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Abstract Wededuce the cyclotomic Iwasawamain conjecture forHilbertmodular cusp

formswith complexmultiplication from themultivariablemain conjecture for CMnum-

ber fields. To this end, we study in detail the behavior of the p-adic L-functions and the

Selmer groups attached to CM number fields under specialization procedures.
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1. Introduction

The cyclotomic Iwasawa main conjecture for elliptic cusp forms describes the

mysterious relation between the Selmer groups (algebraic objects) and the p-adic

L-functions (analytic objects) attached to elliptic cusp forms. When the cusp

form f under consideration does not have complex multiplication, the cyclotomic

Iwasawa main conjecture for f is valid under some technical conditions thanks

to [26, Theorem 17.4] and [50, Theorem 3.6.4]. When the cusp form f under

consideration has complex multiplication, one can deduce the validity of the

cyclotomic Iwasawa main conjecture for f from the two-variable Iwasawa main

conjecture for an imaginary quadratic field F via the cyclotomic specialization.

Such an observation has already been made, for example, in [44] for the case in

which f is a cusp form of weight two associated to an elliptic curve with complex

multiplication. The main purpose of this article is to generalize this procedure and
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deduce the cyclotomic Iwasawa main conjecture for Hilbert modular cusp forms

with complex multiplication from the multivariable Iwasawa main conjecture for

CM fields.

Let p≥ 5 be a prime number which is fixed throughout the article. We also

fix a complex embedding ι∞ :Q ↪→C and a p-adic embedding ιp :Q ↪→Qp of an

algebraic closure Q of the field of rationals Q. Let F be a CM number field of

degree 2d, and let F+ be its maximal totally real subfield. We assume that all

prime ideals of F+ lying above p are unramified over Q and split completely in

the quadratic extension F/F+. We denote by IF (resp., IF+) the set of all embed-

dings of F (resp., F+) into the fixed algebraic closure Q of the rational number

field. We choose and fix a p-ordinary CM type Σ of F , which is a nonempty

subset of IF satisfying several conditions (see Section 2.3.1 for the definition of

p-ordinary CM types).

We denote by F̃ the composition of all Zp-extensions of F (in Q). It is well

known that Gal(F̃ /F ) is isomorphic to the free Zp-module of rank d+ 1+ δF,p,

where δF,p denotes the Leopoldt defect for F and p. We abbreviate the composite

field of F̃ and F (μp) as F̃∞. For each finite abelian extension K of F which

contains F (μp) and is linearly disjoint from F̃ over F , we define K̃CM
∞ as the

composite field KF̃ .

We consider a Σ-admissible größencharacter η of type (A0) on F . Assume

that η is ordinary with respect to the (fixed) p-ordinary CM type Σ, or, in other

words, assume that η is unramified at the set Σp of places of F corresponding

to the p-adic embeddings ιp ◦ σ for σ in Σ. By virtue of global class field theory,

there exists a canonical p-adic Galois character ηgal : GF →Q
×
p corresponding to

η whose construction we shall review in Section 2.1.1. Then, as we shall recall

in Section 3.1.4, there exist a finite abelian extension K/F (μp) and a character

ψ : Gal(K/F )→Q
×
p of finite order such that ηgalψ−1 factors through the Galois

group of F̃∞/F . Throughout Section 1, we denote by O the ring of integers of

an appropriate finite extension of Qp which contains the image of ηgal.

Now let us briefly explain our main results without precision of notation. In

Section 2.3 we shall introduce the notion of Katz, Hida, and Tilouine’s p-adic

L-function LKHT
p,Σ (F ) for the CM number field F , which is constructed as an

element of Ôur[[Gal(FCp∞/F )]] (see Theorem 2.19 for details on LKHT
p,Σ (F )). Here

Ôur denotes the composition of O and Ẑur
p . We denote by LΣ

p (ψ) the ψ-branch

of LKHT
p,Σ (F ), which is defined as the image of LKHT

p,Σ (F ) under the ψ-twisting

map Ôur[[Gal(FCp∞/F )]]→ Ôur[[Gal(F̃∞/F )]], g �→ ψ(g)g|F̃∞
. For an arbitrary

continuous character ρ : Gal(F̃∞/F ) → O×, we denote by Twρ the ρ-twisting

map

Ôur
[[
Gal(F̃∞/F )

]]
−→ Ôur

[[
Gal(F̃∞/F )

]]
, g �→ ρ(g)g.

Under these settings, we state our main results as follows. The first theorem

concerns the analytic part of our main results.
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THEOREM A (=COROLLARY 2.25)

Let η be a größencharacter of type (A0) on F which is admissible and ordinary

with respect to a p-ordinary CM type Σ. We choose a finite abelian extension K

of F and a character ψ of Gal(K/F ) so that ηgalψ−1 factors through the Galois

group of F̃∞/F . Then the image of (a certain modification of) Twηgalψ−1(LΣ
p (ψ))

under the cyclotomic specialization map

Ôur
[[
Gal(F̃∞/F )

]]
→Ôur

[[
Gal
(
F (μp∞)/F

)]]
, g �→ g|F (μp∞ )

coincides, up to a (componentwise) nonzero constant multiple, with the cyclo-

tomic p-adic L-function Lcyc
p (fη) ∈ Ôur[[Gal(F (μp∞)/F )]]⊗Zp Qp associated to

the Hilbert cusp form fη = ϑ(η)p-st obtained as the p-stabilization of the theta lift

of η. Furthermore, if the conjecture on the ratio of complex periods (see Conjec-

ture 2.26 for details) is true for fη, then they coincide up to a (componentwise)

p-adic unit multiple.

The algebraic parts of our main results consist of two ingredients: the exact con-

trol theorem for the Selmer groups (Theorem B) and the triviality of pseudonull

submodules for the Pontrjagin duals of the (strict) Selmer groups (Theorem C).

We denote by ACM
η (resp., by Acyc

η ) the cofree module of corank one over

O[[Gal(F̃∞/F )]] (resp., over O[[Gal(F (μp∞)/F )]]) on which an element g of the

absolute Galois group GF acts as the multiplication by ηgal(g)g|F̃∞
(resp., by

ηgal(g)g|F (μp∞ )). Let us define A
cyc as the kernel of the cyclotomic specialization

map O[[Gal(F̃∞/F )]]�O[[Gal(F (μp∞)/F )]], g �→ g|F (μp∞ ). Then we note that

Acyc
η coincides with the maximal Acyc-torsion submodule ACM

η [Acyc] of ACM
η . By

a general recipe due to Greenberg, we define the Selmer group SelΣACM
η

(resp.,

SelΣAcyc
η

) as a subgroup of the global Galois cohomology H1(F,ACM
η ) (resp.,

H1(F,Acyc
η )) satisfying local conditions obtained by ordinary filtrations (refer

to Definition 3.1). The following exact control theorem describes the behavior of

the Selmer group SelΣACM
η

under specialization procedures.

THEOREM B (=THEOREM 3.18)

Let η, K, and ψ be as in Theorem A. Assume further that the following condition

is fulfilled:

(ntr) for each maximal ideal M of the semilocal Iwasawa algebra O[[Gal(F̃∞/F )]]

and for each prime ideal P of F lying above p, ACM
η [M] is nontrivial as a

DP -module.

Then the natural map

SelΣAcyc
η

= SelΣACM
η [Acyc] −→ SelΣACM

η
[Acyc]

induced by the inclusion Acyc
η =ACM

η [Acyc]→ACM
η is an isomorphism.

Let MΣp be the maximal abelian pro-p extension of K̃CM
∞ unramified outside the

places of K̃CM
∞ above the set of places Σp of F corresponding to Σ. We denote
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the Galois group of MΣp/K̃
CM
∞ by XΣp . Then the O-module XΣp,O defined

as XΣp ⊗Zp O is naturally regarded as a compact O[[Gal(K̃CM
∞ /F )]]-module.

We denote by XΣp,(ψ) the ψ-isotypic quotient of XΣp,O; namely, it is defined

as the scalar extension XΣp,O ⊗O[[Gal(K̃CM
∞ /F )]]

O[[Gal(F̃∞/F )]] with respect to

the ψ-twisting map O[[Gal(K̃CM
∞ /F )]]→O[[Gal(F̃∞/F )]], g �→ ψ(g)g|F̃∞

. Then

one observes that the Pontrjagin dual of the Selmer group SelΣACM
η

is pseudoiso-

morphic to Twηgal,−1ψ(XΣp,(ψ)) as a module over O[[Gal(F̃∞/F )]] (see Proposi-

tion 3.16 for details on notation). The next theorem implies that XΣp,(ψ) has no

nontrivial pseudonull submodules under certain conditions, which is analogous to

results on the algebraic structure of Iwasawa modules in classical Iwasawa theory

mainly due to Iwasawa and Greenberg [12].

THEOREM C (=COROLLARY 3.33)

Let η, K, and ψ be as in Theorem A. Assume that the cardinality of Gal(K/F )

is relatively prime to p and the character ψ satisfies the nontriviality condi-

tion (ntr)ψ, which is described analogously to the condition (ntr) in Theorem B

(see the statement of Lemma 3.21 for details). Then XΣp,(ψ) has no nontrivial

pseudonull O[[Gal(F̃∞/F )]]-submodules.

Note that O[[Gal(F̃∞/F )]] is a semilocal Iwasawa algebra, each of whose compo-

nents is isomorphic to O[[Gal(F̃ /F )]], and the completed group algebra

O[[Gal(F̃ /F )]] is isomorphic to the formal power series ring in d+1+ δF,p vari-

ables over O. Thus, the statement above means that XΣp,(ψ) has no nontrivial

pseudonull submodules over each of such components.

Theorem C shall be used to study the base-change compatibility of the char-

acteristic ideal of Twηgal,−1(XΣp,(ψ)) (or, equivalently, of the characteristic ideal

of the Pontrjagin dual of SelΣACM
η

) under specialization procedures. We carefully

discuss this problem by utilizing Theorem C and certain inductive arguments,

which is one of the technical hearts of this article. For details, see Section 3.4.

Combining these results, we finally obtain the following theorem, which is

the main result of this article.

THEOREM D (=THEOREM 3.41)

Let η be a größencharacter of type (A0) on F which is admissible and ordinary

with respect to a p-ordinary CM type Σ. Assume that all of the following condi-

tions are fulfilled:

• the größencharacter η satisfies the nontriviality condition (ntr) introduced

in Theorem B;

• the Iwasawa main conjecture for the CM number field F is true for the

branch character ψ chosen as above; that is, the equality(
LΣ
p (ψ)
)
=CharO[[Gal(F̃∞/F )]](XΣp,(ψ))
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holds as an equation of ideals of Ôur[[Gal(F̃∞/F )]] (see Definition 3.22 for the

definition of the characteristic ideal CharO[[Gal(F̃∞/F )]](XΣp,(ψ)) over the semi-

local Iwasawa algebra O[[Gal(F̃∞/F )]]);

• in each component of the semilocal Iwasawa algebra Ôur[[Gal(F̃∞/F )]], the

cyclotomic p-adic L-function Lcyc
p (fη) of fη = ϑ(η)p-st does not vanish.

Then the cyclotomic Iwasawa main conjecture for the p-stabilized Hilbert eigen-

cuspform fη = ϑ(η)p-st with complex multiplication is true up to μ-invariants; in

other words, we have the equality of ideals of Ôur[[Gal(F (μp∞)/F )]]⊗Zp Qp,(
Lcyc
p

(
fη
))

=CharO[[Gal(F (μp∞ )/F )]](Sel
Σ,∨
Acyc

fη

),

where the superscript ∨ denotes the Pontrjagin dual. If the conjecture on the ratio

of complex periods (Conjecture 2.26) is true for fη, then the equality above holds

as the equality of ideals in O[[Gal(F (μp∞)/F )]].

Recently, Fabio Mainardi and Ming-Lun Hsieh thoroughly studied the multivari-

able Iwasawa main conjecture for CM number fields, and Hsieh’s results combined

with the Leopoldt conjecture imply its validity for F̃∞/F under certain technical

assumptions (see Remark 3.42 for details). Hence, Theorem D combined with

Hsieh’s results and the Leopoldt conjecture guarantees the existence of Hilbert

modular cusp forms with complex multiplication for which the cyclotomic Iwa-

sawa main conjecture is true.

The detailed content of this article is as follows. After a brief review on basic

facts of größencharacters of type (A0) and (adèlic) Hilbert modular cusp forms,

we shall introduce in Section 2 two p-adic L-functions of different types: the

cyclotomic p-adic L-functions associated to (nearly p-ordinary) Hilbert modular

cusp forms (in Section 2.2) and Katz, Hida, and Tilouine’s p-adic L-functions for

CM number fields (in Section 2.3). We compare their interpolation formulae in

detail in Section 2.4 when the Hilbert modular cusp form under consideration has

complex multiplication, and we then verify Theorem A based on this compari-

son. Section 3 is devoted to the algebraic parts of our results. There we introduce

various Selmer groups and compare them at a certain extent of precision in Sec-

tion 3.1. We then prove the exact control theorem (Theorem B) in Section 3.2

and, after reviewing results of Greenberg on the almost divisibility of the Selmer

groups in Section 3.3, we discuss the base-change compatibility of characteristic

ideals of the Pontrjagin duals of Selmer groups by recursively applying Green-

berg’s criterion in Section 3.4. In this process, Theorem C is proved as the first

step of our induction argument (see Section 3.4.4 for details). Combining all the

results obtained in Sections 2 and 3, we deduce in Section 3.5 the cyclotomic

Iwasawa main conjecture for Hilbert modular cusp forms with complex multi-

plication (at least up to a nonzero constant multiple) from the multivariable

Iwasawa main conjecture for CM number fields via the cyclotomic specialization

(Theorem D). In Appendix A, we verify several basic properties of Galois repre-

sentations associated to Hilbert modular cusp forms with complex multiplication
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after Ribet’s [41] arguments for elliptic cusp forms with complex multiplication.

Appendix B is devoted to the verification of Proposition 3.40 in Section 3, which

is one of the technical keys to our algebraic main results.

1.1. Notation
We mainly use the fraktur r for the ring of integers of an algebraic number field

(which is often regarded as the base field of a certain motive); the calligraphic O
is kept to denote the ring of integers of a p-adic field (which is often regarded as

the coefficient field of the p-adic realization of a certain motive). We denote the

absolute norm of a fractional ideal a of an algebraic number field by Na.

Throughout this article p denotes a prime number which is larger than or

equal to 5. We fix an algebraic closure Q of the rational number field Q and

regard all algebraic number fields (i.e., all finite extensions of Q) as subfields of

Q. We also fix an embedding ι∞ : Q ↪→C of Q into the complex number field C

and fix an embedding ιp : Q ↪→Qp of Q into a fixed algebraic closure Qp of the

p-adic number field Qp, respectively.

For an algebraic number field K, we denote by AK (resp., A×
K ) the ring of

adèles (resp., the group of idèles) of K. The finite part (resp., the archimedean

part) of the ring of adèles AK is denoted by Af
K (resp., A∞

K ). We associate a

modulus
∏

v v
ordv(x) to every idèle x in A×

K , where v runs over all places of K.

In this article we only consider moduli associated to finite idèles, and hence, we

always identify a modulus
∏

v v
ordv(x) with the corresponding fractional ideal∏

v P
ordv(x)
v of K, where Pv denotes the prime ideal associated to v.

We shall fix the notion of the standard additive character throughout this

article. For each archimedean place v of an algebraic number field K and for each

xv ∈ Kv , we define the local additive character eKv : Kv →C× by

eKv (xv) =

{
exp(2π

√
−1xv) if v is real,

exp(2π
√
−1xvx̄v) if v is complex,

where x̄v denotes the complex conjugate of xv . For each nonarchimedean place

v of K, we define eKv as

eKv (xv) = exp
(
−2π

√
−1TrK/Q(x̃v)

)
.

Here x̃v denotes an arbitrary element of
⋃∞

n=1P
−n
v (regarded as a rK-submodule

of K) such that x̃v − xv is contained in the ring of integers of KPv . The adèlic

standard additive character eAK
: AK/K→ C× is defined as the product of local

additive characters eKv for all places v of K. We also define eA∞
K

as the product

of all archimedean local additive characters.

Let Cp be the p-adic completion of the fixed algebraic closure Qp of Qp, and

let OCp be its ring of integers. For the ring of integers O of a finite extension

of Qp, we denote a discrete valuation ring OẐur
p by Ôur, where Ẑur

p is the p-adic

completion of the maximal unramified extension of Zp.

In this article we adopt the geometric normalization of global class field

theory; more precisely, let L/K be a finite abelian extension of algebraic number
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fields. Then the reciprocity map (·,L/K) : A×
K →Gal(L/K) is normalized to map

a uniformizer �p of a prime ideal p relatively prime to the conductor of the

extension L/K to the geometric Frobenius element Frobp in Gal(L/K); that is,

a(�p,L/K)
−1 ≡ achar(rK/p) (mod p) holds for each a in rK, where char(rK/p) denotes

the characteristic of the residue field rK/p.

If K is an algebraic number field, then the absolute Galois group Gal(Q/K)

is denoted by GK. For a place v of K, we denote by Dv and Iv the decomposition

group and the inertia group at v, respectively. For a (possibly infinite) abelian

Galois extension L/K of K and the ring of integers O of a finite extension of Qp,

we define O[[Gal(L/K)]]� as the free O[[Gal(L/K)]]-module of rank one on which

GK acts via the universal tautological character

GK →O
[[
Gal(L/K)

]]×
, g �→ g|L.

We finally remark that, as for Hodge–Tate p-adic Galois representations, the

Hodge–Tate weights are normalized so that the Hodge–Tate weight of the p-adic

cyclotomic character χp,cyc equals −1.

