of Katz, Hida, and Tilouine’s p-adic L-function
LIS (F) defined in Section 1; namely, £(¢) is the image of LX3T(F) under
the Y-twisting map

0" [[Gal(Fey= /F)]] — O™ [[Gal(Fo /F)]], g (9)gl5. -

THEOREM 3.27
Let the notation be as above. Furthermore, assume the following three conditions:

e the nontriviality condition (ntr )y for every place B of F' contained in X5
o (IMCp.y) the ((d+ 1+ 0Fp)-variable) Twasawa’s main conjecture

CharAgM (Xs,,()) = (55(1/’))

holds as an equality of ideals in A8M®@(5‘” for the CM number field F' and the
branch character ¥;

o (NVises,)) the cyclotomic p-adic L-function LY°(fy) for f, = I (n)P-st
does not vanish in the sense that each component of L3Y°(f,) in the indecompos-

able decomposition of Agc®0(5”r does not equal zero.
Then we have the following equality of ideals of AZ°:
(3.12) (CharAgM (Seligm)v) ®agM AZ = CharA%yc(SelA;Z]c)V,

where the tensor product on the left-hand side is taken with respect to the canon-
ical quotient map AGM — AG°.

The rest of this section is devoted to the proof of Theorem 3.27. We shall verify
Theorem 3.27 by induction on the Krull dimension of the coefficient ring AGM,
applying repeatedly the specialization lemma introduced below in Section 3.4.1
(Lemma 3.29), Greenberg’s criterion for almost divisibility (Theorem 3.24), and
the exact control theorem (Theorem 3.18).

REMARK 3.28
The conditions (IMCp,y) and (NV o (s ) imply an important algebraic property
of the Selmer group:

(COT 4o¢) the Selmer group Sel 4o is a cotorsion Ag“-module.
n n

In order to deduce the conclusion of Theorem 3.27, we may replace the
analytic condition (NV zeve(r )) by the algebraic condition (COT A?ff)' We also
remark that we use the analytic condition (NV eve(y y) only at the final step of
our inductive argument (see Section 3.4.6).
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3.4.1. The specialization lemma

First, we recall the following elementary lemma (which we shall refer to as the
specialization lemma later), describing the behavior of characteristic ideals under
specialization procedures.

LEMMA 3.29

Let R be a finite Ag-algebra which is isomorphic to the direct product of finitely
many copies of Ao, and let M be an R-module which is finitely generated and tor-
sion. Assume that M contains no nontrivial pseudonull Ag-submodules. Let (IT)
denote a prime ideal of height one of Ao, and assume that (IT) does not divide
the characteristic ideal Charg (M) of M. Then the quotient module M/IIM is
finitely generated and torsion as an R/IIR-module, and the base change
Charg (M) ®&r R/IIR of the characteristic ideal Charg (M) coincides with the
characteristic ideal Charg g (M/IIM) of the R/IIR-module M/IIM as an
ideal of the quotient ring R/IIR.

Here we remark that (commutative) Noetherian regular local rings are unique
factorization domains, and hence every height-one prime ideal of Aq is a principal
ideal.

We readily verify the lemma above in essentially the same way as the proof of
[35, Lemma 3.1]. We thus omit the proof here, just emphasizing that the triviality
of the pseudonull Ag-submodule of M plays a crucial role in the verification of
Lemma 3.29.

8.4.2. Settings on regular sequences and local conditions

We now apply the results of Sections 3.3 and 3.4 to the case where R is the
semilocal Twasawa algebra AGM = O[[Gal(Fs/F)]] and A is the local Iwasawa
algebra O[[Gal(F/F)]], which is isomorphic to the ring of formal power series in
d+ 1+ dp, variables. Here we henceforth choose and fix a splitting of the group
extension

1 — Gal(Fy/F) = Gal(F(y,)/F) — Gal(Fo/F) — Gal(F/F) — 1

and regard O[[Gal(F/F)]] as a subring of AGM by using this splitting. This iden-
tification endows the semilocal algebra ASM with the Ag-module structure. In
the following arguments, we inductively find elements 71, ...,va+s,, of Gal(ﬁ /F)
so that v1 —1,...,744s,, — 1 is a regular sequence of Ag = O[[Gal(F/F)]] con-
tained in A%° and they satisfy certain “nice” properties. We here prepare nota-
tion on regular sequences. Let j be a natural number with 1 < j <d+ dr,, and
suppose that we have already chosen elements 7,...,v; of Gal(ﬁ/F) such that

7 —1,...,7; —1is a regular sequence of Ay contained in AV¢. We set xj, =y, —1
for each k£ with 1 <k <j, and let ?; denote the ideal of AgM generated by
Z1,...,o; with the convention that 2y denotes the zero ideal in A8M. Then the

notation introduced here is compatible with that introduced in Section 3.2. We
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also define Aéj) to be the quotient ring A¢/(z1,22,...,x;), which is a complete
Noetherian regular local ring isomorphic to the ring of formal power series in
d+ 140, — j variables.

Now we introduce the local condition Ly, corresponding to the strict Selmer
group; namely, we set for each nonarchimedean place v in S

H&r(FvaAyc]M[QlJD for v in S\(EP U E;))v
Lstr(Fv’ASM[Qlj]) =q HY(F,, ASM[2])  for v e X,
0 for v e X7,

where H} (F,, ASM[2;]) denotes the unramified cohomology group defined to be
HY(Dy /I, AJM[25]"). We also introduce the local condition Ly (F, AgM) for
the discrete ASM-module AgM in the same manner.

The discrete AGM /2;-module ASM[2;] corresponds to the continuous Galois
representation 7;,CM /QLJ»ECM; that is, the Pontrjagin duality induces an isomor-
phism of AGM /20;-linear Gal(Fs/F)-representations

ATMRLG) 2 (T, /2 TN @ gy, (AGM/25)Y.

We thus denote the Kummer dual of AgM[Q[j] by (7;CM /QleCM)*, following
Greenberg’s notation introduced in Section 3.3.4. Then the local condition L%,
for the dual strict Selmer group Selcx, (F), (7;CM /QIJECM)*) is calculated as

Ll (Fo, (TN A, TM))

(3.13) Hy (Fyy (TEM/TPM*) - for ve S\ (2, US5),
=140 for v € X,
HL(Fy (TN /2, TCM)*) - for v € B,

cts
where the unramified cohomology H&r(FU,('EZCM /Qlﬂ;CM)*) is defined in the
usual manner as H (Do /1, (TN /24, T,°M)* 1), Indeed, (3.13) follows for places
of F' lying above p directly from the definition of the local condition of the dual
Selmer groups based upon the local Tate duality (3.11). Now we temporarily
abbreviate ASM[2;] as A and (7,”M/2;T,°M)* as T* for brevity. Then for a
nonarchimedean place of F' contained in S but not lying above p, it is well
known that the unramified cohomology groups are the orthogonal complements
of each other under the local Tate pairing (3.11) for finite Galois modules A[J"]
and T*/J"T*. Here J is the Jacobian radical of AgM and n is an arbitrary natu-
ral number. Since 7* is obviously complete with respect to the J-adic topology,
we readily obtain (3.13) for such a place by employing standard limit arguments
based upon Tate’s theorem on the inverse limits of Galois cohomologies (e.g.,
refer to [34, Corollary 2.3.5], [15, Remark 3.5.1]).

3.4.8. Preliminary step: verification of several hypotheses

As the preliminary step of our inductive arguments, we here verify the local

hypotheses (LOCS%M[Q[_] ,) and (LOCE;,)CM[QH ,), the almost A((]J)—divisibility of
n il n il
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Ly, (F, A,?M[Qlj]) and the condition (c¢) in Theorem 3.24 for every j. First, we

readily observe that the local hypothesis (LOC(I)

is valid for every nonar-
ACM 2,]0) Y

chimedean place v in S (and hence the local hypothesis (LOCEi%;M 2,0
matically satisfied for every place v in S). In fact (7;,CM /Qlj%CM)* is a free
ASM/2;-module of rank one on which every element g of Gal(Fs/F) acts by
the multiplication of x, .75 (g7 ")g~'. Now let v be a nonarchimedean place
v in S. Since every nonarchimedean place of F' does not split completely in the
cyclotomic Zj,-extension F¥° of F', the image of the decomposition subgroup D,
at v in Gal(FZY°/F) is not trivial. In particular, there exists an element go of D,
such that the image of £, := X;}:ycngal(go_l)go_l — 1 in ASM/2; does not vanish
(because it is nonzero in the quotient AZ° of AGM/2;). The definition of &,
implies that, under the indecomposable decomposition of A%M, no components
of 4, equal zero. Since every indecomposable component of AgM /2U; is a domain,
we readily see that the &, -torsion submodule of the free AGM /2(;-module of rank
one is trivial. This implies that the D, -invariant of ('7770M /QljﬁCM)* equals zero,

and thus, (LOCSB;M 2] ,) holds for every j and for every nonarchimedean v in S.
n a1

We now verify the almost divisibility of the local condition Ly, (F, ASM 24]).

There is nothing to prove for a place in 37, since the local condition is trivial

at such a place. For a place B in %, the local condition Lg(Fy, ASM[2L5])

coincides with the whole cohomology group H'(Fy, ASM[2]), and its almost

) is auto-

A(()j )—divisibility follows from the hypothesis (LOCf.)gM[Qmm) and [15, Proposition
5.4]. Finally, take a nonarchimedean place A from S \ (¥p UXY). By the same
argument as the proof of Theorem 3.18, the image of the inertia subgroup Iy
under the Galois character % is finite and is contained in the set of roots
of unity in O. Thus, AJM[2;]" is isomorphic to ASM[2; + @™ AGM] for some
nonnegative integer n, which is almost Aéj )_divisible because ASM[QIJ- + " AGM]
is divisible for every height-one prime ideal of A(()j ) relatively prime to wAéj ) Since
H (Fx, ASM[2]) is isomorphic to a quotient of ASM[A;]™, HL (Fy, ASM[2L)])
must also be almost A(()j )_divisible.

We finally remark that every place 8 belonging to X, satisfies the condition
(¢) in Theorem 3.24. Indeed, the first half of the condition (c) is no other than
(LOCSZM[%J_]m), and the second half of the condition (c) follows from the fact
that Q an(qu,ASM[QljD is trivial by construction.

REMARK 3.30

It is also possible to verify the hypotheses (LOCS%Mm) and (LOCE‘?%MKU) for
each nonarchimedean place contained in S, the almost Ag-divisibility of the local
condition Lg, (F, AiM)7 and the condition (c) in Theorem 3.24 for ASM and

every place P in ¥, by exactly the same arguments as above.
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3.4.4. First step: almost divisibility of the initial strict Selmer group
We shall verify the almost Ag-divisibility of the initial strict Selmer group Seli’gf\ﬂr.
n

Identifying Seli’gﬁ with Twngal,_w(Seli’gﬁ) by exactly the same arguments as
n P

in Remark 3.17, we readily see that the almost Ag-divisibility of Seli’csif is equiv-
c
alent to that of Seli’csﬁ. icsif
¥ ¥
from Theorem 3.24 and Proposition 3.26, it suffices to verify the remaining two

In order to deduce the almost Ay-divisibility of Sel

hypotheses (CRK AGM, c...) and (LEO _AgM); recall that we have already verified
in the preceding step all the other hypotheses required in Theorem 3.24 and
Proposition 3.26 (see also Remark 3.30).

We have already observed in Remark 3.17 and Lemma 3.21 that the Iwasawa

module Xy (4) and the Pontrjagin dual of the strict Selmer group Seli’jtr are

pseudoisomorphic to each other as AgM—modules. Now we introduce the following
hypothesis concerning the algebraic structure of the Iwasawa module Xx_ (4

(TORx,, ) the AgM-module X5 () is a torsion module.

Note that the condition (TORx, ) is equivalent to the following condition
on the algebraic structure of the strict Selmer group Seli’gsﬁ by the discussion
above:

(CoT AEM) the strict Selmer group Seli’csi,f is cotorsion as a ASM-module.
¥

LEMMA 3.31
The following two statements are equivalent for the discrete AGM-module ASM:

(1) both the conditions (CRKAngﬁm) and (LEOAgM) hold;
(2) the condition (COTAgM) (or the condition (TORx,, ., )) holds.

Proof

We abbreviate the AGM-corank of a cofinitely generated AGM-module M just as
“corank M” in the proof of Lemma 3.31 so as to simplify the notation. We shall
henceforth verify that the following equation among AZM-coranks holds:

(3.14) corank Sel 5% = corank I112(F, S, ASM) + corank Coker(¢,,, ).

AGM

Once (3.14) is proved, the equivalence between assertions (1) and (2) immediately

follows; assertion (1) is fulfilled if and only if the right-hand side of (3.14) equals

zero, whereas assertion (2) is fulfilled if and only if the left-hand side of (3.14)

equals zero. Recall that the validity of the corank condition (CRK AGM, L) 18

equivalent to the AgM—cotorsionness of the cokernel of ¢,
In order to deduce (3.14), we consider the equation

corank Sel*;5% = corank H' (Fs /F, AiM)

CcM —
Aw

—corank Q. (F, AiM) + corank Coker(¢..,, ),

str®

(3.15)
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which is deduced from the exact sequence

Pr

0 —> Sel2li —= H' (Fs /P AS™) 25 Qe (B AGM) —> Coker(dz,,,) —> 0

defining the strict Selmer group Seli’csfé, and we calculate the right-hand side of
b

(3.15) by utilizing Euler—Poincaré characteristic formulae studied in [15].

We first calculate the AGM-corank of the global cohomology H!(Fs/F, ASM)
By the global Euler—Poincaré characteristic formula [15, Proposition 4.1], we have
the equality

corank H' (Fs/F, AGM)
(3.16) = corank H°(Fg/F, ASM)
+ corank H?(Fs /F, AGM) + d corank(Ag™).

Recall that d denotes the extension degree [FT : Q] of the totally real field F™
over Q. We claim that H°(Fg/F, AgM) is a cotorsion AGM-module. Indeed, ASM
is naturally identified with the Pontrjagin dual of AgM, on which an element g
of Gal(Fs/F) acts by the multiplication of ¥(g)g|5_. Let us take an arbitrary
element gy of Gal(Fs/F) whose image in Gal(F/F) under the natural surjection
Gal(Fs/F) — Gal(F/F) is nontrivial. Then we readily see that the go-invariant
of AgM is isomorphic to a ASM-module (AgM/(w(go)go\Foo — 1)ASM)V, which is
obviously a cotorsion AGM-module. The zeroth cohomology H®(Fgs/F, ASM) is

obviously a subgroup of the gg-invariant of ASM, and thus, it is also a cotorsion
AgM—module:

(3.17) CorankHO(Fs/F,AiM) =0.

We next investigate the ASM-corank of the second cohomology H?(Fs/F, .AiM)
The nine-term exact sequence due to Poitou and Tate (see [34, (8.6.3)(1)], [15,
Section 4.B]) implies that the cokernel of the global-to-local homomorphism

¢®: H*(Fs/FLAM) = [ H*(F,, ASM)
vES\X oo
is isomorphic to the Pontrjagin dual of HY (Fs/F, (%CM)*), which is trivial
because the hypothesis (LOCS%M ,) holds for every v in S\ ¥. The kernel of
71[) k)
#? is 1II*(F, S, AgM) by definition. Furthermore, by virtue of the local Tate
duality, the Pontrjagin dual of H?(F,, AgM) is isomorphic to HS (F,, (T,7M)*)
for each v in S\ ¥, and hence, it equals zero by the hypothesis (LOCS%M U)

again. Combining these calculations, we conclude that the corank of the whole
second cohomology group H?(Fs/F, ASM) equals that of the generalized second
Tate-Safarevié group III*(F, S, ASM):

(3.18) corank H?(Fs/F, AgM) = corankIH2(F, S, AiM)
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By (3.16), (3.17), and (3.18), we have the following formula:
(3.19) corank H'(Fs/F, AgM) = corank ITI*(F, S, ASM) + d corank AgM.

We now study the ASM-corank of Q_,, (F, AgM). First, let us take a place B¢
in ¥7. Applying the local Euler-Poincaré characteristic formula [15, Proposition
4.2] to the local cohomology group Hl(Fspc,Aij), we obtain

corank Q .., (Fipe, AgM)
= corank H' (Fye, AGM)
= corank H"(Fye, ASM) + corank H?(Fye, AgM) + [Fipe : Qp) corank AiM.

We claim that the ASM-coranks of HO(Fq;c,ASM) and HQ(qu;,AgM) are both
equal to zero. Indeed, since each place of F' above p does not split completely
in F/F, the image of Dy, in Gal(F/F) contains a nontrivial element. We thus
apply the same arguments as those we made for H(Fs/F, AiM) and conclude
that HO(Fye, AgM) is cotorsion as a AGM-module. On the other hand, as we have
already checked in the computation of the AGM-corank of H?(Fg/F, ASM), the
second local cohomology group H 2(F;33C,A$M) is trivial due to the hypothesis

1)
(LOC n g

(3.20) corank QLS“(FQ;;C,ASM) = [Fipe : Qp) corank.AgM.

). Hence, we obtain the following formula for each place 3¢ in X5

Next, let A be a nonarchimedean place in S\ (3, UXs). We also calculate the
corank of Q. (F A,AgM) by applying the local Euler—Poincaré characteristic
formula [15, Proposition 4.2] to the local cohomology HI(F,\,AgM) as follows:

corank Qr_, (Fj, ASM)
= corank H' (Fy, AgM) — corank H} (Fy, ASM)
= corank H°(F), ASM) + corank H?(F), AgM) — corank H} (Fy, AgM)
We claim that the right-hand side of this equality is zero; that is,
(3.21) corankQEstr(F,\7ASM) =0

holds. Indeed, the second cohomology group H?(F, AgM) is trivial by the hypo-

thesis (LOCS%M, ,) as we have already mentioned, and the ASM_corank of the
unramified cohomology H&r(F,\,ASM) equals that of HO(F,\,.ASM), since the
residue characteristic at A does not equal p; this fact is well known for finite
Galois modules, and we readily generalize it by using a specialization trick similar
to the one used in the proof of [15, Proposition 4.1].

Substituting (3.19), (3.20), and (3.21) for (3.15), we obtain the desired equa-
tion (3.14) as

st
corank Sel A%Z’Mr

= corank ITT%(F, S, ASM) + d corank ASM



Iwasawa main conjecture for CM Hilbert cusp forms 67

- Z [Fipe : Qp] corank ASM + corank Coker(¢._,.)
Peen;

= corank ITI*(F, S, ASM) + corank Coker(¢,_,.)

+ (d - Z [ :Qp}) corankAgM

plpep+

= corank ITI*(F, S, .AgiM) + corank Coker(¢..,, ). O

Note that the assumption (TOR X5, () clearly holds when the ¥, -ramified Iwa-
sawa module Xy = Gal(Ms, /KSM) is torsion as an O[[Gal(KSM/F)]]-module.
As a part of their research on the anticyclotomic Iwasawa main conjecture for CM
number fields, Hida and Tilouine [24, Section 1.2] have thoroughly studied alge-
braic properties of Xy, and showed that Xy is torsion over O[[Gal(KSM/F)]]
if the X-Leopoldt condition (the condition (D%%ch,z) in the terminology of [24])

is valid for the extension KSM/F. See [24, Theorem 1.2.2(ii)] for details of the
discussion. Note that our extension K M is always regarded as a subfield of the
ray class field Figpee modulo €p> over F' for an appropriate integral ideal € of F'.
Since the extension I?SOM /F contains the cyclotomic Z,-extension, we observe
that the ¥-Leopoldt condition is valid for the extension I?OCOM /F by reducing
to the validity of the weak Leopoldt conjecture for the cyclotomic Z,-extension
of an arbitrary number field due to the classical works of Iwasawa and Green-
berg [12, Proof of Theorem 3] (or by directly applying [24, Theorem 1.2.2(iii)]).
Consequently, the assumption (TOR Xz, ) is fulfilled, and we have verified the
following proposition.

PROPOSITION 3.32

The strict Selmer group Seli’csﬁ
»
ible over Ag. The same claim holds for the strict Selmer group Seli’gﬁ of ASM.

n

of AiM is cotorsion over AGM and almost divis-

As a corollary of our computation so far, we deduce a consequence on the alge-
braic structure of the Iwasawa module Xy (4) when the Pontrjagin dual of

Seli’gﬁ is exactly isomorphic to Xy (4.

COROLLARY 3.33 (THEOREM C)

Assume that the nontriviality condition (ntr )y sye is valid for each place B¢ of F
belonging to 37 and that the order of the branch character 1 is relatively prime
to p (and in particular nontrivial). Then the Iwasawa module Xy, () does not
contain nontrivial pseudonull Ag-submodules.

Proof
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Under the assumptions, the Pontrjagin dual of Seli’gi,f is exactly isomorphic
p

to Xs, (y) by Remark 3.9 and Lemma 3.21. The statement then follows from

Proposition 3.32. O

REMARK 3.34

The triviality of pseudonull submodules of the Iwasawa module Xy (4 has
already been studied by Perrin-Riou [40, Théoréme 2.4] only when F is an imag-
inary quadratic field and 1 is a grofilencharacter of type (Ag) associated to an
elliptic curve with complex multiplication. Her method essentially utilizes Win-
tenberger’s structure theorem [58, Section 4, Théorem i), iii)] on projective limits
of local unit groups combined with Greenberg’s classical result [13, Proposition
5] on the triviality of the pseudonull submodules contained in the “p-ramified
Iwasawa module,” which seems to be rather different from ours. It was not clear
to us if the method used in [40] could be directly extended to general CM number
fields or not.

3.4.5. Intermediate steps: inductive specialization of the Selmer group

Next we shall inductively specialize the strict Selmer group Seli’csﬁ so that the
characteristic ideal of its Pontrjagin dual behaves compatibly with respect to
each specialization procedure.

We use the same notation as in Section 3.4.2; in particular, 2; denotes the
ideal of AGM generated by a regular sequence 1, . ..,x; with z; =y, — 1. We also
recall that the ideal A% of AGM is defined as the kernel of the natural surjection
AGM — AZC. Now let us consider the following three conditions (I'0);, (I'1);, and

(I'2); on the fixed elements 71, ...,v; of Gal(F/F):

(T'0), the sequence z1,...,z; is a regular sequence of AgM contained in A,
(F'1); the hypothesis (LEO goma,)) is fulfilled for ATMR5];
(I'2); the dual Selmer group Selzx (F, (7;]CM/QLJ7;ZCM)*) is trivial.

Here we regard the condition (I'0)g as the empty condition. The following propo-
sition is the key to our specialization arguments.

PROPOSITION 3.35
Let the notation be as above, and assume that the condition (ntr)ge is fulfilled

Jor every place B¢ of F contained in 3. Suppose that, for a natural number j
with 1 <j <d+0p, — 1, all the conditions (T0);_1, (I'l);—1, and (I'2);_1 are

fulfilled on a set of elements y1,...,7v—1 of Gal(F/F%°). Let Seli’csltvf[%il] be the
strict Selmer group of.AgM[Qlj_l], and let (Seliéﬁ[mj,l])v be its Pontrjagin dual.

Then there exists an element v; of Gal(F/FY°) such that the element xj="—1
of AgM does not divide in AgM/Qlj,l the characteristic ideal of the torsion part
of (Seli’;ﬁ[%_l])v, and all the conditions (I'0);, (T'1);, and (I'2); are fulfilled
on the tuples vy1,...,7j—1 and ;.
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We postpone the proof of Proposition 3.35, and we here deduce the base-change

compatibility of the characteristic ideal of (Seli’csfvf)v under intermediate special-
n

ization procedures from Proposition 3.35. First we note that, when j equals zero,
all the conditions (I'0)g, (I'1), and (I'2)¢ are fulfilled; indeed, the condition (I'0)
is empty by convention, and the condition (I'l)q follows from Lemma 3.31 and
the cotorsionness of the strict Selmer group Seli’ssf&r (refer to the argument in Sec-

tion 3.4.4). The triviality of the dual Selmer group Selc:, (F, 7,°**), namely the
condition (I'2), also follows from Lemma 3.31 and the cotorsionness of the strict

Selmer group Seli’gﬁ, combined with Proposition 3.26; recall that an arbitrary
n

place P8 contained in X, satisfies the extra condition (¢’) proposed in Proposi-
tion 3.26.