2. The analytic side

We shall develop in this section the analytic parts of our main results. We first

present a brief overview of classical theory on (adèlic) Hilbert modular cusp forms

in Section 2.1, and we introduce the notion of the p-adic L-functions associated

to Hilbert modular cusp forms in Section 2.2. We then introduce another type of

p-adic L-function in Section 2.3: Katz, Hida, and Tilouine’s p-adic L-functions

for CM number fields. In Section 2.4, we consider the cyclotomic specialization

of (appropriately twisted) Katz, Hida, and Tilouine’s p-adic L-function, and we

compare it with the p-adic L-function of a Hilbert modular cusp form with com-

plex multiplication.

2.1. Classical theory on Hilbert modular cusp forms
This section is devoted to an overview of classical (complex) theory on adèlic

Hilbert modular cusp forms. After a brief review of größencharacters of type (A0)

in Section 2.1.1, we define Hilbert modular cusp forms of double-digit weight after

Hida, and we summarize basic facts on their Fourier expansions and associated

(complex) L-functions in Section 2.1.2. Section 2.1.3 is a survey of the theory

on Hecke operators for Hilbert modular cusp forms. We then introduce in Sec-

tion 2.1.4 the notion of Galois representations associated to Hilbert modular cusp

forms. We finally present the notion of Hilbert modular cusp forms with complex

multiplication in Section 2.1.5, which play central roles in the present article.

2.1.1. Generalities on größencharacters of type (A0)

In this paragraph K denotes a number field. Later we only consider the cases

where K is either a totally real number field F+ or a CM number field F . We

denote by IK the set of all embeddings of K into Q. Let SK(R) (resp., SK(C))

denote the set of real places of K (resp., the set of complex places of K), and let
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SK,∞ denote the set of archimedean places of K; that is, SK,∞ = SK(R)∪ SK(C).

Recall that each real place corresponds to a unique element of IK and each

complex place corresponds to a unique pair of elements in IK. For each real

place, we denote by τv the corresponding element in IK. For each complex place

v, we specify one of the corresponding pairs in IK as τv and identify Kv with the

complex field C via the embedding ι∞ ◦ τv : K ↪→ C. Then the composite of the

other one, which we denote by τ̄v , with ι∞ is the complex conjugate of ι∞ ◦ τv .
An idèle class character η : A×

K /K
× →C× is called a größencharacter of type

(A0) (or also called an algebraic Hecke character) of K if its archimedean part is

algebraic; namely, there exists an element μ=
∑

τ∈IK
μτ τ of Z[IK] such that

η(x∞) = x−μ
∞ :=

∏
v∈SK(R)

x
−μτv
v

∏
v∈SK(C)

x
−μτv
v x̄

−μτ̄v
v

holds for each x∞ = (xv)v∈SK,∞ in the identity component of the archimedean

part A∞,×
K = (K ⊗Q R)× (i.e., for each element x∞ = (xv)v∈SK,∞ such that

(xv)v∈SK(R) is totally positive). Here x̄v denotes the usual complex conjugate

of xv in C. We identify Kv with C via the specified identification ι∞ ◦ τv for each

complex place v. The element μ as above is called the infinity type of η. It is

widely known that η(x)xμ
∞ is an algebraic number for each x in AK where x∞

denotes the archimedean part of x.

For each prime ideal l of K, we define e(l) as the minimum among nonnegative

integers e such that the local component ηl : K
×
l
→C× of η at l factors through

K×
l
/(1 + le)→ C×. When η is unramified at l, we define e(l) as 0. The integral

ideal C(η) =
∏

l
le(l) is called the conductor of η. We denote by η∗ the ideal

character associated to η; namely, η∗ is the character defined by

η∗(a) =
∏

l�C(η)

ηl(�
ordl(a)
l

)(2.1)

for each fractional ideal a of K relatively prime to the conductor C(η), where �l

denotes a uniformizer of Kl. Note that the associated ideal character η∗ does not

depend on the choice of uniformizers since η is unramified at each l � C(η).

EXAMPLE 2.1 (NORM CHARACTER)

The adèlic norm | · |AK
is naturally regarded as a größencharacter of type (A0)

by virtue of Artin’s product formula. It has the infinity type −
∑

τ∈IK
τ and the

conductor rK. The ideal character associated to | · |AK
is N−1

K , the inverse of the

absolute norm defined on K. When K is totally real, an arbitrary größencharacter

of type (A0) defined on K is described as φ| · |nAK
for a certain größencharacter φ

of finite order on K and a certain integer n.

Now we associate to η a p-adic idèle class character η̂ : A×
K /K

× →Q
×
p as follows.

For each prime ideal p of K lying above p, we denote by IK,p the subset of IK
consisting of embeddings τ such that ιp ◦ τ induces the place associated to p.
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Then we put

x−μ
p =

∏
p|prK

x
−
∑

τ∈IK,p
μτ

p , for xp = (xp)p|prK ∈Ap,×
K = (K⊗Q Qp)

×.

For each idèle x of K, we define η̂(x) as

η̂(x) = ιp
(
η(x)xμ

∞
)
x−μ
p ,(2.2)

where xp and x∞ respectively denote the p-component and the ∞-component

of x. Obviously, η̂ is trivial on K× and factors through the nonarchimedean

part of the idèle class group Af,×
K /K× by construction. The p-adic idèle class

character η̂ constructed as above is called the p-adic avatar of η, whereas the

(complex) character η is called the complex avatar of η̂. Note that, via global

class field theory, the p-adic avatar η̂ corresponds to a unique p-adic Galois

character ηgal defined on Gal(KC(η)/K) characterized by ηgal((x,KC(η)/K)) = η̂(x)

for an arbitrary element x in A×
K , where C(η) denotes the conductor of η and

KC(η) denotes the ray class field modulo C(η) over K. Refer to Section 1.1 for

our normalization of the reciprocity map (·,KC(η)/K). In particular, we see that

ηgal(Frobl) = η(�l) = η̂(�l) = η∗(l) holds for each prime ideal l of K relatively

prime to C(η), where �l denotes a uniformizer of the local field Kl.

2.1.2. Hilbert modular cusp forms of double-digit weight

Let us recall the definition of adèlic Hilbert modular cusp forms. We basically

follow Hida’s description of adèlic Hilbert modular forms in [20] and [22], although

there might be several different ways to introduce them. In particular, we adopt

his double-digit weight convention (refer to [22, Section 2.3.2]).

Let F+ be a totally real number field and rF+ the ring of integers of F+.

We define an algebraic group G over Z as the Weil restriction of scalars of the

general linear group GL(2)/rF+
over rF+ from rF+ to Z. Let T0 be the diagonal

torus of GL(2)/rF+
, and let TG be its Weil restriction of scalars from rF+ to Z.

The character group X(TG) of TG is identified with Z[IF+ ]×Z[IF+ ]; specifically,

an element κ = (κ1, κ2) of Z[IF+ ] × Z[IF+ ] corresponds to a unique algebraic

character TG/Q →Gm/Q which induces(
x1 0

0 x2

)
�→ xκ1

1 xκ2
2 , xκi

i =
∏

τ∈IF+

τ(xi)
κi,τ (∈Q

×
) for i= 1,2,

on TG(Q) = F+,× × F+,×. Here κi denotes an element of Z[IF+ ] defined by∑
τ∈IF+

κi,τ τ for each i= 1,2 satisfying the following condition:

(2.3) κ1,τ + κ2,τ is a constant independent of τ in IF+ .

We denote by [κ] the constant value κ1,τ +κ2,τ when condition (2.3) is satisfied.

Note that the diagonal torus TG contains the center Z of G, namely, the subgroup

consisting of all scalar matrices. Let us define another algebraic torus T as the

Weil restriction of scalars of the multiplicative group Gm/rF+
from rF+ to Z.

For an integral ideal N of F+, we consider the following congruence subgroups
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of G(Ẑ):

Γ̂0(N) :=

{(
a b

c d

)
∈G(Ẑ)

∣∣∣∣ c ∈Nr̂F+

}
,

Γ̂1(N) :=

{(
a b

c d

)
∈G(Ẑ)

∣∣∣∣ a− 1 ∈Nr̂F+ , c ∈Nr̂F+

}
.

Let ε+ : A×
F+/F

+,× → C× denote a größencharacter of type (A0) on F+

with infinity type κ1 + κ2 − t, where the symbol t denotes the “trace” element∑
τ∈IF+

τ in Z[IF+ ]. We often identify the adèlic points Z(AQ) of the center Z of

G with the idèle group A×
F+ of F+ and regard ε+ as a character on Z(AQ). We

denote by ε : T (Ẑ)→ C× the restriction of the finite part of ε+ to T (Ẑ) = r̂
×
F+ ,

where r̂×F+ denotes the profinite completion of r×F+ . Then one easily observes that

if the conductor C(ε) of ε contains N, then the map(
a b

c d

)
�→ ε(aN)

defines a continuous character Γ̂0(N)→ C×, for which we use the same symbol

ε by abuse of notation. Here aN denotes the projection of a to F+
N

=
∏

l|N F+
l
.

We denote the pair of characters (ε, ε+) by ε, which shall play the role of a

nebentypus character.

Let h ⊂ C be the Poincaré upper half-plane which consists of all complex

numbers whose imaginary parts are positive. Then the identity component G(R)+

of the R-valued points G(R) = GL2(R)
IF+ of G acts on hIF+ via the coordinate-

wise Möbius transformation. We now introduce the automorphy factor of weight

κ= (κ1, κ2) by

Jκ(g, z) = det(g)κ1−tj(g, z)κ2−κ1+t

for g =

(
a b

c d

)
∈G(R)+ and z = (zτ )τ∈IF+ ∈ hIF+ ,

where j(g, z) denotes the vector defined by (cτzτ + dτ )τ∈IF+ . Here we use the

following abbreviations on multi-indices:

det(g)κ1−t =
∏

τ∈IF+

det(gτ )
κ1,τ−1,

j(g, z)κ2−κ1+t =
∏

τ∈IF+

(cτzτ + dτ )
κ2,τ−κ1,τ+1.

DEFINITION 2.2 (HILBERT MODULAR CUSP FORMS)

Let κ be an element of Z[IF+ ] × Z[IF+ ] for which condition (2.3) is satisfied,

and let ε= (ε, ε+) be as above. A complex-valued function f : G(AQ)→C on the

adèlic points G(AQ) of G is called a Hilbert modular cusp form of weight κ, level

N, and nebentypus ε if it satisfies the following three conditions.
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(HC1) (automorphy) Let Ci denote the stabilizer subgroup of the vector

i = (
√
−1, . . . ,

√
−1) ∈ hIF+ , which is by definition a subgroup of G(R)+. Then

the equality

f(αxuw) = ε+(w)ε(uf )f(x)Jκ(u∞, i)−1

holds for each α in G(Q), w in Z(AQ), and u= ufu∞ in Γ̂0(N)Ci.

(HC2) (holomorphy) For each z in hIF+ let us choose an element u∞ of

G(R)+ satisfying u∞(i) = z. Then the function

fg : h
IF+ →C, z �→ f(gu∞)Jκ(u∞, i)

is holomorphic with respect to z for every g in G(Af
Q). Note that fg is well defined

independently of the choice of each u∞ by virtue of the automorphy (HC1).

(HC3) (cuspidality) The integral∫
AF+/F+

f

((
1 u

0 1

)
x

)
du

vanishes for every x in GL2(A
f
F+) where du is an additive Haar measure on

AF+/F+.

We denote by Sκ(N, ε;C) the complex vector space spanned by all Hilbert mod-

ular cusp forms of weight κ, level N, and nebentypus ε.

It is well known that the space of Hilbert modular cusp forms Sκ(N, ε;C) is of

finite dimension. We often impose the following constraints on weights of Hilbert

modular cusp forms.

DEFINITION 2.3

Let κ = (κ1, κ2) be an element of Z[IF+ ] × Z[IF+ ] for which condition (2.3) is

satisfied.

(1) The element κ is called a cohomological weight if the inequality κ1 < κ2

holds.

(2) The element κ is called a critical weight if it is cohomological and the

inequality κ1 < 0≤ κ2 holds.

Here inequalities among elements of Z[IF+ ] abbreviate corresponding coefficient-

wise inequalities. For instance, we use the inequality notation κ1 < κ2 to express

that the inequality κ1,τ < κ2,τ holds for every τ in IF+ .

From now on we assume that all double-digit weights considered in this article

are cohomological.

Now let f denote a Hecke eigencuspform of cohomological weight κ= (κ1, κ2),

levelN, and nebentypus ε. We shall give a brief review on Hecke theory in the next

section. To each eigencuspform f , Blasius and Rogawski [4] attached a motive

M(f)/F+ defined over F+ with coefficients in the Hecke field Qf associated to

f , which we will introduce later (see the paragraph after Definition 2.7). The
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motive M(f)/F+ is pure of weight [κ]. For each τ in IF+ , the Hodge type of

M(f)/F+ with respect to the complex embedding ι∞ ◦ τ : F+ ↪→ C of the field

of definition F+ is given by {(κ1,τ , κ2,τ ), (κ2,τ , κ1,τ )}. In other words, Hida’s

double-digit weight convention is adapted to the Hodge type of M(f)/F+ , and

the weight of the cusp form f is critical if and only if the associated motive

M(f)/F+ is critical in the sense of Deligne [9].

REMARK 2.4 (ON NEBENTYPUS CHARACTERS)

Hida [22, Section 2.3.2] introduced a more general notion on nebentypus char-

acters; namely, he considers as a nebentypus character a triple (ε1, ε2; ε+) con-

sisting of finite characters ε1, ε2 on T (Ẑ) and a größencharacter ε+ of type (A0)

on Z(AQ) with certain constraints. The nebentypus introduced here is a special

version of Hida’s general notion. Indeed, our notion of the nebentypus ε= (ε, ε+)

corresponds to a triple (ε,1T (Ẑ); ε+), which satisfies all the required conditions.

The space of Hilbert modular cusp forms Sκ(N, ε;C) with nebentypus of the

form ε= (ε, ε+) is indeed contained in the space of Hilbert modular cusp forms

Sκ(Γ̂1(N);C) of weight κ and level Γ̂1(N), and hence, we can apply to them gen-

eral theory on Hilbert modular forms and Hecke algebras of Γ̂1-level structure

developed in [48] and [20]. In particular, the (adèlic) Fourier coefficients depend

only on fractional ideals of F+ under such constraints on the nebentypus (as we

shall see later in Proposition 2.5), and hence, our convention on nebentypus char-

acters seems to be well suited to arithmetic problems concerning the L-functions

associated to Hilbert modular forms.

We next recall the notion of the Fourier expansions of Hilbert modular forms, and

then we finish this section by introducing the (complex) L-functions associated

to them.

PROPOSITION 2.5

Let d = dF+ denote the absolute different of F+, and let F+,×
+ denote the set

of all totally positive elements of F+. Then each Hilbert modular cusp form f

belonging to Sκ(N, ε;C) has the (adèlic) Fourier expansion of the following form

for each x ∈AF+ and y ∈A×
F+ :

f

((
y x

0 1

))
= |y|AF+

∑
ξ∈F+,×

+

C(ξyd;f)(ξy∞)−κ1eA∞
F+

(
√
−1ξy∞)eAF+ (ξx).

The correspondence a �→ C(a;f) defines a complex-valued function on the group

of fractional ideals of F+, which vanishes unless a is integral.

This is [20, Proposition 4.1], the proof of which essentially depends on Shimura’s

classical computation [48, (2.18)]. Refer also to [22, Proposition 2.26]. We call

C(·;f) the Fourier coefficient of f . A Hilbert modular cusp form f is said to be

normalized if its Fourier coefficient C(rF+ ;f) at rF+ equals 1. For a Q-subalgebra
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A of C, we denote by Sκ(N, ε;A) the A-subspace of Sκ(N, ε;C) spanned by cusp

forms with all Fourier coefficients contained in A.

Now let us assume that the Hilbert modular cusp form f under consideration

is a normalized eigenform. The (complex) L-function associated to f is defined

as (the meromorphic continuation of) the Dirichlet series

L(f, s) =
∑

(0) �=a⊆rF+

C(a;f)

Nas
.

For a größencharacter φ : A×
F+/F

+,× → C× of type (A0), we also define the

L-function associated to f twisted by φ as (the meromorphic continuation of)

L(f,φ, s) =
∑

(0) �=a⊆rF+

C(a;f)φ∗(a)

Nas
,

where φ∗ is the ideal class character which was associated with φ in (2.1) and

φ∗(a) is defined to be zero if a is not relatively prime to the conductor of φ.

2.1.3. Review on Hecke theory

We shall briefly recall Hecke theory on adèlic Hilbert modular cusp forms after

[20, Section 2]. As in the previous paragraph, we consider the space Sκ(N, ε;C)

of Hilbert modular cusp forms of weight κ, level N, and nebentypus ε. Recall

that it is contained in the space Sκ(Γ̂1(N);C) of cusp forms of weight N and

level Γ̂1(N). Now let us define the following monoids:

Δ0(N) =

⎧⎨⎩
(
a b

c d

)
∈M2 (r̂F+)∩G(Af

Q)

∣∣∣∣ aN ∈
∏
l|N

r
×
F+,l, c ∈Nr̂F+

⎫⎬⎭ ,

Δ1(N) =

{(
a b

c d

)
∈M2 (r̂F+)∩G(Af

Q)

∣∣∣∣ a− 1 ∈Nr̂F+ , c ∈Nr̂F+

}
.

Then Δ0(N) contains Γ̂0(N), and Δ1(N) contains Γ̂1(N), respectively. We thus

consider the action of the double coset algebra R(Γ̂1(N),Δ1(N)) on Sκ(Γ̂1(N);C).

We refer readers to [49, Section 3] for details on the theory of double coset alge-

bras. The action of R(Γ̂1(N),Δ1(N)) on Sκ(Γ̂1(N);C) is defined as follows. For a

cusp form f in Sκ(Γ̂1(N);C) and an element [Γ̂1(N)yΓ̂1(N)] of R(Γ̂1(N),Δ1(N)),

we set

f |[Γ̂1(N)yΓ̂1(N)](g) =

h∑
i=1

f(gy−1
i ),

where {yi}i=1,...,h is a representative set of the left coset decomposition of

Γ̂1(N)yΓ̂1(N):

Γ̂1(N)yΓ̂1(N) =

h⋃
i=1

Γ̂1(N)yi.
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Then one easily observes that the action of R(Γ̂1(N),Δ1(N)) preserves the sub-

space Sκ(N, ε;C) of Hilbert cusp forms with nebentypus ε. To describe the struc-

ture of the double coset algebra R(Γ̂1(N),Δ1(N)), we introduce here typical

double coset operators, which are often quoted as Hecke operators. Choose a uni-

formizer �l of the local field F+
l

for each prime ideal l of F+, and regard ( 1 0
0 �l

)

as an element of Δ1(N) whose local component is the identity matrix at every

place except for l. Then we define

T (l) = Γ̂1(N)

(
1 0

0 �l

)
Γ̂1(N) if l does not divide N,

U(l) = Γ̂1(N)

(
1 0

0 �l

)
Γ̂1(N) if l divides N,

for each prime ideal l of F+. They are determined independently of the choice

of uniformizers. Next let b be an integral ideal of F+ relatively prime to N. For

such an ideal b, choose a finite idèle b ∈ r̂F+ ∩A×
F+ so that it is congruent to 1

modulo Nr̂F+ and its associated modulus coincides with b. Then we set

T (b,b) = Γ̂1(N)

(
b 0

0 b

)
Γ̂1(N),

which does not depend on the choice of the auxiliary idèle b. We also use the

notation S(b) for T (b,b) as in [48]. By virtue of the general theory, the dou-

ble coset algebra R(Γ̂1(N),Δ1(N)) is commutative and is freely generated as a

Z-algebra by T (l) for prime ideals relatively prime to N, U(l) for prime ideals

dividing N, and S(l) for prime ideals relatively prime to N. Moreover, we obtain

the following formula, which one can adopt as the definition of the operator T (le)

when l is relatively prime to N:

T (l)T (le) = T (le+1) +N (l)S(l)T (le−1) for each e≥ 1.

It is also known that U(le) = U(l)e holds for every prime ideal l dividing N and

an arbitrary natural number e.

REMARK 2.6

In [22] and many other articles of Hida, the action of R(Γ̂0(N),Δ0(N)) is defined

as follows. We first extend the nebentypus character ε = (ε, ε+) to Δ0(N) by

setting (
a b

c d

)
�→ ε(aN).

For each x in Δ0(N), we define an action of the double coset [Γ̂0(N)xΓ̂0(N)]

on a Hilbert modular cusp form f belonging to Sκ(N, ε;C) by

f |[Γ̂0(N)xΓ̂0(N)](g) =

h′∑
i=1

ε(xi)f(gx
−1
i ),
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where {xi}i=1,...,h′ is a representative set of the left coset decomposition of

Γ̂0(N)xΓ̂0(N). For an element y of Δ1(N), one easily checks that the action

of the Γ̂1(N)-double coset [Γ̂1(N)yΓ̂1(N)] on Sκ(N, ε;C) is compatible with that

of the Γ̂0(N)-double coset [Γ̂0(N)yΓ̂0(N)] by comparing representatives of their

left coset decompositions.

DEFINITION 2.7 (EIGENFORMS)

A Hilbert modular form f belonging to Sκ(N, ε;C) is called an eigenform if it

is a common eigenvector with respect to all double coset operators (or Hecke

operators) belonging to R(Γ̂1(N),Δ1(N)).

By the well-known formula (see [20, Corollary 4.2] for instance)

C(a;f |T (n)) =
∑

b|a, b|n, (b,N)=1

N (b)C(b−2na;f |S(b)),(2.4)

one observes that the Fourier coefficient C(l;f) of an eigencuspform f at a prime

ideal l is obtained as the product of C(rF+ ;f) and the eigenvalue with respect

to the Hecke operator T (l) (or U(l) if l divides N). Recall that the eigenvalues

of the Hecke operators acting on Sκ(N, ε;C) are algebraic numbers due to [48,

Proposition 2.2]. Therefore, an eigencuspform f belongs to Sκ(N, ε;Q) if it is

normalized. We denote by Qf the field which one obtains by adjoining to Q all

the eigenvalues of the Hecke operators acting on f , which we call the Hecke field

associated to f .

To introduce the notion of near ordinarity, we recall the notion of normal-

ized Hecke operators after [20, Section 3]. Let Q(κ1) denote the field which one

obtains by adjoining to Q all the elements of the form xκ1 for x in F+,×. Then

Q(κ1) is a finite extension of Q. Note that κ1 naturally induces group homo-

morphisms F+,× →Q(κ1)
× and A×

F+ →A×
Q(κ1)

. It is known that there exists an

rQ(κ1)-subalgebra A of C satisfying the following condition:

• for each element x in Af,×
F+ , the modulus associated to xκ1 is principal as

a fractional ideal of A.

Refer to [20, p. 310] for details on the existence of such an algebra A. Let us

choose a uniformizer �l of F
+
l

for each prime ideal l of F+. We take a generator

of the modulus associated to �κ1

l
(as a fractional ideal of A) and denote it by

{lκ1}. We also define {aκ1} for an arbitrary fractional ideal a=
∏

l: prime l
e(l) by∏

l: prime{lκ1}e(l).

DEFINITION 2.8 (NORMALIZED HECKE OPERATORS)

We define elements T0(l), U0(l), and S0(b) of R(Γ̂1(N),Δ1(N))⊗Z A in the fol-

lowing manner:

T0(l) = {lκ1}−1T (l) for a prime ideal l which does not divide N;

U0(l) = {lκ1}−1U(l) for a prime ideal l which divides N;
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S0(b) = {bκ1}−2S(b) for an integral ideal b which is relatively prime to N.

The operators T0(l), U0(l), and S0(b) are called normalized Hecke operators.

DEFINITION 2.9 (NEAR ORDINARITY)

Let p be a prime ideal of F+ lying above p. A normalized eigencuspform f

belonging to Sκ(N, ε;Q) is said to be nearly ordinary at p (or nearly p-ordinary) if

the eigenvalue of f with respect to the normalized Hecke operator T0(p) (or U0(p)

if p divides the level N) is a p-unit under the specific embedding ιp : Q→Qp.

A normalized eigencuspform f which is nearly ordinary at all prime ideals p

lying above p is said to be nearly ordinary at p (or nearly p-ordinary).

Note that the notion of the normalized Hecke operators does depend on the choice

of a generator of {pκ1}, but the notion of the near ordinarity does not depend

on it since the p-adic valuation of {pκ1}, which is regarded as an element of

Qp via the fixed embedding ιp, is well defined independently of the choice of its

generator. The normalization of Hecke operators discussed above is crucial in

Hida’s theory on p-adic Hecke algebras. One of the reasons why it is important is

that normalized Hecke operators preserve the space of cusp forms with rational or

integral coefficients. We omit the details (see [20, Section 4], [22, Section 2.3.3]).

We finally introduce the notion of p-stabilization. Define an operator

V (b) : Sκ(N, ε;Q)→ Sκ(bN, ε;Q)

for every integral ideal b of F+ by

f |V (b)(g) = |b|AF+ f

(
g

(
b−1 0

0 1

))
,

where b is a finite idèle of F+ whose associated modulus coincides with b. We

readily see that the Fourier coefficient of f |V (b) at a is given by C(b−1a;f). Now

let f denote a normalized eigencuspform belonging to Sκ(N, ε;Q), and assume

that f is nearly ordinary at p. Let p be a prime ideal of F+ lying above p, and

suppose that the level N is not divisible by p. Note that the eigenvalue of f with

respect to the Hecke operator T0(p) is calculated as {pκ1}−1C(p;f), which we

denote by C0(p;f). The eigenvalue of f with respect to S0(p) is also calculated as

{pκ1}−2ε∗+(p). Consider the Hecke polynomial of f with respect to the normalized

Hecke operator T0(p); in other words, consider the quadratic polynomial defined

by

1−C0(p;f)X −Np{pκ1}−2ε∗+(p)X
2 = (1− α0,pX)(1− β0,pX).

We denote two roots of this polynomial (regarded as elements of Q) by α0,p and

β0,p. Since f is nearly ordinary at p, the Hecke eigenvalue C0(p;f) = α0,p + β0,p

of f with respect to T0(p) is a p-adic unit. This implies that one of the roots has

to be a p-adic unit (under the fixed embedding ιp), which we specify as α0,p. Let

us consider the cusp form f − {pκ1}β0,pf |V (p) ∈ Sκ(pN, ε;Q). Since {pκ1}β0,p is

a root of the quadratic polynomial 1− C(p;f)X +Npε∗+(p)X
2, the cusp form
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f −{pκ1}β0,pf |V (p) does not depend on the choice of a generator of {pκ1}. It has
the same eigenvalues as those of f everywhere except at p and has the eigenvalue

α0,p with respect to U0(p); hence, it is nearly ordinary at p. Repeating the same

procedure for all prime ideals lying above p which do not divide the level N of f ,

we obtain the p-stabilization fp-st of f , which is a normalized eigencuspform of

level N
∏

p|prF+ ,p�N p. A normalized nearly p-ordinary eigencuspform is called a

p-stabilized newform if it is obtained as the p-stabilization of a certain primitive

form (in the sense of Miyake [32, p. 185]). In particular, the level of a (nearly

p-ordinary) p-stabilized newform is divisible by every prime ideal p of F+ lying

above p.

2.1.4. Galois representations associated to Hilbert modular cusp forms

We here introduce the notion of Galois representations associated to Hilbert mod-

ular cusp forms.

THEOREM-DEFINITION 2.10

Let f be a normalized eigencuspform of cohomological weight κ, level N, and

nebentypus ε. Let K be a finite extension of Qp containing the Hecke field Qf

of f (under the fixed embedding ιp : Q ↪→Qp). Then there exists a 2-dimensional

Galois representation Vf of GF+ with coefficients in K such that the equal-

ity

det(1−FrobqX;Vf ) = 1−C(q;f)X +N qε∗+(q)X
2

holds for every prime ideal q which does not divide pN. Moreover, Vf is an irre-

ducible representation of GF+ . The Galois representation Vf of GF+ is called the

Galois representation associated to f .

The existence of such a Galois representation has been established due to the

results of many people, including Ohta [38], Carayol [6], Wiles [57], Taylor [53],

and Blasius and Rogawski [4]. The irreducibility of Vf is verified due to Taylor

[54, Theorem 3.1] by the same argument as Ribet used in [41]. Note that the

Galois representation Vf is uniquely determined up to scalar multiples by virtue

of its irreducibility combined with Čebotarev’s density theorem.

When the Hilbert cusp form f is nearly p-ordinary, we can also obtain precise

information on the local behavior of the associated representation Vf at places

above p.

PROPOSITION 2.11

Let f be a normalized eigencuspform of cohomological weight κ, level N, and

nebentypus ε which is nearly ordinary at p, and let the other notation be as in

Theorem-Definition 2.10. Then, for each place p of F+ lying above p, the Galois

representation Vf associated to f contains a unique 1-dimensional Dp-stable

K-subspace Fil+p Vf on which the decomposition group Dp of GF+ at p acts via
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the p-adic character δp : Dp →K× satisfying

δp(Frob�p
) = αf (�p)(2.5)

for every uniformizer �p of F+
p . Here Frob�p

= (�p, F
+,ab
p /F+

p ) denotes the

Frobenius element corresponding to the uniformizer �p via the local reciprocity

map. The value αf (�p) appearing in (2.5) is a unique p-adic unit root of the

quadratic polynomial

(2.6)
1−�

−κ1,p

p C(p;f)X −�
−2κ1,p

p Npε∗+(p)X
2

=
(
1− αf (�p)X

)(
1− βf (�p)X

)
,

where C(p;f) denotes the eigenvalue of the Hecke operator U(p) with respect to

f and where κ1,p =
∑

τ : (ιp◦τ)−1(MZp
)=p

κ1,τ denotes the summation of κ1,τ over

all τ : F+ ↪→Q such that ιp ◦ τ induces the place p.

Note that the near p-ordinarity of f guarantees that the quadratic polynomial

(2.6) indeed has a unique p-adic unit root. We also remark that the character δp
is not unramified in general, and hence, the equation (2.5) does depend on the

choice of a uniformizer �p of F+
p , contrary to the cases of p-ordinary modular

form (of parallel weight).

Proposition 2.11 was first observed by Mazur and Wiles [31, Chapter 3,

Section 2] for p-ordinary elliptic modular forms of weight 2 and then verified for

p-ordinary Hilbert modular forms of parallel weight by Wiles in [56, Theorem 2.2]

and [57, Theorem 2]. The general cases have been verified by Hida [21, Theorem I].

The Dp-stable filtration Fil+p Vf ⊂ Vf is used to define the local condition at p of

Greenberg’s Selmer group (see also Section 3.1.1).

2.1.5. Hilbert modular cusp forms with complex multiplication

In this section we introduce the notion of Hilbert modular cusp forms with com-

plex multiplication. The following definition is due to Ribet [41, Section 3] for

elliptic modular forms.

DEFINITION 2.12 (CUSP FORM WITH COMPLEX MULTIPLICATION)

Let ν : A×
F+/F

+,× → C× be a nontrivial größencharacter of finite order on F+.

A Hilbert modular eigencuspform f of weight κ, level N, and nebentypus ε is

said to have complex multiplication by ν if the equality

C(l;f) = ν∗(l)C(l;f)(2.7)

holds for all prime ideals l in a set of prime ideals of density 1 in rF+ .

A Hilbert modular eigencuspform f of weight κ, level N, and nebentypus ε is

said to have complex multiplication if f has complex multiplication by a certain

nontrivial größencharacter ν : A×
F+/F

+,× →C× of finite order on F+.

The right-hand side of (2.7) is naturally regarded as the Fourier coefficient at l of

f ⊗ ν: the cusp form f twisted by the größencharacter ν of finite order (see [48,
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Proposition 4.5] for the definition of f ⊗ ν). The nebentypus of f ⊗ ν is easily

calculated as ν2ε, and by comparing eigenvalues of the Hecke operator S(l) at f

and f ⊗ ν, we obtain the equality

ε∗+(l) = ν∗(l)2ε∗+(l)

for every prime ideal l prime to levels of f and f ⊗ ν. Then Čebotarev’s density

theorem forces ν2 to be trivial, and consequently, ν must be a quadratic character

if f has complex multiplication by ν.

An example of Hilbert eigencuspforms which has complex multiplication is

obtained as the theta lift of a größencharacter of type (A0) of a CM number field.

In order to introduce the notion of theta lifts, let us consider a totally imaginary

quadratic extension F of F+, which is by construction a CM number field. We

denote by c a unique nontrivial element of the Galois group Gal(F/F+), which

is none other than the complex conjugation. Now let Σ denote a CM type of

F , that is, a subset of IF such that IF is decomposed into the disjoint union

of Σ and Σc = {σ ◦ c | σ ∈ Σ}. Then we have a canonical bijection Σ −→ IF+

via the restriction σ �→ σ|F+ . Since each complex place corresponds to a unique

element σ of the fixed CM type Σ, we identify Σ with the set of archimedean

places of F , and for each σ ∈ Σ, we specify the identification of Fσ with C

via the embedding ι∞ ◦ σ : F ↪→ C; in other words, we identify A∞
F = F ⊗Q R

with CΣ via the isomorphism induced by x⊗ 1 �→ (ι∞ ◦ σ(x))σ∈Σ. Under these

identifications, the infinity type μ of a größencharacter η : A×
F /F

× →C× of type

(A0) is described as μ =
∑

σ∈Σ(μσσ + μσ̄σ̄), where σ̄ = σ ◦ c denotes a unique

element in Σc corresponding to σ ∈ Σ. A größencharacter η of type (A0) on F

is said to be Σ-admissible (or admissible with respect to Σ) if its infinity type μ

satisfies μσ < μσ̄ for every σ in Σ. Given an Σ-admissible infinity type μ on F ,

we define a cohomological double-digit weight κμ = (κμ,1, κμ,2) ∈ Z[IF+ ]×Z[IF+ ]

on F+ by

κμ =
(∑
σ∈Σ

μσσ|F+ ,
∑
σ∈Σ

μσ̄σ̄|F+

)
.(2.8)

Given a größencharacter η : A×
F /F

× →C of type (A0) on F , we define the neben-

typus εη = (εη, εη,+) by

εη = (νF/F+ η̆|T (Ẑ), νF/F+ η̆),

where η̆ is defined to be η|A×
F+

| · |A×
F+

and νF/F+ denotes the quadratic charac-

ter on A×
F+/F

+,× associated to the quadratic extension F/F+ via global class

field theory. Finally, let DF/F+ denote the relative discriminant of the quadratic

extension F/F+.

PROPOSITION-DEFINITION 2.13 (THETA LIFTS)

Let F be a totally imaginary quadratic extension of F+, let Σ be a CM type of F ,

and let C be an integral ideal of F . Let η : A×
F /F

× →C× be a größencharacter of

type (A0) with modulus C, and suppose that the infinity type μ of η is Σ-admissible.

Then there exists a unique normalized cusp form ϑ(η) of weight κμ, level DF/F+CCc,
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and nebentypus εη such that its Fourier coefficient C(a;ϑ(η)) at an integral ideal

a of F+ is given by
∑

A⊆rF ,(A,C)=1;AAc=a
η∗(A). The cusp form ϑ(η) is a com-

mon eigenvector of T (l) for every prime ideal l relatively prime to DF/F+CCc.

Furthermore, if the modulus C of η coincides with the conductor C(η) of η, then

the resulting cusp form ϑ(η) is primitive in the sense of Miyake [32, p. 185].

The normalized Hilbert modular cusp form ϑ(η) defined as above is called the

theta lift of the größencharacter η of type (A0) on F . See [11, Section 7B] for the

proof of the proposition, which is based upon Hecke theory on GL(2) through

representation-theoretic arguments.