Now let j be a natural number with 1 <j <d+ dr, — 1, and assume that
we have already chosen elements 7y, ...,7;_1 of Gal(F/F¢) so that all the con-
ditions (I'0),_1, (I'l);_1, and (I'2);_; are fulfilled for them. We further assume
that Seligﬁ[mj,l] is cotorsion as a AGM/2;_1-module, as an induction hypoth-
esis. Theorem 3.24 then enables us to conclude that the strict Selmer group

Seliéﬁ[%,l] is almost A((]j_l)—divisible. Let (Seligﬁ[mkl])v denote the Pontrja-
,str

gin dual of the strict Selmer group SeliCM[m_ 0 We apply Proposition 3.35 and
n J—

find an element ~; of Gal(ﬁ/Fgg’C) so that x; = v; — 1 does not divide the charac-

teristic ideal of (Seligﬁ[%_l])v and all the conditions (I'0);, (I'l);, and (I'2); are

fulfilled for the tuples 71,...,7v;—1 and ~;. Then, from the exact control theorem
(Theorem 3.18) and the specialization lemma (Lemma 3.29), we readily deduce

the cotorsionness of the strict Selmer group Seli’gﬁ[m jasa AgM /2 ;-module and
n J

obtain the equality
(Charagym, , (Selycig, ,)Y) @aguja, . AG/Y;

3,str
= CharAgM/mj (SelAgltw [21] )\/'

The induction proceeds until j achieves d+ 5, — 1, and consequently, we see

IZ,str

that the strict Selmer group Se ANy 5, ] is cotorsion over A%M/Q[dJr(;F’p,l

»
and the following equality among ideals of AgM /Adatsr,—1 holds:

(ChaI‘AgM (Seli’;ﬁ)v) ®A%M AgM/Q[d_H;F’p_l
(3.22)

_ 3,str Vi
= ChaI‘A(COM/Qldl_*_énp_1 (SCIASM[md+6p7p—1]) .

REMARK 3.36
We warn that we here exclude the case where j equals d + ép, due to the con-

straint imposed on j in Proposition 3.35; the case where j equals d + 5, shall
be dealt with later in Section 3.4.6 as the final specialization procedure.
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Let us return to the proof of Proposition 3.35. We first observe that the condition
(I'2) j—the triviality of the dual Selmer group—is automatically fulfilled for an
appropriate choice of ;.

PROPOSITION 3.37

Let j be as above, and let v1,...,7vj—1 be elements of Gal(ﬁ/Fgg’C) for which all
the conditions (T'0);—1, (T'1);_1, and (I'2);_1 stated before Proposition 5.55 are
fulfilled. Assume further that the condition (ntr)pe is fulfilled for every place PB°
of F' contained in X7 Let v; be an element of Gal(f’/Fgg’C) such that the tuples
Vis--,Yj—1,7; Satisfy the condition (T'0); and such that x; =~; — 1 does not
divide the characteristic ideal of the torsion part of (Seli’;ﬁ[mﬁl])v in AGM /.
Then the dual strict Selmer group Selz= (F,(T,°M /2, T,M)*) of (T,OM /2, T,7M)*

is trivial.
Let us verify Proposition 3.35 admitting Proposition 3.37.

Proof of Proposition 5.55

Let v1,...,7j—1 be elements of Gal(F/F%°) as in the statement of Proposi-
tion 3.35, and let H be the closed subgroup of Gal(F/F%¢) topologically gener-
ated by v1,...,7j—1. Set T'j_1 := Gal(F/F9°)/H and define €y as the set of all
the elements of T';_; with nontrivial images in T';_1/(T’;_1)P. Let us denote by

Yj(i)l the set of all the height-one prime ideals in Aéj -b dividing the character-
3,str

Ui,
Meanwhile, as we have remarked in Section 3.3.2, the validity of the hypothesis

(LEO A [21,_,]) implies the existence of a finite set YJ(E)l of exceptional prime

ideals of height one in Aéjfl), in the sense that the hypothesis (LEOAS}M 2, )()

istic ideal of the torsion part of (Se ])V, which is obviously a finite set.

is true for every height-one prime ideal (II) of Aéj Y which is not contained in
YJ(E)1 Since the set of principal ideals in Aéj_l) defined as {(§— 1)Aéj_1) |7 €Cu}
is infinite, we can choose an element 7; of € such that the prime ideal (3; — 1)
in Aéj -b generated by 4; — 1 is contained in neither Yj(i)l nor YJ(E)l Let us take
an arbitrary lift v; of 4; to Gal(F/F°). By construction, both the conditions
(T0),; and (I'1l); are fulfilled on the tuples v1,...,7vj-1,7; of Gal(F/F°). We
now complete the proof of Proposition 3.35, since the condition (I'2); is also
fulfilled on them by virtue of Proposition 3.37. O

The remaining issue is the verification of Proposition 3.37. To simplify the nota-
tion, let us abbreviate the continuous Gal(Fs/F)-representation (7,7 /2 7,°M)*
and the discrete Gal(Fs/F)-representation AL™M[Ay] as 7%, and A, (1) respec-
tively in the proof of Proposition 3.37, where k equals 7 — 1 or j. We also use
the abbreviation Hldl%,(k) for the S-fine Selmer group III*(F, S, Ay (ky) of Ay iy
Note that 7", is a free AGM /20 -module of rank one on which every element g
of Gal(Fg/F) acts by the multiplication of x, & .78 (g~ ")g. First recall that the
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cokernel of the global-to-local morphism
Ozt H (Fs/F Ty ) = Qoo (R T 1)

is isomorphic to the kernel of the natural surjection (Seli’:t(rk))v — (Hli\n )
for every k (see Section 3.3.4 for details); in particular, there exists a short exact
sequence

(3.23) 0 — Coker(¢,..0) —= (Sel’™ )Y —= (W, )Y — 0

for k=73 —1 or j. We consider the commutative diagram
(3.24)

0 — COker(d)ﬁ:ér(jfl)) e (Seli’jﬁéil))v g (]‘H}“n,ufl))v — 0

Xxj \L X l XTj \L

0 — Coker((z)‘c:t,ij—l)) — (Seli’:f(jil))v — (Iﬂi‘m(jil))v — 0,

whose rows are the exact sequences (3.23) for k =j — 1 and vertical maps are
multiplication by z;. Note that the Pontrjagin dual of the strict Selmer group
Selift];,l does not contain nontrivial pseudonull A(()J ~Y_submodules due to the
assumptions (I'0),;_1, (I'l),;_1, and (I'2),_; combined with Theorem 3.24. Since

3,str

x; does not divide the characteristic ideal of (Sel ;™"
J A, Gi-1)

triviality of the pseudonull submodules of (Seli’:tfjil))v implies that the middle

)V by assumption, the

vertical map of (3.24) is injective (and so is the left vertical map). Thus, applying
the snake lemma to diagram (3.24), we obtain a four-term exact sequence

(3.25)

5 )
) lw] == COTY = (Sel}™  [ay]) — (W, lws])” —0,

1
0— (HIA An,Gi-1)

n,(i—1)
where we denote by Slv the connecting homomorphism and define C7—1 as
(3.26) CU=Y .= Coker [Coker(qﬁﬁ,(j_l)) RN Coker (¢ ,«.-1) )]

We also remark that there exists a natural commutative diagram

3,str 1
Sely > Lol =— LIy - [zy]

(3.27) S T 2 T Jat

3, str d 1
SelAn, ) HlAn,m

both of whose vertical morphisms ¢3¢ and L?‘Il are induced from the natural
inclusion Lf: An.i) = An.i—lzj] = Ay j—1) of Gal(Fs/F)-modules. Note that

the left vertical map Ljsel is an isomorphism due to the exact control theorem
(Theorem 3.18). Combining the Pontrjagin dual of the commutative diagram
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(3.27) with the exact sequence (3.25), we obtain the following diagram with
exact rows:

(3.28)
3y i str v v
0> (Hliln,(j—l))v[xj] — Y (Seliin,t(jfl) [23])” > (mi‘”*“*l)[ajj]) =0
T]C (L]S.QI)VLZ O ‘/(L;HI)V
\ st 1 >
0—— COker(¢£§g§j>) (Selia) )) (I, ;)" 0

Thanks to the commutativity of the right square of diagram (3.27), a homomor-
phism 7§: U~ — Coker(¢£*€(j)) (the dotted vertical arrow in diagram (3.28))
is induced. An easy diagram chase on (3.28) enables us to verify that the kernel
of the induced homomorphism TJC coincides with the image of 5}/7 and therefore,

we obtain an exact sequence

. c
3y r§

1 o J
(3.29) 0 — (HIA,,,,(]',U)V[%‘] —— cU-D Coker(gbﬁ;,sj))-

Next recall that the dual Selmer group of 7:7*( which we denote by Sel* i
for brevity, is defined in terms of the exact sequence
(3.30)

¢£*t(k)
0—Sel72" — He(Fs/F, T, ) ———> Q.- 5 (8) (F, Ty (k) —= Coker (¢ .«.x)) — 0
7, (k) m str

for k=7 —1 or j. When k equals j — 1, the triviality assumption (I'2);_; on
Sel* St ,, suggests that the global-to-local morphism ¢ ....;-1) in (3.30) is injec-
tive. We thus consider the commutative diagram -
(3.31)

¢ *,(j—1)

:.tr

O%Hcts(Fs/F (J 1))H—Q G- 1)(FT G- 1))%Coker(¢ﬂ*é(j_1))%—0

ngl xo:]i jxo:j
¢ £ G—1)

0— Heo(Fs/F, T, ;-1) S QG y(E Ty -1y) — COker(QSL;r(jfl)) —0,

whose horizontal rows are short exact sequences obtained by (3.30) for k=7 —1
and all of whose vertical maps are multiplication by z;. Note that the right
vertical arrow of (3.31) is injective, since it is the same as the left vertical arrow
of (3.24). The snake lemma applied to diagram (3.31) then suggests that the
cokernels of its vertical morphisms form a short exact sequence

(3.32) 0 — Hl* y/eiHZ 1) — Q_1)/7Qf_) — i~ —0

with abbreviated notation
H{Z = Hio(Fs/F T ),

(3.33) |
Qi) = Qo0 (B Ty j-))-
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Next we shall relate the short exact sequence (3.32) with the sequence (3.30)
for k = j, which concerns the dual Selmer group Selfrftrv To this end, we first

observe that the short exact sequence

i
X Trj
(3.34) 0 — Ty — Ty — Ty — 0

of Gal(Fs/F)-modules induces the following exact sequence:

1,% 1,% 1,% () 2%
(3.35) 0— Hy" ) Ja;H " 1) H() = H" 2] — 0.

We shall construct a homomorphism connecting Q(j—l) /ij(j_l) with ij) in a
way similar to the construction of 7TH Let v be a place of F' contained in S, and
let us denote by 7r , the injection on the local cohomology groups

Hclts( %ﬁ(j—l))/xchlts(Fm 7;;*,(]'—1)) — Hey(Fy, 7;]*,(]'))

induced by the cohomological long exact sequence associated to (3.34).