By its explicit description, the Fourier coefficient C(l;ϑ(η)) of ϑ(η) at a

prime ideal l equals 0 if l is ramified or inert in F ; in other words, C(l;ϑ(η))

vanishes when ν∗F/F+(l) equals 0 or −1. We thus readily observe that ϑ(η) has

complex multiplication by νF/F+ . Conversely, if a Hilbert cusp form f belonging

to Sκ(N, ε;Q) has complex multiplication by a quadratic character ν, then there

exists a totally imaginary quadratic extension F of F+ such that ν is the qua-

dratic character associated to F/F+ and f is described as a linear combination

of theta lifts of appropriate größencharacters of type (A0) on F . We strongly

believe that this fact is fairly well known, but we shall give a proof of this fact

with the language of Galois representations as Proposition A.1 in Appendix A.

In order to let the theta lift ϑ(η) be nearly p-ordinary, we must impose

the following ordinarity condition on the totally imaginary quadratic extension

F/F+:

• (ordF/F+) all places of F+ lying above p split completely in F .

Then due to the ordinarity condition (ordF/F+), there exists a p-ordinary CM

type Σ of F ; that is, Σ is a CM type such that two embeddings ιp ◦σ and ιp ◦σ ◦ c
of F into Qp define different places of F (lying above p) for each σ in Σ. See

Section 2.3.1 for details on p-ordinary CM types.

Now, under the ordinarity condition (ordF/F+), let Σ be a p-ordinary CM

type of F , and let η : A×
F /F

× → C× be a Σ-admissible größencharacter of type

(A0) on F . We say that η is ordinary with respect to Σ (or Σ-ordinary) if η is

unramified at every place P induced by ιp ◦σ for certain σ in Σ. Then the theta

lift ϑ(η) of η is nearly p-ordinary when η is ordinary with respect to Σ. Conversely,

if f is a nearly p-ordinary p-stabilized newform with complex multiplication, then

there exist a totally imaginary quadratic extension F of F+ satisfying (ordF/F+),

a p-ordinary CM type Σ, and a Σ-admissible and Σ-ordinary größencharacter η

of type (A0) on F such that f is described as fη := ϑ(η)p-st. We think that one

can verify these facts by looking at the local component at p of the automorphic

representation πf associated to f , but later we shall give a brief proof as Propo-

sition A.3 in Appendix A based upon the local study of the Galois representation

Vf associated to f .



Iwasawa main conjecture for CM Hilbert cusp forms 21

2.2. The cyclotomic p-adic L-function for Hilbert modular cusp forms
We introduce the notion of the cyclotomic p-adic L-function associated to Hilbert

modular cusp forms in this section. We first define the (complex) p-optimal peri-

ods in Section 2.2.1, and then we discuss the p-adic L-functions after the result

of the second-named author [36] in Section 2.2.2.

Throughout this section F+ denotes a totally real number field satisfying

the following unramifiedness condition:

• (unrF+) the prime p does not ramify in F+.

In particular, F+ does not contain primitive pth roots of unity.

2.2.1. The p-optimal complex periods

We recall the definition of the p-optimal complex period associated to a normal-

ized eigencuspform f of weight κ, level N, and nebentypus ε in this paragraph

after [36, Definition 3.5]. Let κmax
1 denote the maximum of the integers κ1,τ over

τ in IF+ , and set f̃(x) = f(x)|det(x)|κ
max
1 +1

AF+
for every element x of G(AQ). Then

we readily see that f̃ is a Hilbert modular eigencuspform of weight κ̃, level N,

and nebentypus ε̃, where κ̃ and ε̃ are defined as

κ̃= (κ̃1, κ̃2) =
(
κ1 − (κmax

1 + 1)t, κ2 − (κmax
1 + 1)t

)
,

ε̃=
(
ε|·|2(κ

max
1 +1)

r̂F+
, ε+| · |2(κ

max
1 +1)

AF+

)
.

In particular, the weight κ̃ of f̃ is critical in the sense of Definition 2.3. The cusp

form f̃ is sometimes called a critical twist of f . For a subalgebra A of C con-

taining all Hecke eigenvalues associated to f , let hκ̃(N, ε̃;A) denote the image of

R(Γ̂1(N),Δ1(N))⊗ZA in EndA(Sκ̃(N, ε̃;A)). Then, as an element of hκ̃(N, ε̃;A),

the Hecke operator S(b) is naturally identified with ε̃∗+(b) = ε∗+(b)Nb−2(κmax
1 +1).

Consider a linear map λf̃ : hκ̃(N, ε̃;A)→A which sends the Hecke operator T (l)

(resp., U(l)) to the eigenvalue λf̃ (l) of T (l) (resp., U(l)) with respect to the

eigencuspform f̃ for every prime ideal l which does not divide N (resp., which

divides l). Note that λf̃ (l) equals N l−(κmax
1 +1)λf (l) by construction, where λf (l)

is the eigenvalue of T (l) (or U(l) if l divides N) with respect to f .

Let Y1(N)/Q denote the Hilbert–Blumenthal modular variety of level N. It

is an algebraic variety defined over Q and obtained as the canonical model of

the complex analytic variety Y1(N)(C) =G(Q)\G(AQ)/Γ̂1(N)Ci. Note that if we

choose a set of representatives {ci}hi=1 of the strict ray class group Cl+F+ of F+,

then we can decompose the Hilbert–Blumenthal modular variety Y1(N)(C) as

Y1(N)(C) =

h⊔
i=1

Γi
1(N)\hIF+ ,(2.9)
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where h denotes the Poincaré upper half-plane and, for each i with 1 ≤ i ≤ h,

Γi
1(N) denotes the arithmetic subgroup of G(Q) defined as

Γi
1(N) =G(Q)∩

((
ci 0

0 1

)−1

ˆΓ1(N)Ci

(
ci 0

0 1

))
.

Corresponding to the decomposition of the Hilbert–Blumenthal modular variety

(2.9), the space of cusp forms Sκ̃(Γ̂1(N);C) of level Γ̂1(N) is also decomposed as

Sκ̃

(
Γ̂1(N);C

)∼= h⊕
i=1

Sκ̃

(
Γi
1(N);C

)
, f̃ �→

(
f̃i(z)
)
1≤i≤h

,(2.10)

where Sκ̃(Γ
i
1(N);C) denotes the space of cusp forms of weight κ̃ and level Γi

1(N)

on hIF+ (see, e.g., [36, Definition 2.5 and Lemma 2.6] for details on the decompo-

sition (2.10)). In the rest of the article, we choose and fix a set of representatives

{ci}hi=1 of Cl+F+ so that the p-component of each ci equals 1 for all the places p of

F+ lying above p. Next, we define a standard local system L (κ̃;A) on Y1(N)(C)

for a subring A of C satisfying the following condition (∗):

(∗) the subring A contains the normal closure of rF+ [d−1
F+c

−1
i ] for each i with

1≤ i≤ h, where dF+ denotes the absolute different of F+.

For each element τ of IF+ , let L(κ̃τ ;A) =
⊕κ̃2,τ−κ̃1,τ−1

mτ=0 AXmτ
τ Y

κ̃2,τ−κ̃1,τ−1−mτ
τ

denote the free A-module spanned by all two-variable homogeneous polynomials

of degree κ̃2,τ − κ̃1,τ − 1 with coefficients in A. Let g = ( a b
c d ) be an element of

GL2(F
+) such that all conjugates of the matrix components a, b, c, d of g are

contained in A. Such an element g acts from the left on L(κ̃τ ;A) by

Xmτ
τ Y κ̃2,τ−κ̃1,τ−1−mτ

τ

�→ τ
(
det(g)κ̃1,τ

)
·
(
τ(a)Xτ + τ(c)Yτ

)mτ
(
τ(b)Xτ + τ(d)Yτ

)κ̃2,τ−κ̃1,τ−1−mτ

for each mτ with 0≤mτ ≤ κ̃2,τ − κ̃1,τ −1. Set L(κ̃;A) =
⊗

τ∈IF+
L(κ̃τ ;A). Then

we define the standard local system L (κ̃;A) on Y1(N)(C) as the sheaf of contin-

uous sections of the following covering map:

G(Q)\G(AQ)×L(κ̃;A)/Γ̂1(N)Ci →G(Q)\G(AQ)/Γ̂1(N)Ci = Y1(N)(C).

Here we consider that L(κ̃;A) admits the trivial right action of Γ̂1(N)Ci, and

we let G(Q) and Γ̂1(N)Ci act on G(AQ)×L(κ̃;A) diagonally. The Hecke algebra

hκ̃(N, ε̃;A) then acts on the Betti cohomology group Hd(Y1(N)(C),L (κ̃;A)) via

the Hecke correspondences. Note also that, via the decomposition (2.9), we can

regard the local system L (κ̃;A) as the sheaf of continuous sections of

Γi
1(N)\

(
hIF+ ×L(κ̃;A)

)
→ Γi

1(N)\hIF+

on each connected component Γi
1(N)\hIF+ of Y1(N)(C).

Next let Q′
f be the composite field QfF

+,gal, and let r′f be its ring of integers.

Let us denote by r′f,(p) the localization of r′f at the p-adic place induced by the

specific p-adic embedding Q′
f ⊂ Q

ιp−→ Qp. Note that an arbitrary r′f,(p)-algebra
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satisfies the condition (∗) since dF+ is a p-adic unit due to the assumption

(unrF+), and there exist representatives {ci}hi=1 which are relatively prime to p.

Therefore we can take the maximal submodule Hd(Y1(N)(C),L (κ̃;A))[λf̃ ] of the

Betti cohomology group Hd(Y1(N)(C),L (κ̃;A)) (resp., the maximal submodule

Hd
c (Y1(N)(C),L (κ̃;A))[λf̃ ] of the compactly supported Betti cohomology group

Hd
c (Y1(N)(C),L (κ̃;A))) for an arbitrary r′f,(p)-algebra A, on which the Hecke

algebra hκ̃(N, ε̃;A) acts as the multiplication of the eigenvalues at f̃ . Now let ε

be an element of {±1}IF+ which we regard as a character defined on the group

of connected components of the archimedean part GL2(R)
IF+ in GL2(AF+). We

consider the composite map

(2.11)
Hd

c

(
Y1(N)(C),L (κ̃; r′f,(p))

)
−→Hd

c

(
Y1(N)(C),L (κ̃;C)

)
−→Hd

c

(
Y1(N)(C),L (κ̃;C)

)
[λf̃ ]

ε,

where the first map is a natural one and the second map is the projection. As is

well known, the group of connected components acts on Hd
c (Y1(N)(C),L (κ̃;C))

in a way compatible with the action of hκ̃(N, ε̃;C), and the ε-eigenspace

Hd
c (Y1(N)(C),L (κ̃;C))[λf̃ ]

ε of Hd
c (Y1(N)(C),L (κ̃;C))[λf̃ ] with respect to this

action is of dimension 1 over C for each ε. Thus, the image of the map (2.11) is free

of rank one over the discrete valuation ring r′f,(p) for each ε; or, in other words,

each Hd
c (Y1(N)(C),L (κ̃;C))[λf̃ ]

ε is equipped with an r′f,(p)-integral structure.

We are now ready to associate the Hilbert cusp form f̃ to a cohomology

class [f̃ ]. Let (f̃i(z))1≤i≤h denote the element of
⊕h

i=1 Sκ̃(Γ
i
1(N);C) correspond-

ing to f̃ via the decomposition (2.10), and let us consider the vector-valued

differential form ωf̃ = (ωf̃i
)1≤i≤h on Y1(N)(C) defined as

ωf̃i
= f̃i
(
(zτ )τ∈IF+

) ∏
τ∈IF+

(Xτ + zτYτ )
κ̃2,τ−κ̃1,τ−1

∧
τ∈IF+

dzτ

on each connected component Γi
1(N)\hIF+ of Y1(N)(C), where (zτ )τ∈IF+ denotes

the standard coordinate of hIF+ . The integration of ωf̃ on a d-cycle of Y1(N)(C)

then defines a cohomology class [f̃ ] of Hd(Y1(N)(C),L (κ̃;C)), which we call the

Eichler–Shimura class associated to the critical twist f̃ of f . We use the same

symbol [f̃ ] for its image under the composition

Hd
(
Y1(N)(C),L (κ̃;C)

) proj
� Hd

(
Y1(N)(C),L (κ̃;C)

)
[λf̃ ]

∼=Hd
c

(
Y1(N)(C),L (κ̃;C)

)
[λf̃ ]

by abuse of notation.

DEFINITION 2.14

For each ε, let us choose an r′f,(p)-basis bε of the image of the rank one free

r′f,(p)-module Hd
c (Y1(N)(C),L (κ̃; r′f,(p))) under the map (2.11). Then we define

a p-optimal complex period Cε
f,∞ ∈ C× of signature ε of f to be the constant



24 Takashi Hara and Tadashi Ochiai

given by

(2.12) [f̃ ]ε =Cε
f,∞ · bε,

where [f̃ ]ε denotes the projection of [f̃ ] onto Hd
c (Y1(N)(C),L (κ̃;C))[λf̃ ]

ε. The

p-optimal complex period Cε
f,∞ depends on the choice of bε, which has an ambi-

guity of a multiple of an element in (r′f,(p))
×. Hence, we often regard Cε

f,∞ as an

element of C×/(r′f,(p))
×.

2.2.2. The cyclotomic p-adic L-functions

We here introduce the notion of the cyclotomic p-adic L-functions associated to

Hilbert modular cusp forms and their interpolation formulae (Theorem 2.15).

Let Cl+F+(p∞rF+) be the strict ray class group of F+ modulo p∞rF+ , which is

defined as the projective limit Cl+F+(p∞rF+) = lim←−n→∞A×
F+/(F

+)×IpnrF+ . Here

the subgroup IpnrF+ of A×
F+ is defined as

IpnrF+ =
∏

l�prF+

r
×
F+,l ×

∏
p|prF+

(1 + pnmprF+,p)×
∏

w : archimedean place of F+

(r×F+,w)+

when prF+ is decomposed as prF+ =
∏

p|prF+
pmp . For an archimedean place w,

we denote by (r×F+,w)+ the connected component of r×F+,w containing 1, which is

isomorphic to R>0. We denote by F+
p∞rF+

the strict ray class field modulo p∞rF+

over F+, the field corresponding to Cl+F+(p∞rF+) via global class field theory.

For a ray class character φ : Cl+F+(p∞rF+) → C× of finite order, we associate

its signature sgn(φ) ∈ {±1}IF+ in the following manner. Observe that there is a

canonical homomorphism from {±1}IF+ to the archimedean part of the ray class

group Cl+F+(p∞rF+). Via this homomorphism, we associate a character (φτ )τ∈IF+

on {±1}IF+ to φ. We define as sgn(φ) = (φτ (−1))τ∈IF+ .

We next define the Gaussian sum G(φ) for a ray class character of finite

order φ : Cl+F+(p∞rF+)→C× as

G(φ) =
∑

x∈(C(φ)−1/rF+ )×

φ(x) exp
(
2π

√
−1TrF+/Q(x)

)
,(2.13)

where we denote by (C(φ)−1/rF+)× the subset of C(φ)−1/rF+ consisting of ele-

ments whose annihilators exactly coincide with C(φ). In the defining equation of

G(φ) we evaluate φ at an element x of (C(φ)−1/rF+)× via the following compo-

sition:(
C(φ)−1/rF+

)× ∼−→
(
rF+/C(φ)

)× →
(
rF+/C(φ)

)×
/r×F+ ↪→Cl+F+

(
C(φ)
)
.

For a Galois character φ : Gal(F+
p∞rF+

/F+) → Q
×

of finite order, we use the

same symbol φ for the corresponding ray class character on Cl+F+(p∞rF+).

We now state the existence of the cyclotomic p-adic L-function associated

to a Hilbert modular cusp form, which is originally due to Manin [29, Sections 5

and 6]. For an element k of Z[IF+ ], we define the integer kmax (resp., kmin) as

the maximum (resp., the minimum) among its coefficients.
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THEOREM 2.15

Let f be a normalized nearly p-ordinary eigencuspform in Sκ(N, ε;Q) stabilized

at p. We fix a discrete valuation ring O finite flat over Zp which contains r′f,(p).

Then there exists an element Lcyc
p (f) of O[[Gal(F+(μp∞)/F+)]]⊗Zp Qp charac-

terized by the interpolation property (recall that we have put d= [F+ :Q])

(2.14)

χj
p,cycφ

(
Lcyc
p (f)

)
=

Γ(jt− κ1)

Γ((κmax
1 + 1)t− κ1)

G(φ)

×
∏

p|prF+

Ap(f ;φ, j)
L(f,φ, j)

(−2π
√
−1)d(j−κmax

1 −1)C
εφ,j

f,∞

for an arbitrary integer j satisfying κmax
1 +1≤ j ≤ κ2,min and an arbitrary char-

acter φ of Gal(F+(μp∞)/F+) of finite order. Here C
εφ,j

f,∞ denotes a p-optimal

complex period of signature εφ,j , which is defined as (−1)j−κmax
1 −1 sgn(φ).

The p-adic multiplier Ap(f ;φ, j) is defined as

Ap(f ;φ, j) =

{
1− Np

j−1

αp(f)φ∗(p) if p does not divide C(φ),

(Np
j−1

αp(f)
)ordp(C(φ)) if p divides C(φ),

where αp(f) denotes the eigenvalue of f with respect to the Hecke operator U(p).

The gamma factor is abbreviated as

Γ(mt− κ1) =
∏

τ∈IF+

Γ(m− κ1,τ ) for each m satisfying m≥ κmax
1 + 1.

REMARK 2.16

The construction of [29] is based upon modular symbols over Hilbert modular

varieties, which is a generalization of the work by Manin himself, Mazur and

Swinnerton-Dyer, and Vǐsik, Amice, and Vélu for the elliptic modular case (see

[30] for historical reviews). The construction of Theorem 2.15 is revisited by [10]

and [36] in the context of generalizing it into nearly ordinary Hida deformations.

REMARK 2.17

There is another fashion of construction of p-adic L-functions associated to

(Hilbert) modular forms which is based upon the theory of Rankin–Selberg con-

volutions. The methods of the construction of p-adic L-functions in this direction

have been discussed by Panchishkin [39], Dabrowski [8], Mok [33], and so on. The

complex period appearing in thier theory is of Shimura type; namely, it is defined

by using the self Petersson inner product of the given cusp form.

2.3. Katz, Hida, and Tilouine’s p-adic L-functions for CM number fields
In this section we introduce the p-adic L-function (or the p-adic measure) for a

CM number field which was first constructed by Katz [27] for größencharacters

of type (A0) with conductors dividing p∞ and then by Hida and Tilouine [23,

Theorem II] for general größencharacters of type (A0).
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2.3.1. p-ordinary CM types

As in Section 1, let F be a CM number field of degree 2d with the maximal totally

real subfield F+. We denote by c the complex conjugation of F , that is, the

unique generator of the Galois group of F/F+. We impose the two assumptions

(unrF+) and (ordF/F+) on F/F+ and p, which are introduced at the beginning

of Section 2.2 and a little bit before Proposition-Definition 2.13, respectively.

By virtue of the assumption (ordF/F+), one can consider a p-ordinary CM

type Σ of F (also called a p-adic CM type). Namely, Σ is a subset of IF satisfying

the following two conditions:

• we have IF =Σ∪Σc (disjoint union), where Σc = {σ ◦ c ∈ IF | σ ∈Σ};
• we have {places of F lying above p}=Σp ∪Σc

p (disjoint union), where Σp

is the set of places of F induced by embeddings ιp ◦ σ for all σ in Σ, and Σc
p is

the set of their complex conjugates.

It is not difficult to see that there exists a p-ordinary CM type Σ if and only if

the condition (ordF/F+) is satisfied and that the number of p-ordinary CM types

is equal to 2�{places of F+ lying above p}. Let us take a p-ordinary CM type Σ, and

fix it once and for all. Then it is well known that the sum μσ + μσ̄ has the same

value for every σ in Σ. We denote this constant by −w (the weight of η). The

infinity type μ of η thus has two expressions as follows:

μ=
∑
σ∈Σ

(μσσ+ μσ̄σ̄) =−wt−
∑
σ∈Σ

rσ(σ− σ̄).

2.3.2. The CM periods of Katz, Hida, and Tilouine

We next introduce the complex and p-adic periods which appear in the inter-

polation formula of the p-adic L-functions for CM number fields. Let C be an

integral ideal of F which is prime to p, and let us choose and fix an element δ of

F which satisfies the following two conditions:

(1δ) the imaginary part Im(σ(δ)) of δ is positive for all σ in Σ;

(2δ) the alternating form defined by 〈u, v〉δ = (uvc −ucv)/2δ induces an iso-

morphism between rF ∧rF+ rF and d
−1
F+c

−1 for a certain fractional ideal c of F+

prime to pCCc.

Here dF+ denotes the absolute different of F+. We embed rF into CΣ diag-

onally via the fixed (p-ordinary) CM type Σ and denote its image by Σ(rF ),

which becomes a Z-lattice in CΣ. We denote the complex torus CΣ/Σ(rF ) by

X(rF ). Then the pairing 〈·, ·〉δ defines a c-polarization on X(rF ), and thus, the

pair (X(rF ), 〈·, ·〉δ) gives rise to an abelian variety (X(rF ), λδ) equipped with

a c-polarization λδ : X(rF )
t ∼−→ X(rF ) ⊗rF+ c. By construction, the c-polarized

abelian variety (X(rF ), λδ) is equipped with complex multiplication by rF . Note

that the element 2δ locally generates the fractional ideal cdF of F by the polar-

ization condition (2δ) (see also [27, Lemme (5.7.35)]). In particular, if we embed
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2δ into the idèle class group A×
F /F

× diagonally and denote by (2δ)w the com-

ponent at a place w, then we can take (2δ)Q as a generator of dF ⊗rF rF,Q for

every prime ideal Q of F relatively prime to c.

Next we endow (X(rF ), λδ) with a Γ00(f
2p∞)-level structure. In order to do

so, we first decompose C into a product C = FFcI so that FFc is a product of

prime ideals completely split over F+, I is that of prime ideals inert or ramified

over F+, F and Fc are relatively prime, and Fc
c (the complex conjugate of Fc)

contains F. We fix such a decomposition of C once and for all. We put f as FI∩F+

and fc as FcI∩F+; then f and fc are integral ideals of F+ and fc contains f. We

choose a differential idèle dF+ = (dv)v of F+, a finite idèle of F+ whose associated

modulus coincides with dF+ , so that the following conditions are fulfilled:

• the local component dv equals 1 unless v divides pfdF+ ;

• if Q is a prime divisor of F and q is the unique prime ideal of F+ lying

below Q, then the local component dq of d is given by (2δ)Q, where we identify

F+
q with FQ via the isomorphism induced by the canonical inclusion F+ ↪→ F .

Choose a rational integer f0 in f which is relatively prime to p. Then the com-

position

(f−2d
−1
F+/d

−1
F+ ⊗Z Gm[f2

0 p
∞])(C)

exp−→ f−2d
−1
F+/d

−1
F+ ⊗Z f

−2
0 p−∞Z/Z

×dF+−−−−→ f−2rF+/rF+ ⊗Z f
−2
0 p−∞Z/Z

∼−→

⎧⎨⎩ ∏
P∈Σp

P−∞

⎫⎬⎭F−2I−2rF /rF

↪→CΣ/Σ(rF ) =X(rF )

induces a Γ00(f
2p∞)-level structure i(rF ) over C. The theory of complex multipli-

cation enables us to find a model of the triple (X(rF ), λδ, i(rF )) over a valuation

ring which is obtained as the inverse image under ιp of a certain finite inte-

gral extension Ô′ of Ôur. Moreover, since we admit the unramifiedness condition

(unrF+), we can take Ô′ as Ôur itself due to the fundamental theorem of the

theory of complex multiplication combined with Serre and Tate’s criterion for

good reduction. Let us denote the inverse image of Ôur under ιp by W and take

a rF ⊗Z W-basis ω(rF ) of the module of invariant differentials ωX(rF )/W . Recall

that ωX(rF )/W is an invertible module over rF ⊗Z W since X(rF ) has complex

multiplication by rF .

By construction, X(rF ) admits a complex uniformization Π: CΣ � X(rF )

defined as the quotient with respect to the lattice Σ(rF ). It induces an isomor-

phism between the modules of invariant differentials

Π∗ : ωX(rF )/C
∼−→
⊕
σ∈Σ

Cduσ,

and we can take ωtrans(rF ) =
∑

σ∈Σ duσ as a rF ⊗ZC-basis of the right-hand side.

We define the complex CM period ΩCM,∞ = (ΩCM,∞,σ)σ∈Σ ∈ (rF ⊗Z C)
× =C×,Σ
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by the following equality:

Π∗ω(rF ) = ΩCM,∞ωtrans(rF ).

On the other hand, (the p-part of) the Γ00(f
2p∞)-level structure induces an

isomorphism ip : (d
−1
F+ ⊗ZGm)∧

∼−→X(rF )
∧ between the formal completions along

the identity sections over Ôur, and hence, we obtain the isomorphism

i∗p : ωX(rF )/Ôur

∼−→
⊕
σ∈Σ

Ôur dTσ

Tσ
.

We take ωcan(rF ) =
∑

σ∈Σ dTσ/Tσ as a rF ⊗Z Ôur-basis of the right-hand side, and

define the p-adic CM period ΩCM,p = (ΩCM,p,σ)σ∈Σ ∈ (rF ⊗Z Ôur)× = (Ôur,×)Σ

by the following equality:

i∗pω(rF ) = ΩCM,pωcan(rF ).

REMARK 2.18

One readily observes by the construction above that, when one replaces ω(rF )

with another rF ⊗ZW-basis of ωX(rF )/W , both ΩCM,∞ and ΩCM,p are multiplied

by the same value contained in (rF ⊗Z W)×; therefore, the ratio of the pair

(ΩCM,∞,ΩCM,p) is well defined independently of the choice of a basis ω(rF ) of

ωX(rF )/W .

2.3.3. The p-adic L-functions for CM fields

In order to state the interpolation formula of the p-adic L-function for the CM

number field F , we here introduce the notion of dual größencharacters; for a

größencharacter η of type (A0) on F , the dual größencharacter η̌ of η is defined

by η(x)η̌(xc) = |x|AF
for every x in A×

F . In the language of ideal characters, it

is characterized as η∗(A)η̌∗(Ac) = NA−1 for every fractional ideal A relatively

prime to C(η).

THEOREM 2.19 ([27, THEOREM (5.3.0)], [23, THEOREM II])

Let p be an odd prime number and F a CM field of degree 2d with maximal totally

real subfield F+. Assume that F , F+, and p satisfy both the conditions (unrF+)

and (ordF/F+). Let us choose and fix a p-ordinary CM type Σ of F . Let C= FFcI

be an integral ideal of F relatively prime to p, and let δ be a purely imaginary

element of F satisfying both the conditions (1δ) and (2δ) stated at the beginning

of Section 2.3.2. Then there exists a unique element LKHT
p,Σ (F ) in the Iwasawa

algebra Ôur[[Gal(FCp∞/F )]], where FCp∞ denotes the ray class field modulo Cp∞

over F , satisfying

ηgal(LKHT
p,Σ (F ))

Ωwt+2r
CM,p

= (r×F : r×F+)Wp(η)
(−1)wd(2π)|r|ΓΣ(wt+ r)√

|DF+ |Im(2δ)r

×
∏
L|C

(
1− η∗(L)

){ ∏
P∈Σp

(
1− η∗(Pc)

)(
1− η̌∗(Pc)

)}L(η∗,0)
Ωwt+2r

CM,∞



Iwasawa main conjecture for CM Hilbert cusp forms 29

for each größencharacter η of type (A0) with conductor dividing Cp∞ such that

(i) the conductor of η is divisible by all prime factors of F;

(ii) the infinity type μ = −wt−
∑

σ∈Σ rσ(σ − σ̄) of η satisfies either of the

following statements:

(a) w ≥ 1 and rσ ≥ 0 for all σ in Σ;

(b) w ≤ 1 and w+ rσ − 1≥ 0 for all σ in Σ.

The local ε-factor Wp(η) at p is defined as

Wp(η) =
∏

P∈Σp

NP−e(P)ηP(�
−e(P)
P

)
∑

x∈(rF,P/Pe(P))×

ηP(x)eP
(
�

−e(P)
P

(2δ)−1
P

x
)
,

where �P denotes a uniformizer of the local field FP and e(P) denotes the expo-

nent of P in the conductor of η. In the equation above we diagonally embed 2δ

into the idèle group A×
F and denote its P-component by (2δ)P.

In Theorem 2.19 we use the following convention on multi-indices:

Ωwt+2r
CM,? =

∏
σ∈Σ

Ωw+2rσ
CM,?,σ for ? = CM or p, |r|=

∑
σ∈Σ

rσ,

ΓΣ(wt+ r) =
∏
σ∈Σ

Γ(w+ rσ), Im(2δ)r =
∏
σ∈Σ

Im
(
σ(2δ)

)rσ
.

REMARK 2.20

The p-adic L-function LKHT
p,Σ (F ) does depend on the choice of δ satisfying con-

ditions (1δ) and (2δ), but we can explicitly describe effects on the interpolation

formula when we replace δ by another purely imaginary element δ′ satisfying the

polarization conditions (1δ) and (2δ). In particular, we readily observe that the

p-adic valuation of LKHT
p,Σ (F ) does not change after such a replacement of δ. Refer,

for example, to [27, Section 5.8]. We also remark that the assumption (unrF+) is

not required in Katz, Hida, and Tilouin’s original construction of LKHT
p,Σ (F ). How-

ever, without (unrF+), the constructed p-adic L-function LKHT
p,Σ (F ) might not be

an element of Ôur[[Gal(FCp∞/F )]] but an element of OCp [[Gal(FCp∞/F )]].

2.4. Comparison of the p-adic L-functions
In this section we specialize Katz, Hida, and Tilouine’s p-adic L-function for a

CM number field LKHT
p,Σ (F ) to a fixed arithmetic weight parameterization and

obtain an element of the cyclotomic Iwasawa algebra which interpolates critical

values of the L-function associated to a Hilbert modular cusp form with complex

multiplication. At the end of this section, we compare the specialized element

with the p-adic L-function Lcyc
p (f) constructed by the second-named author,

and formulate a certain conjecture on the relation between Katz’s complex CM

periods and modular symbolic complex periods.
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2.4.1. Comparison of the interpolation formulae

Let the notation be as in the previous section. Recall that, in particular, η denotes

a Σ-admissible größencharacter of type (A0) on F for an appropriate p-ordinary

CM type Σ. Now assume that ϑ(η) is a primitive form; in particular, ϑ(η) is

an eigenvector with respect to the Hecke operator T (p) (or U(p)) for each p

lying above p. Then, as we have already seen at the end of Section 2.1.5, the

cusp form ϑ(η) is nearly p-ordinary if and only if η is ordinary with respect

to Σ; that is, η is unramified at every P contained in Σp. Assume that η is

ordinary with respect to Σ, and let ϑ(η)p-st denote the p-stabilization of ϑ(η). In

particular, the eigenvalue with respect to the normalized Hecke operator U0(p)

is given by {pκμ,1}−1η∗(P) for each prime ideal p lying above p; here P is an

element of Σp satisfying PP
c = p. One readily observes that the p-adic valuation

of {pκμ,1}−1η∗(P) coincides with that of the evaluation of the p-adic avatar η̂

introduced in Section 2.1.1 at a uniformizer �P of FP. Since the p-adic avatar η̂

takes values into p-adic units, we see that ϑ(η)p-st is indeed nearly ordinary at p.

PROPOSITION 2.21

Assume that we have chosen and fixed an element δ of F satisfying conditions

(1δ) and (2δ) in Section 2.3.2. Then under the settings and the notation as above,

there exists an element Lcyc
p,CM(η) of Ôur[[Gal(F+(μp∞)/F+)]] characterized by

the interpolation property

(2.15)

χj
p,cycφ

(
Lcyc
p,CM(η)

)
=Γ(jt− κμ,1)G(φ)

∏
p|prF+

Ap(ϑ(η)
p-st, φ, j)L(ϑ(η)p-st, φ, j)

(−2π
√
−1)jd(−Ω̃CM,∞)κμ,2(−ΩCM,∞)−κμ,1

for an arbitrary natural number j satisfying κmax
μ,1 + 1 ≤ j ≤ (κμ,2)min and an

arbitrary character φ of finite order of Gal(F+(μp∞)/F+). Here ΩCM,∞ denotes

Katz’s complex CM period introduced in Section 2.3.2 and Ω̃CM,∞ denotes the

modified complex CM period defined by ((2δ)−1 ⊗ 2π
√
−1)−1ΩCM,∞, which we

regard as an element of (F+ ⊗ C)×. The Gaussian sum G(φ−1) is defined as

(2.13), and the p-adic multiplier Ap(ϑ(η)
p-st, φ, j) is defined by

Ap

(
ϑ(η)p-st, φ, j

)
=

{
1− Np

j−1

η∗(P)φ∗(p) if p does not divide C(φ),

(Np
j−1

η∗(P) )
ordp(C(φ)) if p divides C(φ).

REMARK 2.22

Prasanna and the second-named author [37, Theorem 2.4] have already con-

structed an object corresponding to Lcyc
p,CM(η) in elliptic modular cases, and our

modified complex CM period Ω̃CM,∞ is a counterpart to the CM period ΩCM
∞

defined there.

We first prepare two elementary lemmata required for the construction of the

p-adic measure Lcyc
p,CM(η).
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LEMMA 2.23

The index (r×F : r×F+) is relatively prime to p.

Proof

Let WF (resp., WF+) denote the group of roots of unity contained in F (resp., in

F+). Then we have (r×F : r×F+) =QF (WF :WF+), where QF is Hasse’s unit index

defined as (r×F :WF r
×
F+). It is known that QF can take only two possible values 1

or 2 (see [18, Satz 14], [55, Theorem 4.12]). In particular, QF is not divisible by

p, because we assume that p is odd. Moreover, the unit group r
×
F contains none

of the p-power roots of unity, since F/Q is unramified at every place lying above

p due to the assumptions (unrF+) and (ordF/F+). Hence, the index (WF :WF+)

is not divisible by p either. This completes the proof. �

LEMMA 2.24

Let δ be an element of F satisfying conditions (1δ) and (2δ) from the beginning

of Section 2.3.2. Then the product
∏

σ∈Σ σ(2δ) is an element of Z×
p .

Proof

Recall that 2δ is a generator of the p-part of the absolute different of F , or in

other words, 2δ(rF ⊗Z Zp) = dF ⊗Z Zp holds (refer to [27, Lemma (5.7.35)]). The

assumptions (unrF+) and (ordF/F+) imply that dF ⊗ZZp is trivial, and hence, 2δ

is a p-adic unit; that is, the image of 2δ in F ⊗Z Zp is contained in (rF ⊗Z Zp)
×.

Then the image of 2δ under the composition

(rF ⊗Z Zp)
× projection−−−−−−→

∏
P∈Σp

r
×
F,P

∼−→ (rF+ ⊗Z Zp)
× NrF+/Q⊗id
−−−−−−−→ Z×

p

coincides with
∏

σ∈Σ σ(2δ) by definition, where the middle isomorphism in the

diagram above is the identification induced by the fixed p-ordinary CM type Σ:

rF+ ⊗Z Zp
∼−→
∏

P∈Σp

rF,P, x⊗ 1 �→
(
ιp ◦ σ(x)

)
ιp◦σ∈Σp

.

Therefore,
∏

σ∈Σ σ(2δ) is an element of Z×
p . �

Taking the bijection Σ
∼−→ IF+ ;σ �→ σ|F+ into account, we abbreviate the product∏

σ∈Σ σ(2δ) as (2δ)t in the following arguments.