LEMMA 3.38
For each v in S, the map ﬂfv induces an injection

Ql: (J 1)( U77;) (j—1 )/xJQL: (J 1)(FU’7;:(]_1))—>Q£:tr(])(FU77::(]))
with a cokernel isomorphic to H (F,, T -3l

Proof
In this proof, k& denotes either j — 1 or j. There is nothing to prove for a place
B¢ in X7, since the local quotient Qﬂ*,m (Fqgc,f?*(k)) itself is trivial. For a place
str ’
B in ¥, the local quotient Q .- (Fq},'];*(k)) coincides with the whole local
str ?
cohomology group H}(Fy, ’7:7* (k)) by definition, and thus, we define the desired

injection me to be ﬂ'jm itself. Now let us consider a (nonarchimedean) place

A in S which does not divide p. If the inertia subgroup I acts nontrivially on
Tn* (k) OF; in other words, if 7%*! is ramified at A, then the I)-invariant submodule
of 7;:(k) is trivial; it is because every element g of I, acts as multiplication of
the nontrivial element 7%*(g~1) on each component of the free AGM /2;-module
T.).(y of rank one, which is torsion-free as a A(()k)—module. This observation implies
the triviality of the unramified cohomology group H} (Fy, n* ( k)) and thus, the

desired map 7r gy should be defined as 7T - Finally assume that I acts triv-
ially on 7;]7( k)» OF in other words, assume that 78! is unramified at A\. Then the
unramified cohomology group H! (F ,\,T*(k)) is just the first continuous coho-
mology group HZ(Dy/I,T, (k)) of the procyclic group Dy/Iy, and thus, the
surjection 7ro: 7;]7(],_1) — 7:7 ) induces an injection

LISt Hu (FMT G- 1))/1‘3 (F)\’Tf(j—l)) —>H&r(F/\’7:Z(j))
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with a cokernel isomorphic to H2 (Dx/Ix, T, e 1))[%-} due to the cohomological
long exact sequence associated to (3.34), regarded as the short exact sequences of
continuous D) /I -modules. However, the procyclic group Dy /I, = 7 has coho-
mological dimension 1, and hence, the cokernel of 7% should vanish; in other
words, the injection 7}, is indeed an isomorphism. We therefore obtain a com-
mutative diagram with exact rows

(3.36)

1,ur,* 1ur* 1,% 1,% * *
Hy G0y Y Gy = HY Gy /558Gy = Q% -ny/%iQ% -1y = 0

2 \L TN l Trf,\ "jQ,A
\

0 = HG Hy ) @0 = 0
Here HZ (Fy, ) HL.(Dy\/I\, T, mey)> and @ -0 (Fx, T, .)) are abbreviated

as Hi:(kk), H i‘;,z)*, and Q3 () respectively. The commutativity of the left square in
(3.36) is due to the functoriality of the inflation map H,’ NS HyY (k) DY virtue
of which 7TH)\ induces a map 71'652)\ on the quotient modules (the dotted arrow in
(3.36)). Moreover, the cokernel of 7rQ/\ is isomorphic to that of 7r  due to the
isomorphy of the left vertical map «}". This is the end of the proof since the
cokernel of 7r 'y is isomorphic to HQ(FA,TM?U)[Q:J] due to the cohomological
long exact sequence associated to (3.34). O

Set 7% as 7% = (ﬂfv)ves, and consider the diagram

J J
(3.37)
0
0 0 Im (3Y)
0 ——=H"y) fu H ™) — Qfoay/25Q0-) cu=b 0
T IR . s
* str 1,x *
0 — Se 1 ” ) H(]) ¢£*,(j> Q(]) COkeI‘((ZSL:t,r(j)) —0
s%j)l l
2,% 2%
Hi ) las) | § RPN EN
\L veES \L
0 0

where the left vertical sequence is the one obtained in (3.32) and we use the
following abbreviations for each v in S, i =1,2, and k=7 — 1,5 in addition to
the abbreviations from (3.26) and (3.33):

(3.38) Sely=" =Sel o) (BT )y Hylhy = Hio(Fos Ty ry)-
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The top and bottom rows of (3.37) are the sequences (3.32) and (3.30) for k = j,
respectively, which are hence exact. The right column is the exact sequence (3.29).
Here we replace (thn’”il))v[xj] in (3.29) by Im(dy) for later convenience in
Appendix B. The other columns are also exact due to the cohomological long
exact sequence and Lemma 3.38. Since both the maps 7r and 7r] are induced
from the canonical surjection 71']7. 7;7 (-1 T of the contlnuous Galois mod-
ules, the functoriality of the restriction maps guarantees the commutativity of
the left square. We here verify the commutativity of the right square in (3.37).

LEMMA 3.39

The right square in diagram (3.37) commutes.

Proof
Consider the diagram

cl-1

* * 3, str 4
Q(jq)/ij(jq) (SelA;t(j_D [z5])

(3.39) 9 l < o l sy

* S,str \v

Q(j) COker(d)L::t»r(j)) — (SelA,h(j))

obtained as the composition of the right square in (3.37) and the left commutative
square in (3.28). It suffices to prove that the composite square (3.39) commutes,
since the morphism Coker(¢ .. o m) (SelE St )V in the bottom row is injective.
The local Tate duality induces 1s0m0rphlsms Q(] /T Q1) = & (Lr,(j—1)[25])Y
and Q(J & (Lgtr,(j)) " - Here we set

Lty (k) = HLstr Fy, Ay k) = H HY(Fyy Ay r)) X H HY(F,, Ay 1)

veS vES vEX,
vEX,UB]

for k=7 —1 and j. By construction both of the compositions
Vo * j— ¥,str i\
(Lstr,(jfl)[wj]) = Q(j71)/37jQ(j71) — CUD — (SelAm(j_l) [QCJ]) )

(Lstr j)) Q( - COker(qu:t’,(j)) <Seli:t(1;)>

of the maps appearing in the rows of diagram (3.39) with the local Tate duality
isomorphisms are induced from the dual of the global-to-local restriction map

(bl:(k) SelA t(rk) — Lggr (k) Define L]LI Lgtr,(j) = Lstr,(j—1) to be the homomor-

phism induced from the canonical inclusion L;‘: Ay = Ay, j—1)- By virtue of
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the functoriality of the restriction maps, we readily obtain a commutative square

é,.G-1
I ) [ ] é g IE,str [ }
str,(j—1) Lj € Any(jfl) T
Lf T T L?el
¢ ,.0)
L ) str g 3,str
str, (4) Ao ()

whose Pontrjagin dual coincides with (3.39). Indeed, it is straightforward, from
the construction of the local Tate duality pairing as the usual cup product of
the group cohomology, to verify that the morphism 7r§i’2 corresponds to the dual
(LJL)V (Lstr,j—1)[5])Y = (Lstr,(j)) ¥ of Lf with rebpect to the local Tate duality,
and thus, the proof is complete. Note that L] and 7r correspond to each other

under the Pontrjagin duality. O

Now let us consider the coimage Coim(¢,. )) = H1 5 /Se 1* S of the global-to-
str
local morphism ¢,..;) and split the bottom row of (3 37) (or, in other words,
str
the exact sequence (3.30) for k= j) into two short exact sequences:
P5)

0 — Sely2l) — H (y — Coker(dz0) — 0

~ 7

Coim(¢ .+, (;))

0 0.

We define 7r (3 1 Jx;H G 1) — Cmm(qbﬁ m) as the composition of 77 with

the natural surjection H(j;‘ — Coim(¢ .+ ;) ), and we define ’Hj ™ as the cokernel
str

of 7’1']H . Then diagram (3.37) splits into the two diagrams

OHH%*U/%JHI* HH1*1>/$JH1* —

- (G-1) -1
oH =H
J J
*,str 1,% . )

(3.40) 0— SelT;«j) H ;S Conn(d)ﬁ;,r(])) —0

5

2, % F72,%

H(jil)[CCj] H] O
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and
0
0 0 Im(6y)
1, 1,% * * j —
0—=H " /ziH;" ) —= Q1) /2;Q( -1y ¢y 0
(3.41) ki & 7
. s
0—— Cmm(d)c;ﬂér(j)) Qj Coker(qu:t,r(j)) —0
F72,% J*
Hy ———— ][ 1oy la)
veES
0 0

with exact rows and columns. By applying the snake lemma to both diagrams
(3.40) and (3.41), we obtain two exact sequences

Pru2 o

* 2,% s
(3.42) 0 —— Selﬁ;«ér(j)(F,’]:?,(j)) —— H(jil)[iﬂj] Hj 0

and

02

—2,% "
H" — [ HEF T o))

veES
(3.43) 5y T 2 /

(I, )Y [2]

0 — Im(Slv)

Here we use the symbol dgpaxe for the composition s o glv to indicate that it is
constructed as the composition of the connecting homomorphisms derived from
the snake lemma. Meanwhile the Poitou-Tate nine-term exact sequence (see, e.g.,
[34, (8.6.10)]) provides the exact sequence

0 " v 2% v PP 1
[] AP Tlon)” — ()Y =5 I =0
vES
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By taking the Pontrjagin duals and the x;-torsion parts, we obtain the exact
sequence

Res?!

1 o 2,% ( 1) 2,%
(344) 00— (DY . )Vle] =5 HGY ) )] ——= [[ Hop oy e
veS

where ResQ]’.*_1 denotes the map induced by the usual localization morphism.

Recall that the homomorphism ®pr, which is often called the Poitou—Tate
morphism, is the one induced from the Poitou-Tate pairing. See also (B.6) in
Appendix B for the definition of ®pr. The following proposition, whose proof is
slightly lengthy and is postponed until Appendix B, is the technical heart of the
proof of Proposition 3.37.

PROPOSITION 3.40
Consider the diagram

@pr 2 Res(f 1)
*
0 —— (H—[,lc\n’(j,l))v[mj] — H(] 1) [z;] — H s (Fo, Ty (1)) [25]
veS
(3.5 J
F72,%
0 — (Wl V) e T H2a(Fo, Ty 1y)les)
Ssnake veS

where the top and bottom rows are the exact sequences (5./4) and (5.43), respec-
tively, and the middle vertical morphism prys is the quotient map defined in the
short exact sequence (3.42). Then diagram (5.45) commutes.

The commutativity of the right square in diagram (3.45) is obvious, since both
of the horizontal morphisms are induced from the global-to-local morphism

RCS?J* DN H(J n 7 H Hcts F"’T*(J 1))
veS

Concerning the left square in (3.45), the top horizontal morphism ®pr is the
one induced from the Poitou-Tate pairing, whereas the bottom horizontal mor-
phism dgpaxe is the composition of connecting morphisms derived from the snake
lemma and the local Tate duality isomorphisms. Therefore, we must carefully
study the relation between the global Poitou-Tate duality and the local Tate
duality to verify the commutativity of the left square. As we shall show below,
Proposition 3.37 follows immediately from Proposition 3.40.

Proof of Proposition 3.37 (admitting Proposition 3.40)

We observe from the short exact sequence (3.42) that the kernel of the mid-

dle vertical morphism pry. in (3.45) is isomorphic to the dual Selmer group

Sel £n (F, 7;]*( j)). We now readily verify its triviality by an easy diagram chase
n (3.45). O
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3.4.6. Final step: specialization from two variables to one variable

Suppose that we have already chosen elements 1, ...,v44s5,-1 of Gal(Fs/F5Y°)

which satisfy all the conditions (I'0)q1s,,—1, (I'l)a+6x,-1, and (I'2)4455.,—1 Pro-

posed in Section 3.4.5. The existence of such tuples ~1,...,v446,,-1 is justified

in Proposition 3.35. As the final step of the proof of Theorem 3.27, we discuss the

cyclotomic specialization of the strict Selmer group Seli’gﬁ,{r[m E We have
- d+op p—1

3,str
AM[Aaysy -1

divisible as a A(()CH_éF »~Y_module and that the equality (3.22) holds. In this sit-
uation the kernel of the natural surjection AgM [Aatsp,-1 — Agc is a princi-
pal ideal of AgM/QldHpr,l generated by Tais,, = Vdrsp, — 1, Where vais,

already verified in Section 3.4.5 that Sel ] is cotorsion and almost

is a lift of a topological generator of Gal(ﬁ/Fgg’C)/Wl,...,'yd+5m,1> =7, to
Gal(F/F3°).
We henceforth denote AgM/QldHF‘p,l by Ag+6F’p_1) to simplify the nota-
tion. In order to apply the specialization lemma (Lemma 3.29) to the finitely
. (d4+6F,p—1) 3, str v . .
generated torsion A, -module (SQIASM[%ME,ﬁl]) and the prime ideal

(Tatsp,) of Agdwﬂp*l) of height one, we must verify that z4ys,, does not
3,str

divide the characteristic ideal of (Sel Acm| Q‘d%Frl])v' Until the previous steps
we could choose a specializing element x; = v; — 1 avoiding the prime divisors of
the characteristic power series of the Pontrjagin dual of the strict Selmer group.
At this final step, however, the specializing element 2445, , (or, more precisely,
the principal ideal deF,pAgdHF #»~ Y Which it generates) is uniquely determined,
and we are not allowed to choose it freely. We still require the following claim.