We now explain how to construct the p-adic measure Lcyc
p,CM(η). Let C denote

the prime-to-p part of the conductor of η and consider Katz, Hida, and Tilouine’s

measure LKHT
p,Σ (F ) introduced in Theorem 2.19, which is by construction an ele-

ment of Ôur[[Gal(FCp∞/F )]]. Define a p-adic integer d̃= d̃(δ) to be (−1)d(2δ)t,

which is indeed a p-adic unit in Z×
p by Lemma 2.24. Hence, there exists a unique

element zd̃ of Gal(F (μp∞)/F ) corresponding to d̃ via χp,cyc.

Let σ0 denote an element of Σ such that μσ(= κμ,1,σ|F+
) takes the maximum

κmax
μ,1 , and let P0 denote the corresponding element of Σp: the prime ideal of F

induced by the embedding ιp ◦σ0 : F ↪→Qp. We denote the lay class field modulo
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C
∏

P∗∈(Σp∪Σc
p)\{P0}(P

∗)∞ over F by F
(0)
Cp∞ . Since η is ordinary with respect to Σ,

the p-adic avatar of η| · |κ
max
μ,1

AF
is unramified at P0 by its construction, and there-

fore, the corresponding Galois character ηgalχ
κmax
μ,1

p,cyc factors through the Galois

group Gal(F
(0)
Cp∞/F ). The ray class field F

(0)
Cp∞ is contained in FCp∞ by definition.

On the other hand, the p-adic cyclotomic extension F (μp∞)/F is totally ramified

at P0, since F does not contain any p-power roots of unity due to the condi-

tions (unrF+) and (ordF/F+). By comparing ramifications, we see that F
(0)
Cp∞ is

linearly disjoint from F (μp∞) over F . The Galois group of F (μp∞)F
(0)
Cp∞/F is

thus decomposed as the direct product of Gal(F (μp∞)/F ) and Gal(F
(0)
Cp∞/F ).

Via this decomposition we regard (zd̃,1) as an element of Gal(F (μp∞)F
(0)
Cp∞/F )

and let z̃d̃ denote its arbitrary lift to Gal(FCp∞/F ). Then we define Lcyc
p,CM(η) as

the product of a power of Katz’s p-adic CM period Ω
−(κμ,2−κμ,1)
CM,p and the image

of the element Ex(F, δ)LKHT
p,Σ (F ) under the map

Ôur
[[
Gal(FCp∞/F )

]]
→Ôur

[[
Gal
(
F (μp∞)/F

)]] ∼−→ Ôur
[[
Gal
(
F+(μp∞)/F+

)]]
defined as g �→ ηgal(g)g|F+(μp∞ ) for each element g of Gal(FCp∞/F ). Here Ex(F, δ)

denotes an element defined by the product (r×F : r×F+)
−1
√

|DF+ |(−2δ)−κmax
μ,1 tz̃−1

d̃(δ)
,

which we call the extra factor. Note that Lcyc
p,CM(η) is indeed p-adically integral,

since Ex(F, δ) is a p-adic unit by virtue of Lemmata 2.23 and 2.24 and the

assumption (unrF+).

Proof of Proposition 2.21

We shall deduce the desired interpolation formula of Lcyc
p,CM(η) from the inter-

polation formula of LKHT
p,Σ (F ) (see Theorem 2.19). Note that the evaluation of

Lcyc
p,CM(η) at χj

p,cycφ is exactly the same as the evaluation of Ex(F, δ)LKHT
p,Σ (F ) at

the character ηgalχj
p,cycφ by definition.

Extra factor. The evaluation of the extra factor Ex(F, δ) at the character

ηgalχj
p,cycφ is calculated as

(2.16)

ηgalχj
p,cycφ

(
Ex(F, δ)

)
= (r×F : r×

F+)
−1
√
|DF+ |(−2δ)−κmax

μ,1 tηgalχj
p,cycφ(z̃

−1

d̃
)

= (r×F : r×F+)
−1
√
|DF+ |(−2δ)−κmax

μ,1 tχ
j−κmax

μ,1
p,cyc φ(z−1

d̃
)ηgalχ

κmax
μ,1

p,cyc(1)

= (r×F : r×F+)
−1
√
|DF+ |φ(zd̃)−1(−2δ)−jt.

At the second equality, we just replace z̃d̃ by the corresponding element (zd̃,1)

in the direct product Gal(F (μp∞)/F )×Gal(F
(0)
Cp∞/F ).

Interpolation region. The infinity type μj of the größencharacter ηgalχj
p,cycφ

is given by
∑

σ∈Σ{(μσ − j)σ + (μσ̄ − j)σ̄}. We then define integers wj and rj,σ
by the equation

μj =−wjt−
∑
σ∈Σ

rj,σ(σ− σ̄).
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More concretely, wj and rj,σ are defined as follows:

wj = 2j − [κμ] and rj,σ = μσ̄ − j = κμ,2,σ|F+
− j for each σ in Σ.

The interpolation region of Katz, Hida, and Tilouine’s measure for größencha-

racters of the form ηgalχj
p,cycφ is given by

(wj ≥ 1 and rj,σ ≥ 0 ∀σ ∈Σ) or (wj ≤ 1 and rj,σ +wj − 1≥ 0 ∀σ ∈Σ).

The solution of the simultaneous inequalities above with respect to j is then

calculated as max{μσ | σ ∈ Σ}+ 1 ≤ j ≤min{μσ̄ | σ ∈ Σ}, which coincides with

the desired interpolation region κmax
μ,1 + 1 ≤ j ≤ (κμ,2)min by the definition of

κμ = (κμ,1, κμ,2).

Periods. The equality Ω
wjt+2rj
CM,? = Ω

κμ,2−κμ,1

CM,? holds for rj =
∑

σ∈Σ rj,σσ and

? =∞, p. In particular, the contribution of the p-adic CM period appearing in the

interpolation formula of LKHT
p,Σ (F ) is canceled by the construction of Lcyc

p,CM(η).

Moreover, we obtain

(2.17)

1

Ω
wjt+rj
CM,∞

=
1

Ω
κμ,2−κμ,1

CM,∞

=
(−1)[κμ]d(−2δ)κμ,2

(−2π
√
−1)|κμ,2|

· 1

(−Ω̃CM,∞)κμ,2(−ΩCM,∞)−κμ,1

.

L-value. First note that the Galois character ηgalχj
p,CMφ corresponds to the

ideal character η∗N−jφ∗. Here we define φ∗(A) for a fractional ideal A of F by

φ∗(NF/F+A). The größencharacter η is ramified at every prime ideal L dividing

C, since C is by definition the prime-to-p part of the conductor of η, and hence,

the local term 1−η∗N−jφ∗(L) at such L equals 1. Comparing the Dirichlet series

expressions, we can readily check that the L-value L(η∗N−jφ∗,0) exactly equals

L(ϑ(η), φ, j) by the construction of the theta lift. For each place p of F+ lying

above p, the local factor of L(ϑ(η), φ, j) at p is given by

Lp

(
ϑ(η), φ, j

)
=
{
1−C

(
ϑ(η),p

)
φ∗(p)Np−j + η∗(prF )ν

∗
F/F+

(
φ∗)2(p)Np−2j

}−1

=
(
1− η∗φ∗(P)NP−j

)−1(
1− η∗φ∗(Pc)(NPc)−j

)−1

for p=PP
c with P in Σp. Therefore, the equality(

1− η∗φ∗(Pc)(NPc)−j
)
Lp

(
ϑ(η), φ, j

)
=
(
1− η∗φ∗(P)NP−j

)−1

holds, and the right-hand side of this equation is no other than the local compo-

nent at p of the L-value L(ϑ(η)p-st, φ, j) by the definition of the p-stabilization of

ϑ(η). Finally we obtain by the definition of the dual größencharacter an equation

1− (η∗N−jφ∗)̌(Pc) =

{
1− NP

j−1

η∗(P)φ∗(p) when φ is unramified at P,

1 otherwise,

for each place P in Σp (recall that η∗N−j is unramified at P due to the assump-

tion (unrF+)), and it coincides with the p-adic multiplier Ap(ϑ(η)
p-st, φ, j) when
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p=NF/F+P does not divide the conductor C(φ) of φ. Consequently, we have

(2.18)

∏
L|C

(
1− η∗N−jφ∗(L)

)
×
{ ∏

P∈Σp

(
1− η∗N−jφ∗(Pc)

)(
1− (η∗N−jφ∗)̌(Pc)

)}
×L(η∗N−jφ∗,0)

=
∏

p|prF+ ,p�C(φ)

Ap

(
ϑ(η)p-st, φ, j

)
L
(
ϑ(η)p-st, φ, j

)
.

Local ε-factor at p. Recall that, for each P in Σp and p=PP
c, we obtain a

specified identification

rF+,p
∼−→ rF,P(2.19)

induced by τp(x) �→ σP(x) for each element x of rF+ , where σP : F ↪→Q denotes

an arbitrary embedding contained in Σ such that ιp ◦ σP induces P, and τp
denotes the restriction of σP to F+. Then (2δ)P = σP(2δ) corresponds to a

unique element (2δ)p of r×F+,p under the identification (2.19). We define �p as

an element of rF+,p corresponding to the fixed uniformizer �P of FP via (2.19),

which is also a uniformizer of F+
p .

Note that the idèlic character corresponding to ηgalχj
p,cycφ is η| · |jAF

φ, where

| · |AF
denotes the idèlic norm character on F (see Example 2.1 for details). Since

η| · |jAF
is unramified at each place P in Σp by ordinarity of η with respect to

Σ, the exponent e(P) of P ∈ Σp in the conductor of η| · |jAF
φ exactly equals the

exponent of p=PP
c in the conductor of φ, which we denote by eφ(p). By using

these facts, we calculate the local ε-factor Wp(η| · |jAF
φ) in the following way. For

each P in Σp, set

WP

(
η| · |jAF

φ
)

=NP−eφ(p)
(
η| · |jAF

φ
)
P
(�

−eφ(p)
P

)

×
∑

x∈(rF+,p/p
eφ(p))×

(
η| · |jAF

φ
)
P
(x)eP

(
�

−eφ(p)
P

(2δ)−1
P

x
)
.

Then Wp(η| · |jAF
φ) obviously equals the product

∏
P∈Σp

WP(η| · |jAF
φ). Note also

that, when eφ(p) equals 0, or in other words, when φ does not ramify at p, the

local term WP(η| · |jAF
φ) at P is trivial by its definition.

Now assume that φ is ramified at p=PP
c. Then by direct computation, we

have

NP−eφ(p)
(
η| · |jAF

φ
)
P
(�

−eφ(p)
P

) =
(NPj−1

η∗(P)

)eφ(p)
φp(NF/F+�

−eφ(p)
P

)

=Ap

(
ϑ(η)p-st, φ, j

)
φp(�

−eφ(p)
p ).
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Next let us take an element α of F+ satisfying αp =�
eφ(p)
p for each p of F+ lying

above p. Note that (η| · |jAF
)P(x) is trivial for each P in Σp and an arbitrary

element x in r
×
P

since η| · |jAF
is unramified at such P. By using this, we can

calculate as

φp(�
−eφ(p)
p )

∑
x∈(rF,P/Peφ(p))×

(
η| · |jAF

φ
)
P
(x)eP

(
�

−eφ(p)
P

(2δ)−1
P

x
)

= φp(�
−eφ(p)
p )

∑
x∈(rF+,p/p

eφ(p))×

φp(x)ep
(
�

−eφ(p)
p (2δ)−1

p x
)

= φp

(
(−2δ)p

) ∑
x∈(rF+,p/p

eφ(p))×

φp(xα
−1
p )ep(−xα−1

p ).

(2.20)

In the third equality we change the variable of the summation using the fact that

the correspondence x �→ x(−2δ)p induces an automorphism of (rF+,p/p
eφ(p))×.

Since 2δ is a p-adic unit, the evaluation of the p-adic avatar of the norm char-

acter | · |AF+ at the idèle of F+ defined as (−2δ)prF+ = ((−2δ)p)p|prF+
is calcu-

lated as
∏

P∈Σp
σP(−2δ)�ΣP , which coincides with d̃ = χcyc,p(zd̃). This implies

that the idèle (−2δ)prF+ corresponds to the element zd̃ of Gal(F+(μp∞)/F+)

via the reciprocity map in global class field theory. In particular, the product∏
p|prF+

φp((−2δ)p) coincides with φ(zd̃). Taking the product of (2.20) over prime

ideals p of rF+ lying above p, we obtain the equality∏
p|prF+

φp

(
(−2δ)p

) ∑
x∈(rF+,p/p

eφ(p))×

φp(xα
−1
p )ep(−xα−1

p )

= φ(zd̃)
∑

x∈(rF+/C(φ))×

φ(xα−1) exp
(
2π

√
−1TrF+/Q(xα

−1)
)
,

and the last term is no other than the product of φ(zd̃) and the Gaussian sum

G(φ) defined as (2.13) under the isomorphism(
C(φ)−1/rF+

)× ∼−→
(
rF+/C(φ)

)×
, xα−1 �→ x.

Consequently, we obtain

(2.21)

Wp

(
η| · |jAF

φ
)
=
∏

P∈Σp

WP

(
η| · |jAF

φ
)

= φ(zd̃)G(φ)
∏

p|prF+ ,p|C(φ)
Ap

(
ϑ(η)p-st, φ, j

)
.
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Other coefficients. One calculates

(2.22)

(r×F : r×F+)
(−1)wjd(2π)|rj |ΓΣ(wjt+ rj)√

|DF+ | Im(2δ)rj

= (r×F : r×F+)
(−1)(2j−[κμ])d(−2π

√
−1)|κμ,2−jt|Γ(jt− κμ,1)√

|DF+ |(−2δ)κμ,2−jt

=
Γ(jt− κμ,1)

(−2π
√
−1)jd

·
(−1)[κμ]d(r×F : r×F+)(−2π

√
−1)|κμ,2|(−2δ)jt√

|DF+ |(−2δ)κμ,2
.

Combining (2.16), (2.17), (2.18), (2.21), and (2.22), we obtain the desired

interpolation formula (2.15) of the p-adic measure Lcyc
p,CM(η). �

As in Section 2.2.2, we identify the archimedean part of Cl+F+(p∞rF+) with

{±1}IF+ , and we denote its element defined as
(
(−1)δτ,τ′

)
τ ′∈IF+

by wτ for each τ

in IF+ , where δτ,τ ′ denotes the Kronecker delta. Set e±τ = (1±wτ )/2, and define

an idempotent eε of O[[Cl+F+(p∞rF+)]] by

eε =
∏

τ∈IF+

eεττ

for each ε = (ετ )τ∈IF+ in {±1}IF+ ; then for an arbitrary ray class character

φ : Cl+F+(p∞rF+)→C× of finite order, we have

φ(eε) =

{
1 when ε coincides with sgn(φ),

0 otherwise.

By abuse of notation, we also use the same notation eε for the image of eε under

the composite map

O
[[
Cl+F+(p

∞rF+)
]] rec−−→O

[[
Gal(F+

p∞rF+
/F+)

]]
�O
[[
Gal
(
F+(μp∞)/F+

)]]
.

Then, by comparing the interpolation formulae (2.14) for fη = ϑ(η)p-st and (2.15),

we can conclude that the following equality holds between the two different p-adic

L-functions Lcyc
p,CM(η) and Lcyc

p (fη) in Ôur[[Gal(F+(μp∞)/F+)]]:

Lcyc
p,CM(η) =

∑
ε∈{±1}I

F+

Γ((κmax
μ,1 + 1)t− κμ,1)C

ε
fη,∞

(−Ω̃CM,∞)κμ,2(−ΩCM,∞)−κμ,1

eεLcyc
p

(
fη
)
.

In particular, we obtain the main result of the analytic part.

COROLLARY 2.25 (THEOREM A)

The p-adic measure Lcyc
p,CM(η) is a nonzero constant multiple of the cyclotomic

p-adic L-function Lcyc
p (fη) associated to fη = ϑ(η)p-st in each component of the

semilocal Iwasawa algebra Ôur[[Gal(F+(μp∞)/F+)]], and each of the two p-adic

L-functions generates the same ideal in Ôur[[Gal(F+(μp∞)/F+)]]⊗Zp Qp.
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It is widely believed that Corollary 2.25 holds even in Ôur[[Gal(F+(μp∞)/F+)]]

(or in other words, Lcyc
p,CM(η) and Lcyc

p (fη) have “the same μ-invariants”), and

this speculation leads us to make a conjecture on the ratio of two complex periods

constructed in completely different ways.

CONJECTURE 2.26

The ratio of the complex periods

Γ((κmax
μ,1 + 1)t− κμ,1)C

ε
fη,∞

(−Ω̃CM,∞)κμ,2(−ΩCM,∞)−κμ,1

is a p-adic unit for an arbitrary element ε in {±1}IF+ with respect to the fixed

embedding ιp : Q ↪→Qp.

REMARK 2.27

In the case where F+ is the rational number field Q (elliptic modular cases), the

second-named author and Prasanna [37, Theorem 6.1] have obtained a partial

result for this conjecture using the nonvanishing modulo p of special values of the

L-functions associated to elliptic cusp forms (due to Stevens [51, Theorem 2.1]

and Ash–Stevens [1]) and the modular parameterization of an elliptic curve with

complex multiplication. However, the nonvanishing modulo p of special values of

the L-functions has not been generalized to general Hilbert modular cusp forms

yet, and there seems to be no generalization of the theory of modular parame-

terization to Hilbert–Blumenthal modular varieties. Hence, it seems difficult to

generalize the proof of [37, Theorem 6.1] to general Hilbert modular cases at

present.

3. The algebraic side

We establish algebraic parts of our main results and apply them to the Iwa-

sawa main conjecture for Hilbert modular cusp forms with complex multiplica-

tion in this section. We first introduce the Selmer groups associated to nearly

p-ordinary Hilbert cusp forms with complex multiplication and compare them

with the Iwasawa module obtained as a certain Galois group Gal(MΣp/K̃
CM
∞ )

(Section 3.1). Then we verify the (exact) control theorem (Theorem 3.18) which

describes the behavior of the (multivariable) Selmer groups under specialization

procedures (Section 3.2). We finally discuss the almost divisibility of the strict

Selmer groups and base-change compatibility of the characteristic ideals of their

Pontrjagin duals (Sections 3.3 and 3.4). As an application, we discuss the validity

of the cyclotomic Iwasawa main conjecture for Hilbert modular cusp forms with

complex multiplication (Section 3.5).

3.1. Selmer groups
This section is devoted to the definition of various Selmer groups and the compar-

ison among them. In Section 3.1.2 we first recall the general definition of Selmer

groups SelA associated to deformations of Galois representations after Greenberg
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(Definition 3.1), and then define the Selmer group SelAcyc
f

by applying this gen-

eral recipe to the cyclotomic deformation Acyc
f of the Galois representation Acyc

f

associated to a nearly p-ordinary Hilbert eigencuspform f . When the Hilbert cusp

form f has complex multiplication or, in other words, when f is represented as

(the p-stabilization of) the theta lift ϑ(η) of a größencharacter η of type (A0)

defined on a certain totally imaginary quadratic extension F of F+, we identify

SelAcyc
f

with the Selmer group SelΣAcyc
η

associated to the cyclotomic deformation

of η defined with respect to a fixed CM type Σ of F (see Lemma 3.5). In Sec-

tion 3.1.4, we introduce the (multivariable) Selmer group SelΣACM
η

associated to the

deformation of η along the field extension F̃∞/F and prove in Proposition 3.16

that the characteristic ideal of the Pontrjagin dual of SelΣACM
η

coincides with (a

certain twist of) the characteristic ideal of the ψ-isotypic quotient XΣp,(ψ) of

the Iwasawa module XΣp defined in a classical way. Here ψ denotes a branch

character associated to η (see Lemma 3.7 for details on the branch character ψ).

3.1.1. General settings

We first recall the general notion of Selmer groups for deformations of Galois

representations, which was introduced by Ralph Greenberg [14, Sections 3 and 4].

Let R be a complete, Noetherian semilocal ring of characteristic 0, and sup-

pose that the residue field R/M of R is a finite field of characteristic p for each

maximal ideal M of R. Let K be a number field and T a free R-module of

finite rank on which the absolute Galois group GK of K acts continuously and

R-linearly. We impose the following constraint on the GK-representation T :

• the Galois action on T is unramified outside a finite set S of places of K

which contains all the places lying above p and all the archimedean places.

Then the action of GK on T factors through the Galois group Gal(KS/K) of

the maximal Galois extension KS over K which is unramified outside the places

of S. For each prime ideal p of K lying above p, we specify an R-direct summand

Fil+p T of T which is stable under the action of the decomposition group Dp of

GK at p. In many cases, there exists a canonical (and unique) choice of such

a direct summand Fil+p T for each p. If the Galois representation T is ordinary

(or nearly ordinary) at each place p above p, for example, then there exists a

canonical direct summand Fil+p T of T induced from what is called the ordinary

filtration at each p. In Section 3.3.2 we shall introduce a more general notion

of local conditions concerning the definition of Selmer groups. We denote the

Pontrjagin dual Homcts(R,Qp/Zp) of R by R∨. Now let us consider the discrete

R-module A defined as A= T ⊗R R∨. The absolute Galois group GK acts on A
via the first factor, and we regard A as a discreteR-linear Galois representation of

Gal(KS/K). Note that A is equipped with the specified direct summand Fil+p A at

each place p above p which is induced from the specification of direct summands

of T ; namely, Fil+p A is defined as Fil+p T ⊗R R∨.
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DEFINITION 3.1 (GREENBERG’S SELMER GROUP)

The (Greenberg’s) Selmer group SelA associated to A is defined as the kernel of

the global-to-local morphism

H1(KS/K,A)−→
∏
λ∈S
λ�p∞

H1(Iλ,A)×
∏
p∈S
p|prK

H1(Ip,A/Fil+p A)

induced by the restriction maps of Galois cohomology groups. Here Iv denotes

the inertia subgroup of the absolute Galois group GK at each finite place v of K.

3.1.2. Selmer groups for cyclotomic deformations

Let us recall the following theorem, which is due to many people including Ohta

[38], Carayol [6], Wiles [57], Taylor [53], and Blasius and Rogawski [4]. We quote

[57, Theorems 1, 2] and [21, Theorem I] for nearly ordinary situations as follows.

THEOREM 3.2

Let f be a nearly p-ordinary normalized eigencuspform defined on a totally real

number field F+ satisfying (unrF+), which is of cohomological weight κ, level N,

and nebentypus ε. Let K be a finite extension of Qp containing the Hecke field

Qf of f , and let O be the ring of integers of K.

Then there exists a 2-dimensional Galois representation Vf of GF+ with

coefficients in K satisfying the following properties.

(1) For every prime ideal q which does not divide pN, the following equation

holds:

det(1−FrobqX;Vf ) = 1−C(q;f)X +N qε+(q)X
2.

(2) For each place p of F+ lying above p, we have a unique Dp-stable sub-

space Fil+p Vf of dimension 1 on which Dp acts via the character δp : Dp →O×

satisfying (2.5).

The Galois representation Vf of GF+ is called the Galois representation associ-

ated to f .

We define S+ as a finite set of places of F+ consisting of all the archimedean

places and all the finite places dividing pN. Then the action of GF+ on Vf factors

through the quotient Gal(F+
S+/F

+) of GF+ . Let Λcyc
O denote the Iwasawa alge-

bra O[[Gal(F+(μp∞)/F+)]] over O. Note that Λcyc
O satisfies all the conditions

which we have imposed on the coefficient ring R of a general Galois represen-

tation in Section 3.1.1. For a GF+ -stable O-lattice Tf of Vf (i.e., a GF+ -stable

O-submodule of Vf satisfying Tf ⊗O K= Vf ), set

T cyc
f = Tf ⊗O Λcyc,�

O ,

and let GF+ act on T cyc
f diagonally (refer to Section 1.1 on the superscript �).

The GF+ -module T cyc
f is called the cyclotomic deformation of Tf . For each place
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p of F+ lying above p, we define Fil+p T cyc
f as

Fil+p T cyc
f =Fil+p Tf ⊗O Λcyc,�

O

equipped with the diagonal action of GF+ , where we define Fil+p Tf as the inter-

section of Tf and Fil+p Vf .

DEFINITION 3.3 (SELMER GROUP SelAcyc
f

)

The Selmer group SelAcyc
f

associated to the cyclotomic deformation T cyc
f of f

is the Selmer group defined as in Definition 3.1 for the discrete Λcyc
O -linear

GF+ -representation Acyc
f = T cyc

f ⊗Λcyc
O

Λcyc,∨
O .

Note that SelAcyc
f

does depend on the choice of GF+ -stable O-lattices Tf . When

Vf is residually irreducible, theGF+ -stableO-lattice Tf is uniquely determined up

to isomorphisms, and hence, the Selmer group SelAcyc
f

is also uniquely determined

up to isomorphisms (independently of the choice of Tf ).

3.1.3. Cyclotomic deformations of Hilbert modular cusp forms with complex mul-

tiplication

From now on let us assume that f is a nearly p-ordinary p-stabilized newform

with complex multiplication. Then by definition there exist a totally imaginary

quadratic extension F of F+ satisfying the ordinarity condition (ordF/F+), a

p-ordinary CM type Σ and a Σ-admissible and Σ-ordinary größencharacter η

of type (A0) on F such that f is represented as the p-stabilization ϑ(η)p-st

of the theta lift ϑ(η) of η (see Proposition 2.13). Since Hecke eigenvalues of

ϑ(η)p-st coincide with those of ϑ(η) away from prime ideals lying above p, the

Galois representation associated to ϑ(η)p-st is isomorphic to the Galois repre-

sentation Vϑ(η) associated to ϑ(η) by virtue of Čebotarev’s density theorem. We

shall recall in Appendix A that the Galois representation Vϑ(η) associated to ϑ(η)

is isomorphic to the induced representation IndF
+

F K(ηgal) of the 1-dimensional

GF -representation K(ηgal), and hence, there is a canonical GF+ -stable O-lattice

of Vϑ(η), namely, IndF
+

F O(ηgal). We thus adopt IndF
+

F O(ηgal) as the lattice Tϑ(η)

used in the construction of the Selmer group. The ordinary filtration Fil+p Tϑ(η)

at p above p is then identified with O(ηgal|DP
), where P is a unique element of

Σp which lies above p.

We here introduce another Selmer group SelΣAcyc
η

which we associate to a

größencharacter η of the CM number field F . The restriction of the action

of Gal(F (μp∞)/F ) on F (μp∞) to F+(μp∞) induces an isomorphism between

Gal(F (μp∞)/F ) and Gal(F+(μp∞)/F+), which enables us to identify the Iwa-

sawa algebra O[[Gal(F (μp∞)/F )]] of Gal(F (μp∞)/F ) with Λcyc
O in a canonical

manner. Now consider the cyclotomic deformation of ηgal

T cyc
η =O(ηgal)⊗O Λcyc,�

O

equipped with the DP -stable filtration Fil+PT cyc
η for each prime ideal P of F lying
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above p defined by

Fil+PT cyc
η =

{
T cyc
η if P is contained in Σp,

0 otherwise.
(3.1)

As usual we let GF act diagonally on T cyc
η . Let S denote the set of places of

F lying above those of F+ in S+. Then one readily observes that the diagonal

action of GF on T cyc
η factors through the quotient Gal(FS/F ) of GF .

DEFINITION 3.4 (SELMER GROUP SelΣAcyc
η

)

The Selmer group SelΣAcyc
η

associated to the cyclotomic deformation Acyc
η of ηgal

(with respect to the p-ordinary CM type Σ) is the Selmer group in the sense

of Definition 3.1 constructed for the discrete GF -representation Acyc
η defined as

T cyc
η ⊗Λcyc

O
Λcyc,∨
O .

Then one easily sees that the Selmer groups defined in Definitions 3.3 and 3.4

coincide for fη = ϑ(η)p-st.

LEMMA 3.5

For the cusp form fη = ϑ(η)p-st, the Selmer group SelAcyc
fη

is isomorphic to the

Selmer group SelΣAcyc
η

as a Λcyc
O -module.

Proof

This is a direct consequence of Shapiro’s lemma. Indeed, we may identify Acyc
fη

with the induced representation IndF
+

F Acyc
η of Acyc

η by construction (under the

canonical identification O[[Gal(F (μp∞)/F )]]
∼−→ Λcyc

O ), and we therefore obtain

the following isomorphisms by virtue of (generalized) Shapiro’s lemma (see [45,

Proposition B.2] for details):

H1(F+
S+/F

+,Acyc
fη

)∼=H1(FS/F,Acyc
η ),

H1(Il,Acyc
fη

)∼=
∏
L|l

H1(IL,Acyc
η )[FL : Fl]

for every l in S+ which does not divide p∞,

where FL and Fl denote the residue fields rF /L and rF+/l, respectively. Moreover,

at each place p of F+ lying above p, we obtain the equality

H1(Ip,Acyc
fη

/Fil+Acyc
fη

) =H1
(
Ip,O(ηgal|DPc )⊗O Λcyc,�

O ⊗ΛO Λcyc,∨
O
)

=H1(IPc ,Acyc
η ),

where prF = PP
c with P in Σp and Pc in Σc

p. Hence, SelAcyc
ϑ(η)

is canonically

identified with the kernel of the global-to-local map

H1(FS/F,Acyc
η )→

∏
w∈S\Σp

H1(Iw,Acyc
η ),

which is none other than the Selmer group SelΣAcyc
η

by Definition 3.4. �
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3.1.4. Selmer groups associated to CM fields and Iwasawa modules of classical

type

Recall that we have introduced the field F̃∞ = F̃ (μp) in the basic notations given

before Theorem A of Section 1. Let us first define the multivariable Selmer group

SelΣACM
η

over ΛCM
O :=O[[Gal(F̃∞/F )]] similarly to the Selmer group SelΣAcyc

η
over

Λcyc
O . Set T CM

η =O(ηgal)⊗O ΛCM,�
O and equip it with the diagonal GF -action.

DEFINITION 3.6 (SELMER GROUP SelΣACM
η

)

The Selmer group SelΣACM
η

associated to the deformation ACM
η of ηgal along the

extension F̃∞/F (with respect to the p-ordinary CM type Σ) is the Selmer group

defined as in Definition 3.1 for the discrete GF -representation ACM
η defined as

T CM
η ⊗ΛCM

O
ΛCM,∨
O .

In the rest of this section we relate the Selmer group SelΣACM
η

with a certain

Iwasawa module XΣp,(ψ) defined in a classical manner by means of the notion of

a branch character associated to η.

LEMMA 3.7

Let η be a größencharacter of type (A0) on F . Then there exists a p-adic Galois

character ψ : GF → Q
×
p of finite order such that ηgalψ−1 : GF → Q

×
p factors

through the quotient Gal(F̃∞/F ) of GF . Furthermore, we may choose such a

character ψ so that the composite field of F (μp) and Kψ is abelian over F and

linearly disjoint from F̃ over F , where Kψ denotes the field corresponding to the

kernel of ψ.

Proof

Let us construct a character ψ satisfying the desired properties. First note that

the continuous character ηgal factors through the Galois group Gal(FC(η)p∞/F )

of the ray class field FC(η)p∞ modulo C(η)p∞ over F , where C(η) denotes the

conductor of η. Let Δ′ denote the maximal torsion subgroup of Gal(FC(η)p∞/F ),

which is known to be finite. Then the subfield of FC(η)p∞ corresponding to Δ′

coincides with F̃ by definition, and we obtain the exact sequence of abelian

groups

0→Δ′ →Gal(FC(η)p∞/F )→Gal(F̃ /F )→ 0.(3.2)

This short exact sequence splits, since the Galois group Gal(F̃ /F ) is a free

Zp-module of rank d + 1 + δF,p by definition. Now we take an arbitrary sec-

tion s : Gal(F̃ /F ) → Gal(FC(η)p∞/F ) and denote by K ′ the intermediate field

of FC(η)p∞/F corresponding to s(Gal(F̃ /F )). By construction Gal(K ′/F ) is iso-

morphic to Δ′. We then define ψ as the composition

ψ : GF �Gal(K ′/F )∼=Δ′ ηgal|Δ′−−−−→Q
×
p .
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By construction, it is obvious that ηgalψ−1 : GF →Q
×
p factors through the Galois

group Gal(F̃∞/F ) and that Kψ is contained in K ′.

Since the short exact sequence (3.2) splits, the fields K ′ and F̃ are lin-

early disjoint over F . Furthermore, since [F (μp) : F ] is prime to p, the Galois

group Gal(F (μp)/F ) should be a quotient of the torsion part Gal(K ′/F ) of

Gal(FC(η)p∞/F ), and therefore, the field K ′ contains F (μp). The composite field

of F (μp) and Kψ , which is a subfield of K ′, is thus abelian over F and linearly

disjoint from F̃ over F . �

DEFINITION 3.8 (BRANCH CHARACTER)

Let η be a größencharacter of type (A0) on F . We call a character ψ : GF →Q
×
p

of finite order satisfying the assertions proposed in Lemma 3.7 a branch character

associated to η.

We denote by K the composite field of F (μp) and Kψ , and we denote by K̃CM
∞

the composite field of K and F̃∞ as in Section 1. We set Δ = Gal(K/F ) and

Γ̃ = Gal(F̃ /F ). The cardinality of Δ is then the product of the order of ψ and

the extension degree [K : Kψ] of K over Kψ . Note that [K : Kψ] is relatively

prime to p since it divides p− 1.

Now let us consider the following commutative diagram with exact rows and

columns:

(3.3)

H1
(
Δ, (ACM

η )GK
)

inf

∏
w∈S\Σp

H1
(
IK/F,w, (ACM

η )IK,w̃0

)
Inf

0 SelΣACM
η

H1(FS/F,ACM
η )

res

∏
w∈S\Σp

H1(IF,w,ACM
η )

Res

0 Ker(φFS/K) H1(FS/K,ACM
η )Δ

φFS/K ∏
w∈S\Σp

∏̃
w|w

H1(IK,w̃,ACM
η )

H2
(
Δ, (ACM

η )GK
)

where φFS/K denotes the global-to-local map induced from the restriction mor-

phisms. The rows are exact by definition. The middle column of the diagram

(3.3) is induced from the inflation-restriction exact sequences associated to the

short exact sequence

1 Gal(FS/K) Gal(FS/F ) Δ 1

of abelian groups.

The map Res in the right-hand column is induced from restriction maps,

and the exactness of the right-hand column is also deduced from the inflation-

restriction exact sequence. More precisely, we define the map Res = (Res)w∈S\Σp

in the following manner. First we choose and fix a decomposition group DF,w of

Gal(FS/F ) for each place w in S \Σp. We always consider the inertia subgroup

IF,w of Gal(FS/F ) to be contained in the fixed decomposition group DF,w at

such a place w. There exists a unique place w̃0 of K lying above w which is fixed
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under the action of DF,w. We identify the intersection of DF,w and Gal(FS/K)

(resp., the intersection of IF,w and Gal(FS/K)) with the decomposition group

DK,w̃0 (resp., the inertia subgroup IK,w̃0) of Gal(FS/K) at w̃0. We identify the

quotient group IF,w/IK,w̃0 with the inertia subgroup IK/F,w of Δ = Gal(K/F )

at w. Note that the inertia subgroup of Δ at w is well defined since Δ is abelian.

For each place w̃ of K lying above w, we also fix the decomposition group DK,w̃ of

Gal(FS/K) (and denote its inertia subgroup by IK,w̃), and choose an element σw̃

of Gal(FS/F ) so that σw̃IF,wσ
−1
w̃ contains IK,w̃. Then the map Resw is defined

as the composition

Resw : H1(IF,w,ACM
η )→

∏
w̃|w

H1(IF,w,ACM
η )

∼−→
∏
w̃|w

H1(σw̃IF,wσ
−1
w̃ ,ACM

η )→
∏
w̃|w

H1(IK,w̃,ACM
η ),

where the first map is the diagonal map, the second one is an isomorphism

induced by the conjugation with respect to (σw̃)w̃|w, and the last map is the

usual (componentwise) restriction map. It is easy to observe that the kernel of

Resw coincides with that of the restriction H1(IF,w,ACM
η ) → H1(IK,w̃0 ,ACM

η ),

and hence, the right-hand column of diagram (3.3) is also exact.