CLAIM

Let the notation be as before, and let us assume both of (IMCgy) and
(NVise(s,)) (see Theorem 3.27 for details on these assumptions). Then the spe-
cializing element xqys, , is relatively prime to the characteristic ideal of the Pon-

(d+5F,p71)

trjagin dual of the A, -module Sel==t

ATMRatsp 1]

Proof

In order to prove the claim, we assume that 445, , does divide the characteristic

ideal of (Seli’gﬁ[m )V and then deduce a contradiction. The cyclotomic
g Rlaysp -1l

specialization of the characteristic ideal

(Char e (Seligg)v) ®pgm A

3 str
(346) = (CharA(g+5F7971) (SelAgltVI [Q‘d+5F7p—1])v)

(d+8pp—1) (d+8pp—1)
B arorp-n A [Tatrer, Ao "
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is then trivial. Meanwhile, we obtain the equality of ideals of O™ [[Gal(F/F)]|

CharAgM (Seli’gﬁj ) V= Tanalw —1 (ChaI‘AgM (Selz pobys ) v )

AGM
= (Twyeay-1 (L5 (8)))

by the Iwasawa main conjecture (IMCp,,) for F' and 1. We see from (3.46) and
(3.47) that L7\ (n) is trivial, because it is the projection of Tw,sa -1 (L) (1))
(multiplied by a unit) onto the Iwasawa algebra O™ [[Gal(F* (ipe)/F1)]]. On
the other hand, we have already observed in Corollary 2.25 that the element
LEn(n) is a nonzero multiple of the cyclotomic p-adic L-function L£§¥°(f,) of
fn =0(n)P=" in each component of OW[[Gal(F* (pp ) /FH)]] ®z, Qp. The non-
vanishing assumption (NVLZyC( #,)) thus leads us to a contradiction, which com-

n

pletes the proof of the claim. |

(3.47)

Due to the claim, we can apply the specialization lemma (Lemma 3.29) to

3,str iV, (d4+0Fp,p—1) . 8 R
(SQIASM[%HF,VI}) and Tays., Mg . We thus observe that the strict

Selmer group Seli’c:ytf 0
a AZ°-module, and we obtain the base-change compatibility of the characteristic

ideal with respect to the cyclotomic specialization:

(CharAgM (Seli;ﬁ)v) ®A8M Acoyc = CharAgc(Seli?g)\/.

f the cyclotomic deformation A7 of 7 is cotorsion as

This is the end of the proof of Theorem 3.27.

3.5. Application to the Iwasawa main conjecture

We shall prove the main theorem of this article (Theorem 3.41). First let us recall
the notation and the settings. As in Section 1, let p be an odd prime number,
and let F'T be a totally real number field of degree d satisfying the unrami-
fiedness condition (unrg+). Consider a nearly p-ordinary p-stabilized newform
fn =9(n)P™" with complex multiplication defined on F'*, which is associated to
a groflencharacter 7 of type (A4p) on a totally imaginary quadratic extension F’
of F'T satisfying the p-ordinarity condition (ordp /r+). We may assume that 7 is
admissible and ordinary with respect to an appropriate p-ordinary CM type X
of F', which we henceforth fix. Finally we choose and fix a branch character
associated to 7 (see Definition 3.8).

THEOREM 3.41 (THEOREM D)

Let the notation be as above, and assume that all the following conditions are
fulfilled:

o the nontriviality condition (ntr )y for every place B of F' contained in X5

o the (d+drp + 1)-variable Twasawa main conjecture (IMCr,y) for the CM
field F' and the branch character ;

e the assumption (NVﬁgyC(fn)) concerning the nonvanishing of the cyclotomic
p-adic L-function associated to f, =9(n)P~".
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Then the cyclotomic Iwasawa main conjecture for the Hilbert cusp form fy is
true up to p-invariants; that is, the equality

(3.48) (£57°(fn)) = Char Agc(sely%c)

holds as an equation of ideals of @ur[[Gal(F+(upx)/F+)]] ®z, Qp. Furthermore,
the equality (3.48) holds as an equation of ideals of A3 if Conjecture 2.26 is
true for f.

Proof
The claim follows directly from Corollary 2.25 and Theorem 3.27. (]

REMARK 3.42 (ON THE MULTIVARIABLE IWASAWA MAIN CONJECTURE (IMCFg;))

Concerning the multivariable Iwasawa main conjecture for CM number fields
(IMCp,y), Ming-Lun Hsieh [25] has recently obtained several remarkable results
over the (d + 1)-variable Iwasawa algebra associated to the Galois group of the
compositum of the anticyclotomic Zg—extension (d-variable) and the cyclotomic
Z,-extension (1-variable). If we assume the Leopoldt conjecture, which claims
that the Leopoldt defect 67, would equal zero, then the Iwasawa algebra above
coincides with O[[Gal(F/F)]] (which is isomorphic to each component of ASM).
Thus, Hsieh’s result [25, Theorem 8.16] combined with the Leopoldt conjecture
implies a one-sided divisibility relation

L3 (1) | Char s (Seljon)

in our cases under certain technical assumptions. Also [25, Theorems 8.17 and
8.18] combined with the Leopoldt conjecture imply that the whole equality

L3 () = Char yeu (SelﬁlgM)

holds in our cases under certain technical assumptions.

REMARK 3.43 (ON THE NONVANISHING OF THE CYCLOTOMIC p-ADIC L-FUNCTIONS)

We here discuss the validity of the nonvanishing assumption (NV zeve(r)) for gen-
eral Hilbert cusp forms. As in Theorem 2.15, let f be a normalized nearly p-
ordinary eigencuspform in S, (M,g;Q) which is stabilized at p. If the region of
the convergence of the (twisted) Dirichlet series

C(a; f)¢"(a)

(3.49) L(f.ds)= Y, =7
aCrpt
contains at least one of K" 41, kK" +2,..., K2 min, then the cyclotomic p-adic

L-function £Y°(f) associated to f does not vanish obviously. Indeed, the value
L(f,¢,j) of the (complex) L-function at such a point never equals zero, and
hence, the nonvanishing of £5¥°(f) immediately follows from the interpolation
formula (2.14). The Ramanujan—Petersson conjecture for Hilbert modular forms,
which was verified by Brylinski and Labesse [5, Théoréme 3.4.5] and Blasius [3,
Theorem 1], suggests that the Dirichlet series (3.49) absolutely converges in the
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region Re(s) > [k]/2 4+ 1, and thus, the nonvanishing of the cyclotomic p-adic
L-function of £LY¢(f) is automatically deduced when the inequality
[x]

K2 min > 7 +1

holds. In contrast, it is very hard to verify the nonvanishing of E;yc( f) when
none of the critical points are contained in the region of convergence. For elliptic
modular forms, Rohrlich [42], [43] has verified in general situations that there
exists a Dirichlet character ¢ of p-power conductor such that at least one of the
critical values L(f, ¢, 7) does not vanish, and thus, the condition (NV zovepy) is
fulfilled for general elliptic modular forms. For Hilbert modular forms, however,
there have not been enough results yet to verify the condition (NV L5 ) for
general f.

Appendix A: Complex multiplication of Hilbert modular cusp forms

Let F* be a totally real number field, and consider a Hilbert eigencuspform f
defined over GL(2) o+ of cohomological weight &, level 9N, and nebentypus €. Sup-
pose that [k] is strictly greater than zero. We further assume that f is a primitive
form in the sense of Miyake [32], and we denote by Qy the Hecke field associated
to f. Then due to results of many people including Ohta [38], Carayol [6], Wiles
[57], Taylor [53], and Blasius and Rogawski [4], we can canonically attach to f
a strictly compatible system (ps ) of 2-dimensional A-adic representations of
the absolute Galois group G g+ of F'T; namely, for each finite place A of F'T with
residue characteristic ¢, the 2-dimensional A-adic representation

PrA: Gp+ — Athf,Any)\
is unramified outside ¢91 and characterized by the formulae
Tr psa(Frobg) = C(q; f), det py »(Frobg) = ngycsial (Frobg)

for each prime ideal q of F't relatively prime to (0, where x¢cyc denotes the
{-adic cyclotomic character. Further, each Galois representation py,y is known to
be irreducible (see [54, Theorem 3.1]).

The following statement is widely known for elliptic modular forms due to
Ribet [41].

PROPOSITION A.1

Let f be a primitive Hilbert cusp form as above. Then the following three state-
ments on [ are equivalent:

(1) the primitive form f has complex multiplication;

(2) the absolute Galois group Gp+ contains an open subgroup H of index
two such that the image of H under the associated \-adic Galois representation
pr. s abelian for every finite place X of Qy;

(3) there emist a totally imaginary quadratic extension F of FT, a CM type
Y of F, and a primitive X-admissible grofiencharacter n (in the sense that the
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modulus of 1 coincides with its conductor) of type (Ag) on F such that f coincides
with the theta lift ¥(n) of 1. Furthermore the infinity type of n is described as

ZUEZ Ri,00p+ 0 + Z&ezc K2.5|.4+0-

In the cases above, py x is isomorphic to the induced representation Ind?r n&2l of
the 1-dimensional \-adic representation n¥: Gp — Q}i)\, which corresponds to
the £-adic avatar fjy of the gréflencharacter n of type (Ag) introduced in statement
(8). Here we consider the {-adic avatar fy with respect to a specific embedding

Q = Q; which induces A on Qy.

The proof of Proposition A.l proceeds analogously to Ribet’s arguments in [41,
Sections 3 and 4]. It is based upon a precise study of the A-adic Galois rep-
resentation pyy associated to the Hilbert modular cusp form f with complex
multiplication.

REMARK A.2

Due to the lack of appropriate references, we decided to give a proof of Proposi-
tion A.1 in this appendix. After the first redaction of the article, we learned that
some of the results in Proposition A.1, say, the equivalence between statements
(1) and (3), have already been proved in [28, Proposition 6.5] with the language
of automorphic representation. We still leave the proof of Proposition A.1 below,
believing that the proof with the language of Galois representation has its own
value.

Proof of Proposition A.1

We first prove that statement (3) implies statement (1). Assume that f is obtained
as the theta lift J(n) of a primitive groBBencharacter n of type (Ag) defined on
a totally imaginary quadratic extension F' of F'*. Then one easily observes by
the construction of the theta lift (refer to Proposition 2.13 for details) that the
Fourier coefficient C(q,9(n)) at a prime ideal q of F* equals zero if and only if g
is ramified or inert in F or, equivalently, the evaluation of the quadratic charac-
ter vp p+: A;+ — C* associated to the quadratic extension F'/FT at q equals
either 0 or —1. This is equivalent to the validity of (2.7) when one replaces the
character v appearing in (2.7) by the quadratic character vp, g+ .

Next we prove that statement (1) implies statement (2). Assume that f has
complex multiplication by a nontrivial gréflencharacter v on AIXH: then v is a
quadratic character (see the arguments in Section 2.1.5). For each g in a set of
prime ideals of F™ of density one, (2.7) implies that the traces Tr ps (Frobg)
and Tr prg,,x(Frobg) coincide for each g in the same set of prime ideals. Since
both psx and pre,, are irreducible by [54, Theorem 3.1], Cebotarev’s density
theorem suggests that they are isomorphic to each other as A-adic representations
of Gp+. In other words, there exists a (2 x 2)-matrix M in GL2(Qy,») such that
the equality

(A1) prx(9) = Mpreur(g)M " =v(g)Mpsa(g)M !
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holds for an arbitrary element g of G+ when we fix noncanonical identifications
Vi = Q?i and Vg, \ = (@?i. Let us denote by H the kernel of the quadratic
character v, which is a subgroup of index two of Gp+. Take an element gg from
the complement of H in Gp+, and set T'= pr x(go). We then obtain the equality
T=-MTM~! by (A.1), from which we readily observe that M is semisimple
but not a scalar matrix. Also (A.1) implies that the image of H under py ) is
contained in the commutant of the semisimple, nonscalar matrix M, and thus
it is abelian. The subgroup H satisfies all the required conditions in statement
(2), and hence, statement (2) follows from statement (1). We remark that, since
H is defined as the kernel of the rational quadratic character v, it is determined
independently of the choice of a finite place A of Q.

We finally verify that statement (2) implies statement (3), which is a crucial
part of the proof. Suppose that G+ contains an open subgroup H of index two
such that the image of H under each A-adic representation py ) is abelian. Let
F denote the subfield of Q corresponding to H, which is a quadratic extension
of F*. By assumption, the restriction ps x| of pf to H is a semisimple, abelian
A-adic representation of H for every finite place A of Qy, and therefore, ps g
is locally algebraic due to the local algebraicity theorem proved by Serre [47,
Chapter III, Section 3] and Henniart [19, Section 6]. In other words, there exists
a morphism of algebraic groups r: Sgm /oy GL(2) /g, giving rise to the strictly
compatible system (psa|m)a of the A-adic representations pyx|g of H. Here
Srm /Q; denotes the base change to Qy of Serre’s algebraic group Sp,, associated
to the field F' of modulus m. By construction Sp, is defined over Q, and it
is an extension of the ray class group Cl(F)y of F modulo m (regarded as a
constant group scheme) by a certain algebraic torus T defined over Q. In
particular, it is of multiplicative type. See [47, Chapter II] for details on Sg .
The algebraic representation r is thus (Qy-rational and) semisimple; namely,

there exists a Qg-rational pair of algebraic characters (7%, n5'¢) of Spm s (in

the sense that the summation nflg + nglg is invariant under the natural action of

Gal(Q/Qy)) such that  is isomorphic to the direct sum 7'® @ n3'® over Q. For

al

each i = 1,2 and each finite place A of Qy, let 77;‘{ ) denote the 1-dimensional A-adic

representation associated to 7 e , and let 7; denote the groBlencharacter of type
a.

Ap) on F associated to n™'8. Then by construction 782 is the Galois character
[ A

of H associated to the (-adic avatar 7; ¢ of 1;, and py x| is equivalent to the
direct sum of 77%?31\ and ng)a)l\. Now let ¢ denote the generator of the quotient group
Gp+/H, and let us take its arbitrary lift ¢ to Gp+. We define the c-conjugation
Pl of prala by pralS () = pgalm(¢hé™!) for each element h in H. Note that

PG is well defined independently of the choice of é. Then, since py y is defined

on G+, the trace of ps 1|4 obviously coincides with that of pf x|z . Furthermore,
both psalg and pra|$ are semisimple, and hence, they are isomorphic to each
other by Cebotarev’s density theorem. Consequently, either of the following two
cases occurs: (nf’i\l’c = niil for i =1,2) or (rﬁ;‘l}l\’c = 775?; and ng?)l\’c = 77‘(1%“)1\) If the
former case occurs, then the equality ps x(¢h) = py (h¢) holds for every h in H.
This means that ps » is an abelian representation of G+, which contradicts the
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irreducibility of py . Therefore, the latter case does occur, and in particular, the
conjugation by pr x(g) induces the interchange of nfa)l\ and ng,a; if § is an element
of the complement of H in Gp+. From this fact we readily verify that the image
pra(g) of such g is conjugate to a matrix both of whose diagonal entries equal
zero, and thus, Tr py \(Frob,) is trivial for a prime ideal q of F'* which is inert
in F. If a prime ideal q of F'* splits completely in F, then on the contrary,
the decomposition group at g is naturally identified with H. Combining these
observations, we obtain the following formula for each prime ideal q which does
not divide ¢91:

Tr PfX (FI‘Obq)

(A2) B n%i{ (Frobgq) + n%i{ (Frobge) if q splits in F' as ¢ = 2Q0Q°,
0 otherwise.

gal,c

Here we use ngf;l\(Fron) =1 (Frobg) = n%fl)l\(Fronc) in the former case. This
calculation (combined with Cebotarev’s density theorem and the irreducibility of
py.a) implies that the A-adic representation py y is isomorphic to the induced rep-
resentation IndgF * 77%’3)1\ of n%’a)l\. We remark that this is canonically extended to an

isomorphism between the strict compatible systems (pf,x)x and (IndgF * n%ai) XS

namely, py y is isomorphic to IndgF * 77%)3;\ for every finite place A of Q; which
is not contained in either of the exceptional sets of the two strictly compatible
systems.

Now, we verify that the field F' corresponding to the subgroup H of Gg+ is a
purely imaginary quadratic extension of F'* (and thus F is, in particular, a CM
number field). Indeed, if F' is not purely imaginary over F*, then every algebraic
character of Ty, is described as an integral power of the norm character (see [47,
Chapter II, Section 3.3]). In particular, each A-adic character niil is described as

gal —n;

_ f
77,',,\ - Xe,cycni,)\

for a certain integer mn; and a certain character 772{ , of H of finite order. Then

the determinants of py  and Indg’” * 77%&)1\ are calculated as follows:

-1 _gal _ —I[x] _f
det Prx= XZ,cyCEJr - Xl,cyc€+7

G 1 1 gal g —
det(Indz"" TI%?A) = 77%,&,\7753 = Xé,glylc " (n{,ﬂizf,,\)v

where ei denotes the finite part of effﬂ. Since these two 1-dimensional A-adic
representations must coincide, we obtain the equality ny +ng2 = [k]. Furthermore,
(A.2) implies that

C(q; ) = Tr pya(Frobg) =n/ , (QN g™ +nf , (QNq"

holds for each prime ideal q1¢91 of F'™ which splits in F' as q = Q0°, because
Xt,eye(Frobg) equals Nq~!. By virtue of the Ramanujan—Petersson conjecture

|C(q; )] < 2N ql1/2
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established by Brylinski and Labesse [4, Théoreme 3.4.5] and Blasius [3, Theo-
rem 1], both ny and ng must be less than or equal to [k]/2. We thus conclude
that, by combining this observation with the equality ny 4+ ny = [k], both n; and
ng equal [k]/2. More specifically, the restriction py x|p is equivalent to the A-adic

representation of the form
f
My 0 —[]/2
' ®
( 0 775,,\> Xeeye

which has a finite image in PGL2(Qy,»). This contradicts the fact that ps x has
an infinite image in PGL2(Qy, ») (one readily verifies this fact in the same manner
as in [41, Theorem (4.3)]), and thus, the field F' corresponding to H is purely
imaginary over F'T.

Next, we verify that the infinity type p=73_. 1y Moo of n=m is described
in terms of the weight of f. To this end, we take a finite place p of F'* which
satisfies the following two properties:

(i)p the prime ideal p is contained in neither the exceptional set of the strictly
compatible system (py,1)x nor that of (IndgFJr nfal)A;
(ii)p the unique prime ideal pZ of Z lying below p splits completely in the

extension F/Q.

The existence of such a finite place p is guaranteed by Cebotarev’s density theo-
rem. Now we fix an algebraic closure @p of the completion Fp+ of FT at p and an
embedding ¢, : Q— @p. For each embedding 7: F* < Q (i.e., 7 is an element
of I'p+ under the notation of Section 2.1.1), let p, denote the finite place of F'T
lying above pZ induced by the composition ¢, o7: Ft — @p. Note that, due to
the condition (ii), on p, the correspondence 7+ p, induces a bijection between
Irp+ and the set of prime ideals of F'™ lying above pZ. Let Ay denote the finite
place of Qy induced by the embedding Qf C Q N @p, and let us consider the
isomorphism

G
Pino =Indy " 5 G — GLa(Qy )

of the \g-adic representations of G g+ . It is obvious from their constructions that
both of py x,|p,. and (Ind$;7* 18| p,, are Hodge-Tate representations of D,
for each 7 in Ip+, and we shall compare their Hodge-Tate weights. As we have
remarked in the paragraphs preceding Remark 2.4, the Hodge type at 7 of the
motive M(f),p+ associated to f is given by {(k1,r,k2,r), (k2,7 51,7)}, and we
thus see that the Hodge-Tate weights of py x,|p, are {1 r,K2} via the com-
parison isomorphism in p-adic Hodge theory. Now let us study the Hodge-Tate
weight of (IndgF+ n§i1)|pp7 for each 7 in Ip+. Let w, denote the unique (com-
plex) place of F lying above the real place of F* determined by 7, which is
identified with the pair {0 1,02} of embeddings of F into Q whose restrictions
to F* coincide with 7. Then the p-adic embeddings ¢, 00,1 and )00, 2 of F
induce distinct prime ideals ‘B, 1 and B, 2, which are interchanged by complex
conjugation. Recall that the Hodge type at w, of the motive M (n),r associated
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to the groBencharacter 7 of type (Ao) is given by {(Ho, ,.fio, o) (o asbo, 1)}

(see [2, Proposition (3.2.3)] or [46, Chapter 1, Section 4] for details). Since

gal gal

(Indgp+ 77%21) |p,, is isomorphic to the direct sum %" |p,, | &5, , we read-

|D‘l’7—,2
ily see that the Hodge-Tate weights of (Indgp+ nfil)bpr are {llg, s o, 5} By
comparing the Hodge-Tate weights, we can consider without loss of general-
ity that the two integers s1, and ko, coincide with s, , and p,, ,, respec-
tively. Furthermore, the inequality xj, < kg2 holds for each 7 in Ip+ since
we have assumed that the weight x of f was cohomological. Therefore, if we
set X ={0,1: F = Q|7 € Ip+}, then it is straightforward to verify that ¥ is
a p-ordinary CM type of F' with respect to which the infinity type u of the
groflencharacter 7 is admissible. Moreover, we readily redescribe y in terms of x
and ¥ as in statement (3).

Finally, we verify that the primitive form f is described as the theta lift of
7. Since the infinity type of 7 is 3-admissible, we have the theta lift J(n) of
7 by Proposition-Definition 2.13. The construction of 7 implies that the local
L-factors of f and 9(n) coincide at every prime ideal q{¢91 of F* which splits
completely in F', and we thus conclude that f and 9(n) coincide up to a scalar
multiple due to the strong multiplicity one theorem for Hilbert modular forms.
However, both the Fourier coefficient at tp+ of f and that of J(n) equal 1, and
hence, the primitive form f exactly coincides with the theta lift 9(n) of n. O

As an application of Proposition A.1, we can deduce conditions for the primi-
tive cusp form ¥(n) with complex multiplication to be nearly p-ordinary. In the
following proposition we fix a p-adic embedding ¢,,: Q — Q.

PROPOSITION A.3

Let p be a prime number, and let f be a primitive Hilbert modular cusp form
with complex multiplication as above. Then f is nearly p-ordinary (with respect
to the specific p-adic embedding v,) if and only if there exist a totally imaginary
quadratic extension F/FT satisfying the ordinarity condition (ordpp+) for the
prime number p, a p-ordinary CM type ¥ of F, and a primitive ¥-admissible
and X-ordinary gréfiencharacter n of type (Ag) on F such that f is obtained as
the theta lift ¥(n) of n.

Proof

We can easily verify that the condition is sufficient. Indeed, let F/F*, %, and
7 be as in the statement. By the characterization of the Fourier coefficients of
the theta lifts, we readily see that, for every prime ideal p = PP¢ lying above
p, the eigenvalue Cy(p;9(n)) of the normalized Hecke operator Uy(p) at 9(n)
equals the summation of {p~«1}~1n*(P) and {p*=1}~1n*(P°). Note that the
value {p®#1}~1n*(P) does not vanish, since n is unramified at P € £, due to
the ordinarity of n with respect to ¥. Moreover, we readily observe that, by
construction, {p~#1}~1n*(P) has the same p-adic valuation as the evaluation
i (o) of the P-component of the p-adic avatar 7 of n at a uniformizer wy of
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Fip. Therefore, Co(p;9(n)) is a p-adic unit for each p, and consequently ¥(n) is
nearly p-ordinary.

Conversely let f be a nearly p-ordinary Hilbert modular cusp form with
complex multiplication, and let us take a totally imaginary quadratic extension
F/F* a CM type %, and a Y-admissible grofiencharacter n of type (Ag) on F
as in Proposition A.1; then f is obtained as the theta lift of 7. We denote by
Vs the Galois representation associated to f, which is isomorphic to the induced
representation Ind?rngal by Proposition A.1. First assume that there exists a
place p of '™ lying above p which does not split in F', and let 3 denote the
unique place of F' above p. Since we can regard the decomposition group Dy
of Gr at P as a subgroup of the decomposition group D, at p of index 2,
we readily identify the restriction of V; to D, with the induced representation
Indg;ngaw Dy » Which is irreducible. Therefore, Vy|p, admits no 1-dimensional
D,-subrepresentations. This contradicts Proposition 2.11, and thus, all places
of F* lying above p split in F. In other words, the quadratic extension F/EF™
satisfies the condition (ordp,p+) for p.

We next prove that ¥ is a p-ordinary CM type. Let p be a place of F*
lying above p, which splits completely in F' as p = PR by the arguments above.
The quadratic equation (2.6) in Proposition 2.11 has two roots w, """ n* ()
and w, 1P ¥ (PB€), one of which is a p-adic unit due to the near p-ordinarity of
f=19(n). We can assume without loss of generality that @, """ n* () is a p-adic
unit. Define ¥q and X as follows:

Ly ={0c€X|ooinduces P} = {o1,...,05},
Yp={0€X 1,00 induces P} ={Gs11,.-,0511}

We shall verify that 2;33 is empty or, in other words, that ¢ equals 0. Since p splits
in F', the decomposition group D, at p is contained in Gy, and thus the restriction
of Vy to D, is isomorphic to the direct sum of ngal‘Dm and ngal7C|D%. Hence, (2.6)

in Proposition 2.11 suggests that as () = 78 (Frobg,, ) = fj(wy) coincides with
@, " n*(P). Here we identify F," with Fy and define the uniformizer wy of
Fy as wy, via this identification. By the definition of the p-adic avatar (2.2), we

have

~ -2 ﬂz‘_zt':l Gs+j %
(A.3) () =gy =TI (o)

)

where we denote by p =3 s (1s0 + 1150) the infinity type of 7. On the other
hand, since k1 = 1 equals ) .y fic0|p+ by the characterization of the weight
of the theta lift (see (2.8) for details), we have

—Kil,p % - Zfi{ Ho;  x
(A4) @ T (B) = oy " (B).
Comparing the exponents of wy in (A.3) and (A.4), we obtain the equality

t

Z<M5s+j — Hooy;) =0.

j=1
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The Y¥-admissibility of n implies the inequality ps,,; > o, for each j, which
forces t to be 0. Therefore, the CM type X is indeed a p-ordinary CM type.
Finally, we readily see by the argument above that the place B |p is an

—Ki,p, %

element of ¥ if and only if w, ""*n*(P) is a p-unit. This implies that the
groflencharacter n is ordinary with respect to X. (I

Appendix B: Comparison of the global and local duality pairings

In this appendix we provide the proof of Proposition 3.40. We work in the same
setting and use the same notation as in Section 3.4.5. First we recall that, as
is explained in the paragraphs preceding [16, Proposition 3.3.1], the Pontrjagin
dual of the cokernel of the global-to-local morphism ¢ ..,;-1) is identified with
the image of the global-to-local map "

1 . X,str
Res(j_1)|S81JZ4’;t; . SelAn,(jfU — Lty (F, -An,(j—l)) (C H Hl(EnAm(j—l)))
EAW A 'UGS
via the local Tate duality isomorphism
q)local = ((blocal,v)vesz H Hl(Fv7~’4n,(j—1))v ; H Hclts(FU77:;:(j71))'
veS veES
In other words, the summation of the local Tate pairing
(-, Nocal = Z<’ Dot H Hl(FvaAn,(jfl)) x H Hclts(Fva 7:7*,(3'—1)) - Qp/Zp
veS veS veS
induces a perfect pairing
(-, Vocal : Im(ReS%j_1)|Se]i,st(r )) x Coker(¢ .« -1) = Qp/Zy,
n,(Gi—1 str
for which we use the same symbol (-, -)joca1 to simplify the notation. Since the
module CY~Y introduced in diagram (3.28) is defined as the cokernel of the

multiplication of z; on Coker(¢£*,(j—1))7 the perfect pairing (-, -}1oca1 above also
str
induces a perfect pairing

(-, MNocal : KG=1 « cG-1) %Qp/Zp,
where KU=1 is defined as

(B.1) KUY .=Ker [Im(Res%jfl) lgeZser ) SLEN Im(ReS%j71)|SelX],str )]

An,(G—1) An,(—1)
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Now consider the commutative diagram
(B.2)
cE—1)

|

1
Im(Res<j71) ‘Seli’s“_ )—=0
n,(G—1)

1
lE,str Res(j_l)
An, (1)

\Lxxj lxacj \szj
1

3,str Res(J71>
An. -1

! l

. 1
e, o 0

— > Sel Im(Res%j_l) ‘Seli,str ) —0

n,(5—1)

1
An,G-1)

whose rows are exact by the definition of the S-fine Selmer group H_Ii‘ We

denote by

n,G-1)"

)

n,(3—1)
the connecting homomorphism associated to diagram (B.2) through the snake
lemma.

Diagram (B.2) is obtained as the Pontrjagin dual of diagram (3.24), and we
thus observe that the connecting homomorphism S}/ in diagram (3.28) is obtained
as the composition

Vv
6y Piocal

(B.3) (rly, )Vl = (KDY ————— ¢U-Y),

~

where 8, denotes the dual morphism of §; and ®1,c,) is the isomorphism induced
by the perfect pairing (-,-)1ocal. By construction, the local Tate duality map
®,ca1 isomorphically sends the image of §) onto that of 5}/ , or in other words,
the perfect pairing (-, -)1oca1 induces a perfect pairing

(s Nocar: Coim(dy) x Im(8y) — Q,/Zy,
which makes the following diagram commutative:

(*sNocal

-1 x cl-1) Q,/Z,
J
Coim(4,) X Im(3Y) Qp/Zy.

("5 Nocal

Recall that we have defined the (injective) morphism d: Im (6Y) — ﬁi*
as the connecting homomorphism associated to diagram (3.41) via the snake
lemma. See the paragraph preceding the short exact sequences (3.42) and (3.43)
for the definition of the module ﬁj* Let H_IZTI oot denote the kernel of the
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global-to-local morphism
2,% . %
Res(] 1)° ] l) — H cts Fv’na(jfl))'
veS
Combining the short exact sequence defining H_IQT*(/_?U and the sequence (3.43)
with Im(8)) replaced by Im(d;), we obtain the following commutative diagram

with exact rows:

Res(g 1

2 2,% ”
0 — HI 77*1(.7'—1) % H(jfl H cts Fv>7;77(j_1)) — 0
veES
prya &mm H
\
! 2
0 —— Im(ég) C /Hj’ H 2 Fva*(J 1)) _—
vES

We readily observe that the middle vertical morphism pry2, which is defined in
(3.42), induces a surjection pryyz: leTn* G Im(d2). Note that the right com-
mutative square of the diagram above is the same as that of diagram (3.45). The
rest of this appendix is devoted to the verification of the following proposition.

PROPOSITION B.1
Let (-,-Ypr: denote the perfect pairing

2
An, G- 1)/ IH-AN (3-1) X mn*-,(j—m [xj] - Qp/Zp
induced from the Poitou—Tate pairing I.H}Llw_l) X I_HQTJ(FI) — Qp/Zy. Then the
equality
(B5) <(5v)v€Sa (t”)”€S>local = <§1 ((Sv)vGS) ) 62 ((tv)UES)N>PT

holds for arbitrary elements (s,)ves and (ty)ves in Coim(d;) and Im(8Y), respec-
tively, where 2((ty)ves)™ denotes an arbitrary element of II1*(F, S, T i—1)) 175
which is sent to d2((ty)ves) by the map pryye introduced above.

In particular, the perfect pairing (-,-)pr induces a pairing

HI}‘\n_(j,l) /xjm;n,(j,l) X Im(62) - QP/ZP7
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which makes the following diagram commutative:

- (*s)10cal

Coim(31) x I (5Y) /2,

I‘H}“n«j—l)/xﬂ'm}“n,(j—l) x Im(d2) > Qp/Zy
H % Prp2 H

HI}“n,u—l)/xjHI}“n,u—1> x HI%’,,*,U_U [5] Qp/Zp.

2"/ PT

We readily observe that Proposition 3.40 is a direct consequence of Proposi-
tion B.1. As we remarked just after Proposition 3.40, the commutativity of the
right square of the diagram in Proposition 3.40 is obvious, and we thus only
need to check the commutativity of the left square of the diagram there. Let
IE H_Ihmj_l) — Q,/Z, be an arbitrary element of (I_Hi\n)(j_l))v[xj], and let a be
an arbitrary element of H-I}éln,(j_l) /xjHl}%)(j_l). Then there exists a unique ele-
ment b of Coim(d1) satisfying d1(b) = a. By definition the duality isomorphisms
D1oca1 and Ppr are characterized by the relations

(B.6) 87 (£)(0) = (0, Procat (07 (£)) ) pear~ F(@) = (@, PpT(f)) prp-
Proposition B.1 thus provides the following equality:

(a, ‘I’PT(f)>pT
= f(a)=f(01(b)) =67 (f)(b)
= (b Procar (67 () D1
= (01(b), 02 (@106&1(5¥(f)))N>PT (here we apply Proposition B.1)

= <a, 62 (q)local <6¥(f>))N>pT
The perfectness of the Poitou—Tate pairing thus implies the equality

(B.7) Dpr(f) = b2 (Procar (Y (£))) -

Since the connecting homomorphism dg,ake appearing in Proposition 3.40 is
decomposed as dgpake = 02 0 Procal 07 due to (3.43) and (B.3), we finally deduce
the desired equality

Pryg2 © cDPT(JC) = 52 (q)local (6¥(f))) = anake(f)

by applying pryp2 (= pryz) to both sides of (B.7). The final equality shows the
commutativity of the left square of the diagram in Proposition 3.40.

The proof of Proposition B.1 requires a somewhat lengthy computation. We
first calculate the cohomology classes 61((sy)ves) and d2((t,)ves) explicitly and
then check that (91 ((Sy)ves), 02((ty)ves)™ ) pT coincides with ((sy)ves, (tv)ves)ocal
by a direct computation. In order to estimate the value (§1 (($y)ves), 02((ty)ves)™ )P,
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we utilize the explicit evaluation formula of the Poitou—Tate duality pairing
1 2 : .
(,Ypr: O o, % an*,(j—l) — Qp/Z,, which we recall below (see [52, Sec-
tion 3] for details'). In the rest of the article, we denote by C*(G, M) the stan-
dard cochain complex of a continuous G-module M over a profinite group G,
and we denote by dj; (or just d if it is clear from the context) its coboundary

homomorphism. Let [f] be an element of ]_H%—n* et represented by a continuous
2-cocycle f in C?(Gal(Fs/F), m(i—1))» and let [f’] be an element of HI}%(J_?I)
represented by a continuous 1-cocycle f’ in C*(Gal(Fs/F), A, j—1)). For each v
in S, we denote by f, the restriction of f to the decomposition group D, at v.
Since [f] is locally trivial at v, there exists a 1-cochain g, in C*(D,, 7:7*,(]'—1)) sat-
isfying dg, = f,. Recall that F' has no real places, which implies the triviality of
the global cohomology group H?(Fs/F, =) (see, e.g., [34, (8.6.10)(ii)]). Thus,
there exists a 2-cochain h in C?(Gal(Fs/F), pup~) satisfying dh = f' U f. Then
the value ([f'],[f])pT is explicitly calculated as

(B.8) (1 Dpr =D {=Fi Vg0 = b,

vES
where, for each v in S, h, denotes the restriction of h to the decomposition
subgroup D, and {-},: H?(F,, iy~ ) — Q,/Z, is the invariant isomorphism at v.

Now let us calculate 1 ((8y)ves) and d2((ty)ves)-

Calculation of §1((Sy)ves)- Let (8y)ves be an arbitrary element of Coim(dy).
There exists an element [z] of Seli’:)t(rjil), represented by a 1l-cocycle z in
C'(Gal(Fs/F), A, (j—1)), which is sent to (sy)ves by Res%jfl). Then, follow-
ing the definition of the connecting homomorphism ¢; given in diagram (B.2),
the evaluation of d5 at (s, )yes is calculated as

61((sv)ves) =[zj2] mod xjHli‘Mj_l).
For each v in S, we denote by z, the restriction of the 1-cocycle z to the decom-
position group D, at v.

Calculation of d2((ty)ves). Let (ty)ves be an arbitrary element of Im(Slv)

We calculate 02((t,)ves) by diagram chasing on (3.37) (or on (3.41)). For each

*

v in S, take a cocycle w, of Cl(Fv,f] (j—l)) so that the element represented

by the cohomology class ([wy])ves in Q{j_1) is sent to (ty)ves under the natu-
ral surjection Q?j—})/ij?j—l) — CU=1, Here we use the same symbol (t,),cs
for its image in CU~1Y). Denoting by @, the image of w, under the surjection

C’l(Fv,ﬁ*’(jfl)) — Cl(Fv,fI’i(j)), we have W]-Q(([wv])ves) = ([@Wy])ves- Then dia-

gram (3.41) implies that there exists a unique element ¢ of Coim(¢ ..,;)) satisfy-

ing ¢ ... (0) = ([Wy])ves. The image of g in ﬁj* is none other than d2((t,)ves)
by definition.

IIndeed, the explicit description of the Poitou—Tate pairing is proposed only for finite Galois
modules in [52] and other parts of the literature, but it is straightforward to justify the same
description under our settings by the standard limit argument based upon Tate’s theorem on
the inverse limits of Galois cohomology groups.
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We do a little more precise computation. Let us take an arbitrary lift g of
o with respect to the canonical surjection H, (1])* — Coim(¢ ﬁ;,r(j)), which is repre-
sented by a 1-cocycle @ in Cl(Gal(Fs/F),%f(j)). Then diagram (3.40) implies
that the image of a%j.)([w]) in ﬁ?’* coincides with d2((ty)ves). In other words,
8(;)([w]) is regarded as alift d2((tv)ves)™ of d2((ty)ves). The element 8¢, ([@]) is,
however, calculated in the usual manner; namely, if we take a 1-cochain (not nec-
essarily a 1-cocycle) w of C'(Gal(Fs/F), (j—1)) which is sent to w under the
natural surjection Cl(Gal(FS/F),'E’f(jfl)) — Cl(Gal(Fs/F),ﬁ:(j)), then the
image 3! y([@]) of [@] coincides with [a:;ldw]. Note that the lift d2((ty)ves)™

(4
of 82((ty)ves) is determined uniquely modulo Sel?ﬁtf , but this ambiguity corre-

sponds to that of the choices of lifts g = [@] of . 'fh:erefore, each d2((ty)ves)™ is
obtained in this procedure, or more specifically, we obtain an explicit description
of an arbitrary lift d2((¢y)ves)™ of da((ty)ves) as [acj_ldw], for an appropriate w
as above.

Replacement of local cochains. As we have obtained explicit descriptions of
01((8y)wes) and d2((ty)ves)™, we evaluate these elements under the Poitou—Tate
pairing:

(Bg) <51 ((SU)UGS);52((tv)v€S)N>pT = <[sz]a [xj_ldw]>PT

In order to apply the explicit formula (B.8) to (B.9), we need to find a 1-cochain
w, of C1 (Fmﬁ*,(j_l)) satisfying the equality dw, = x;ldu?v of cocycles for each
v in S, where w, denotes the restriction of w to the decomposition group D,,.
In order to find such a nice 1-cochain w,,, we first study the relation between w,
and w,, the cocycle which we first took in the computation of d((t,)secs) above.

LEMMA B.2
For each v in S, there exist 1-cochains £, and c, in C* (Fv,n*(jfl)) satisfying
the following two properties:

(1) the image of £, under the surjection Ol(Fmﬁ*(]—,l)) —» Cl(Fyﬂ;*(j)) is
a 1-cocycle representing a cohomology class contained in Lstr(FU,f?*(j));

(2) the cochains ., and w, + £, + x;¢y coincide modulo coboundaries.

Proof
Let w, denote the restriction of the cocycle w to the decomposition group D,,.
Then by construction, w, satisfies the equation

([wv})UGS (: dj[::gr(j) ([ﬁ)])) = ([wv])ves

mn Qz‘j), and hence, there exists a 1-cocycle /, of Cl(Fv,’E]*

cohomology class contained in L%, (Fy, 7:7*,(3‘))7 such that @, coincides with @, + £,

) ), representing a

modulo coboundaries. Let £, be an arbitrary 1-cochain in Cl(Fv,f?*’(jfl)) which

is sent to £, under the natural surjection C'(F,, Toi—1) = CY(F,, T j))- Again

by construction, 1, and w, + £, have the same image w, + £, in Cl(Fv,f]*(j)).
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We now readily verify the existence of a cochain ¢, satisfying the claim due to
the natural exact sequence

CYBNE, T, (1) —25 CYBYE, T ;1)) = O/ BN(Eu, T ) = 0.

Here C'/B! (Fo, T, 1)) denotes the quotient of C’l(FU,’Z?*(k)) with respect to its
submodule consisting of all coboundaries. (]

Lemma B.2 enables us to replace w, by w, + £, +x;c, in the computation of the
Poitou-Tate pairing (B.9).

Computation of the Poitou—Tate pairing. We are ready to calculate the eval-
uation of the Poitou—Tate pairing (B.9). On the one hand, we readily observe
that the local cocycle x;ldﬁzv is redescribed as

(B.10) iy = x5 d(wy + by + x500) = 27 dl, + dey

up to coboundaries by virtue of Lemma B.2. On the other hand, the cohomology
class ([x;ldwv])veg is the restriction of the element d2((ty)ves)™ = [xj_ldw],
which is an element of ];H%;T,(j—l) by construction. This observation implies that
each x;ldwv = x;ld& + dc, is itself a coboundary. Let us take for every v in
S a l-cochain A, in Cl(Fv,f;(j)) satisfying m;ld&, =d)\,, so that the equality

x;ldwv =d(\, + ¢,) holds up to coboundaries. Moreover, the equation
zjzU xj_ldw =zUdw=—d(zUw)

holds since z is a 1-cocycle. Applying the explicit formula (B.8) for f = x_ldw
f'=x;z, gy =Xy + ¢y, and hy = —(z2U W), = —2, U, we calculate the value of
the Poitou—Tate pairing (91((sy)ves), 02((ty)ves)™ ) pr as follows:

<51((Sv)v65)a62((tv)ves) >PT
=Y { izl U+ eo] = (—2 Vi) },

veS

(B.11) => {~lel Vs +eo] + [2] Uws + 6 + 25600},

veS

— Z{[zv] U [wv}}v + Z{[zv] U MU - xj)‘v]}v
veS ves

= Z<S"’tv>v + Z<5v; [€2]>
veS veS

Here we set ¢, = {,, — x;\,, which is indeed a cocycle as one readily checks:
b, = db, — z;d\, = dl, — z;(x;  dl,) =

We also note that the last equality of (B.11) is just the definition of the local
Tate duality: ([a,], [by])y = {[av] U [by]}o-

Completion of the proof. Let us complete the verification of (B.5). Due to the
previous computation (B.11), it suffices to show that (s,,[¢]]), equals 0 for each
place v in S. Since s, is an element of Lyt (Fu, Ay, (j—1))[2;] and L, (Fy, T," ;)
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is defined as the orthogonal compliment of L. (F, Ay, (j—1)) with respect to the
local Tate pairing (-,-),, the triviality of (s,,[l}]), is reduced to the following
claim.

CLAIM

For each place v in S, the 1-cocycle £, represents a cohomology class contained
mn Lstr(E”T G- 1)) +xjHCtS(FU?T G- 1))

The following lemma is the technical key to the verification of the claim. Let
Bv ,(5) Hts(Fv7T*(]))4)Hcts( 7;]*,(3'—1))

denote the connecting homomorphism of the cohomological long exact sequence
associated to (3.34).

LEMMAB.3

Let v be a finite place in S, and let &, be an arbitrary cocycle of C*(F, 7;] (J)) rep-
resenting a cohomology class contained in Lstr(Fv,T (])) Furthermore, assume
that the image of the cohomology class [€,] under 5} () U trivial when v is a place
belonging to ;. Then there exists a lift & of & to Cl(Fv,T* (j— 1)) such that &,

15 also a cocycle and it represents a cohomology class in thr(Fv,T G- 1))

Proof

The statement is nontrivial only when v is a place in X or a place not lying above
p such that the inertia group I, acts trivially on 7;7* (k) otherwise, the local con-
dition L%, (Fy, 7;7*(19)) is trivial and there is nothing to prove. In the former case,
the local condition L’S*tr(Fv,T* ) coincides with the whole cohomology group
Hclts(Fv,T*(k)) The assumptlon 81 ([«EU]) = 0 then guarantees the existence
of a cohomology class [€]] of HCtS(Fv,T "(j—1)) Whose image in Hctg(Fv,’ﬁ:(j))
coincides with [£,]. In the latter case, the local condition L (Fo, T, (k)) is iso-
morphic to H} (D, / Ly, T (x))- Consider the cohomological long exact sequence
associated to (3.34):

*

(%)
Hcltb( /ImT*(g 1) - HCts( U/I’U’7:7*’(j)) - HCtb(D /IU’ n(] 1))

Since the procyclic quotient D, /I, = 7 has cohomological dimension 1, the sec-
ond cohomology group HZ.(D, /Iy,f:(jfl)) should be trivial, and hence, the
natural map (x) is surjective.

We thus find in both cases a cocycle €, of C’l(FU,'T G- 1)) representing a
cohomology class in L, (Fy, 7, ;_;)), whose image in ct (Fo, T, ;) coincides
with &, up to coboundaries. Since the natural surjection T*)(jil) —» 7:7*’0) obvi-
ously induces a surjection C*® (FU,T G- y) > C (. T (])) on the cochain com-

plexes, we can take a lift of an arbltrary coboundary in C* (F”’,Ez*( j)) from the
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submodule of coboundaries in C* (Fm7:7*( j—l))' This enables us to construct a

s

desired cocycle £~U by modifying é; in the same cohomology class. O

Proof of Proposition B.1

We first recall that the cocycle /, satisfies Bi,(j)([fv]) =0 for every place v in S.
Indeed, 811)70) ([€,]) is calculated as [acj_ldév] due to the definition of the connecting

homomorphism 811)7( j)- Then, the cohomology class [;v;ld&,] is trivial by (B.10)

and the fact that [xj_lduﬂ = 02((ty)ves) is an element of ]_H%—*(_ . Therefore,
N n,(i—
by applying Lemma B.3, we find a 1-cocycle ¢, in C! (Fv,ﬂ:(j_l)

lift of £, and represents a cohomology class contained in L;tr(FUﬂ;*( j—l))' It is

) which is a

straightforward to see that ¢/ in the claim above is also a lift of £, by definition,
and thus, ¢, — ¢/ is contained in ijl(Fv,f]*(jfl)) due to the exact sequence

* X * *
0 — OI(FU77;7,(J'_1)) —J> Cl(FU77;77(j_1)) - Cl(FrU,ﬁh(])) — 0

This calculation verifies the claim above, and hence, the proof of Proposition B.1

is completed. O
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