Under these settings we shall compare the Selmer group SelΣACM
η

with

Ker(φFS/K).

REMARK 3.9

Since all the cohomology groups H1(Δ, (ACM
η )GK ), H2(Δ, (ACM

η )GK ), and

H1(IK/F,w, (ACM
η )IK,w̃0 ) are p-torsion modules annihilated by the cardinality of

Δ, all of them vanish when the order of ψ is relatively prime to p; recall that

[K :Kψ] is not divisible by p. In this case, one may immediately conclude that

SelΣACM
η

is isomorphic to Ker(φFS/K) by applying the snake lemma to (3.3).

LEMMA 3.10

The GK -invariant (ACM
η )GK of ACM

η is a co-pseudonull ΛCM
O -module; that is,

its Pontrjagin dual is a pseudonull ΛCM
O -module. In particular, the cohomology

group Hi(Δ, (ACM
η )GK ) is co-pseudonull as a ΛCM

O -module for i= 1,2.

Proof

Since GK is a subgroup of GF of finite index, its image G under the nat-

ural surjection GF � Gal(F̃∞/F ) is also a subgroup of Gal(F̃∞/F ) of finite

index. Moreover, since the free part Gal(F̃ /F ) of Gal(F̃∞/F ) is isomorphic

to Z
d+1+δF,p
p , we may choose a basis {γ1, . . . , γd+1+δF,p

} of Gal(F̃ /F ) so that

{γpe1

1 , . . . , γp
ed+1+δF,p

d+1+δF,p
} forms a basis of the free part of G for certain nonnega-

tive integers e1, . . . , ed+1+δF,p
(due to elementary divisor theory). The Pontrjagin

dual of (ACM
η )GK is then isomorphic to a certain quotient of ΛCM

O /J , where J

is the ideal of ΛCM
O generated by ηgal(γpej

j )γpej

j |F̃∞
− 1 for 1≤ j ≤ d+ 1 + δF,p.
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Let � denote a uniformizer of O. Then the ΛCM
O -module ΛCM

O /(�ΛCM
O + J) is

clearly finite, which implies that the height of J is greater than or equal to

d+ 1+ δF,p because the Krull dimension of ΛCM
O is d+ 2+ δF,p. The Pontrjagin

dual of (ACM
η )GK is obviously annihilated by J , and it is thus pseudonull as a

ΛCM
O -module since d is a positive integer. �

LEMMA 3.11

The local cohomology group H1(IK/F,w, (ACM
η )IK,w̃0 ) is co-pseudonull as a module

over ΛCM
O for each place w of F in S \Σp.

Proof

First we assume that w is a place of F contained in Σc
p. We shall prove that

(ACM
η )IK,w̃0 is co-pseudonull as a ΛCM

O -module, which immediately implies the

desired conclusion on the local cohomology group at w. Since K is a finite exten-

sion of F and w is totally ramified in the cyclotomic extension F (μp∞)/F , the

image of IK,w̃0 in Gal(F (μp∞)/F ) is infinite. We take an element x of IK,w̃0

whose image in Gal(F (μp∞)/F ) is of infinite order. Let F
(w)
∞ /F be the compos-

ite of all Zp-extensions over F unramified outside w, and take an element y of

IK,w̃0 whose image in Gal(F
(w)
∞ /F ) is of infinite order. Comparing the ramifica-

tion at an arbitrary place above p distinct from w, one readily sees that F (μp∞)

and F
(w)
∞ are linearly disjoint over F . The Pontrjagin dual of (ACM

η )IK,w̃0 is then

isomorphic to a certain quotient of ΛCM
O /Jw, where Jw is an ideal of ΛCM

O gener-

ated by ηgal(x)x|F̃∞
−1 and ηgal(y)y|F̃∞

−1. Furthermore, the linear disjointness

of F (μp∞) and F
(w)
∞ over F implies that ηgal(x)x|F̃∞

−1 and ηgal(y)y|F̃∞
−1 form

a regular sequence in ΛCM
O . The height of Jw, which is contained in the anni-

hilator ideal of the Pontrjagin dual of (ACM
η )IK,w̃0 , thus equals two, and hence,

(ACM
η )IK,w̃0 is co-pseudonull as a ΛCM

O -module.

Next assume that w is a place of F contained in S but not lying above

p, and let � denote the residue characteristic at w. The inertia subgroup IK,w̃0

acts on ACM
η trivially, because F̃∞/F is unramified at w. The definition of the

branch character ψ implies that ηgalψ−1 is ramified only at places lying above p.

Hence, K is unramified outside p over the field Kψ corresponding to the kernel

of ψ, and the inertia subgroup IK/F,w of Gal(K/F ) at w is naturally regarded as

that of Gal(Kψ/F ). Under this identification the inertia subgroup IK/F,w acts

on ACM
η via the composition IK/F,w ↪→Gal(Kψ/F )

ψ−→O×. We shall prove that

H1(IK/F,w,ACM
η ) is trivial. When w is unramified in the finite abelian extension

K/F , the inertia subgroup IK/F,w is trivial and there is nothing to prove in

this case. Hence, we assume that w is ramified in K/F . The restriction of ψ to

IK/F,w is then not trivial, since ψ : Gal(Kψ/F )→Q
×

is injective by definition.

Let IwK/F,w be the �-Sylow subgroup (the wild part) of IK/F,w, and let ItK/F,w

be the tame quotient IK/F,w/I
w
K/F,w of IK/F,w. Note that the cohomology group

H1(IwK/F,w,ACM
η ) is trivial, because it is annihilated by the cardinality of IwK/F,w,
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which is relatively prime to p. By the inflation-restriction exact sequence

0→H1
(
ItK/F,w, (ACM

η )I
w
K/F,w

)
→H1(IK/F,w,ACM

η )→H1(IwK/F,w,ACM
η )I

t
K/F,w

combined with the triviality of the cohomology group H1(IwK/F,w,ACM
η ), we can

identify H1(IK/F,w,ACM
η ) with H1(ItK/F,w, (ACM

η )I
w
K/F,w). Therefore, it suffices

to verify that H1(ItK/F,w, (ACM
η )I

w
K/F,w) is trivial in order to prove the vanishing

of H1(IK/F ,ACM
η ). If the action of IwK/F,w on ACM

η is not trivial, then there

exists an element z of IwK/F,w such that ψgal(z)− 1 does not equal zero. Since

ψgal(z) is a nontrivial �-power root of unity in O, we easily see that ψgal(z)−1 is a

nontrivial unit ofO. By definition ψgal(z)−1 annihilates (ACM
η )I

w
K/F,w , and hence,

it is trivial. This obviously implies the triviality of H1(ItK/F,w, (ACM
η )I

w
K/F,w). If

IwK/F,w acts trivially on ACM
η , then the nontriviality of the action of IK/F,w on

ACM
η implies that the tame quotient ItK/F,w acts nontrivially on ACM

η . In other

words, if we denote a generator of the cyclic group ItK/F,w by z′, then ψgal(z′)−1

is a nonzero element of ΛCM
O . The first cohomology group H1(ItK/F,w,ACM

η ) of

the finite cyclic group ItK/F,w is described as ACM
η /(ψgal(z′) − 1)ACM

η , and we

thus deduce its triviality from the divisibility of ACM
η as a ΛCM

O -module. �

Diagram (3.3) combined with Lemmata 3.10 and 3.11 implies that both the kernel

and the cokernel of the natural map SelΣACM
η

→ Ker(φFS/K) are co-pseudonull

ΛCM
O -modules. In particular, the characteristic ideals of Pontrjagin duals of these

ΛCM
O -modules coincide with each other. Now we investigate the kernel of φFS/K

more precisely, by generalizing Greenberg’s arguments made around [14, (7)] to

multivariable cases. For this purpose we prepare the following technical lemma.

LEMMA 3.12

Let G be a profinite group, and let ρ : G →O× be a continuous character, where

O denotes the ring of integers of a finite extension of Qp. Suppose that G admits

a free abelian pro-p quotient Γ of finite Zp-rank, and that ρ factors through the

quotient Γ of G. We denote by Tρ a continuous G-representation O(ρ)⊗O O[[Γ]]�

equipped with the diagonal action of G, and we denote by Aρ its associated discrete

G-representation defined by Tρ ⊗O[[Γ]] O[[Γ]]∨. Then for an arbitrary free pro-p

subgroup Γ′ of Γ, the first cohomology group H1(Γ′,Aρ) is trivial.

Note that, in the statement of Lemma 3.12, the free abelian quotient Γ naturally

acts on Aρ thanks to the assumption on ρ.

Proof

We verify the claim by induction on the Zp-rank n of Γ′. First consider the case

where n equals 1. If we choose an element γ̃ of G so that its image γ in Γ topo-

logically generates Γ′, then the first cohomology group H1(Γ′,Aρ) is described as

the quotient Aρ/(ρ(γ̃)γ−1)Aρ. Therefore, the claim holds since Aρ is a divisible

O[[Γ]]-module and ρ(γ̃)γ − 1 is a nonzero element of O[[Γ]].
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For general n, let us choose an arbitrary free pro-p subgroup Γ′′ of Γ′ of

Zp-rank n− 1, and consider the inflation-restriction exact sequence

0 H1(Γ′/Γ′′,AΓ′′

ρ ) H1(Γ′,Aρ) H1(Γ′′,Aρ)
Γ′/Γ′′

.(3.4)

The induction hypothesis implies the triviality of H1(Γ′′,Aρ). We readily see

that the cohomology group H1(Γ′/Γ′′,AΓ′′
ρ ) is also trivial; indeed, since the

Γ′′-coinvariant (Tρ)Γ′′ of Tρ is isomorphic to O[[Γ/Γ′′]] as an O[[Γ/Γ′′]]-module,

its Pontrjagin dual AΓ′′
ρ is a divisible O[[Γ/Γ′′]]-module. Thus, H1(Γ′/Γ′′,AΓ′′

ρ )

vanishes for the same reason as in the case where n equals 1. Consequently,

the exact sequence (3.4) implies that the cohomology group H1(Γ′,Aρ) is also

trivial. �

Applying Lemma 3.12 for G = Gal(FS/K) and Γ = Gal(K̃CM
∞ /K) to both the

source and the target of the local-to-global morphism φFS/K , we obtain the

following corollaries.

COROLLARY 3.13

The restriction map induces an isomorphism between H1(FS/K,ACM
η ) and

H1(FS/K̃
CM
∞ ,ACM

η )Γ̃. Here we identify Γ̃ = Gal(F̃ /F ) with the Galois group

Gal(K̃CM
∞ /K) in the canonical manner.

Proof

Due to the inflation-restriction exact sequence

0→H1(Γ̃,ACM
η )→H1(FS/K,ACM

η )→H1(FS/K̃
CM
∞ ,ACM

η )Γ̃ →H2(Γ̃,ACM
η ),

it suffices to show that Hi(Γ̃,ACM
η ) is trivial for i = 1,2. Note that the Galois

group Gal(FS/K̃
CM
∞ ) acts trivially on ACM

η , and hence the first cohomology van-

ishes by a direct consequence of Lemma 3.12. The second cohomology vanishes

since Γ̃ is a free abelian pro-p group, and thus, its cohomological dimension is

equal to or less than 1. This completes the proof. �

COROLLARY 3.14

Let w be a place of F contained in S \ Σp. Then for each place w̃ of K lying

above w, the restriction morphism

H1(IK,w̃,ACM
η )→

∏
ŵ|w̃

H1(I
K̃CM

∞ ,ŵ
,ACM

η )(3.5)

is injective. Here I
K̃CM

∞ ,ŵ
denotes the inertia subgroup of Gal(FS/K̃

CM
∞ ) at ŵ.

Proof

By the inflation-restriction exact sequence, we see that the kernel of the restric-

tion map (3.5) is isomorphic to H1(I(K̃CM
∞ /K)w,ACM

η ), where we denote by

I(K̃CM
∞ /K)w the inertia subgroup of Gal(K̃CM

∞ /K) at w. Since I(K̃CM
∞ /K)w is
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a Zp-submodule of the free Zp-module Γ̃ ∼= Gal(K̃CM
∞ /K) of finite rank, it is

also free as a Zp-module. Applying Lemma 3.12 to H1(I(K̃CM
∞ /K)w̃,ACM

η ), we

conclude that it is trivial. �

Corollaries 3.13 and 3.14 imply that the kernel of φFS/K is isomorphic to that of

H1(FS/K̃
CM
∞ ,ACM

η )Δ×Γ̃ →
∏

w∈S\Σp

∏
ŵ|w

H1(I
K̃CM

∞ ,ŵ
,ACM

η )

or, in other words, the kernel of the restriction map

φ
FS/K̃CM

∞
: HomΔ×Γ̃

(
Gal(FS/K̃

CM
∞ )ab,ACM

η

)
→
∏

w∈S\Σp

∏
ŵ|w

Hom(Iab
K̃CM

∞ ,ŵ
,ACM

η ).

Let MΣp denote the maximal abelian pro-p extension of K̃CM
∞ unramified outside

the places lying above Σp, and let XΣp denote the Galois group of MΣp/K̃
CM
∞ .

As in classical Iwasawa theory, an element g of Gal(K̃CM
∞ /F ) acts on XΣp by

x �→ g̃xg̃−1, where g̃ denotes an arbitrary lift of g to Gal(MΣp/F ). We define the

maximal ψ-isotypic quotient XΣp,(ψ) of XΣp as

XΣp,(ψ) = (XΣp ⊗Zp O)⊗O[[Gal(K̃CM
∞ /F )]]

ΛCM
O .

Here the second tensor product is defined with respect to the ψ-twisting map

O[[Gal(K̃CM
∞ /F )]]→ΛCM

O , g �→ ψ(g)g|F̃∞
for g in Gal(K̃CM

∞ /F ).

Since an element δ of Δ acts on ACM
η via the multiplication by ψ(δ)δ|F (μp), the

kernel of φ
FS/K̃CM

∞
is calculated as

Ker(φ
FS/K̃CM

∞
) = Homcts(XΣp ,ACM

η )Δ×Γ̃

=HomO[Δ](XΣp ⊗Zp O,ACM
η )Γ̃

=HomO[Gal(F (μp)/F )](XΣp,(ψ),ACM
η )Γ̃.

In order to investigate the structure of HomO[Gal(F (μp)/F )](XΣp,(ψ),ACM
η )Γ̃, we

introduce the notion of a twisting of a finitely generated ΛCM
O -module. Recall

that we have defined the ρ-twisting map

Twρ : Λ
CM
O

∼−→ ΛCM
O , g �→ ρ(g)g for every g in Gal(F̃∞/F )

for an arbitrary continuous character ρ : Gal(F̃∞/F )→O× in Section 1. For an

arbitrary ΛCM
O -module M , we define the ρ-twist Twρ(M) of M as the O-module

M on which an element r of ΛCM
O acts as the scalar multiplication by Twρ(r).

The following lemma describes basic properties of twistings of ΛCM
O -modules.

LEMMA 3.15

Let ρ : Gal(F̃∞/F )→O× be a continuous character and M a ΛCM
O -module.

(1) The Pontrjagin dual (Twρ(M))∨ of Twρ(M) is isomorphic to Twρ(M
∨),

the ρ-twist of the Pontrjagin dual M∨ of M , as a ΛCM
O -module.
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(2) For an arbitrary ΛCM
O -module N , we obtain an equality of ΛCM

O -modules

HomΛCM
O

(
Twρ(M),N

)
=HomΛCM

O

(
M,Twρ−1(N)

)
.

(3) Assume that M is finitely generated and torsion as a ΛCM
O -module. Then

Twρ(M) is pseudonull if and only if M itself is pseudonull. Furthermore, we

obtain the following equality of ideals of ΛCM
O :

CharΛCM
O

(
Twρ(M)

)
=Twρ−1

(
CharΛCM

O
(M)
)
.

In the statement of Lemma 3.15(3), the characteristic ideals of finitely generated

torsion modules over the semilocal Iwasawa algebra ΛCM
O are defined component

wise. We shall recall the precise definition of them in Definition 3.22. Note that

the Pontrjagin dual M∨ =Homcts(M,Qp/Zp) of a ΛCM
O -module M is equipped

with the ΛCM
O -module structure defined by rφ(x) := φ(rx), which is unfortunately

incompatible with the usual action of Gal(F̃∞/F ) on Homcts(M,Qp/Zp) defined

by gφ(x) := φ(g−1x).

Proof

Assertions (1) and (2) directly follow from the definition of ρ-twisting. For asser-

tion (3), assume that M is a pseudonull module. By definition there exist dis-

tinct nonzero elements r1 and r2 in the annihilator ideal of M which are rela-

tively prime to each other. One then readily observes that both Twρ−1(r1) and

Twρ−1(r2) annihilate Twρ(M) and are relatively prime to each other, which

implies that Twρ(M) is also pseudonull. Similarly one readily verifies the con-

verse implication.

Now let us consider the statement on characteristic ideals in assertion (3).

We first reduce the claim to the case where M is an elementary ΛCM
O -module

of the form ΛCM
O /(a), by considering the situation componentwise and using the

structure theorem of finitely generated torsion O[[Gal(F̃ /F )]]-modules. Then the

reduced claim obviously holds, since there exists an isomorphism

ΛCM
O /
(
Twρ−1(a)

) ∼−→Twρ

(
ΛCM
O /(a)

)
,

r mod
(
Twρ−1(a)

)
�→Twρ(r) mod (a)

of ΛCM
O -modules. �

By using the Gal(K̃CM
∞ /F )-module structure of ACM

η , we can regard ACM
η as the

free ΛCM
O -module of rank one defined as Twηgalψ−1(O[[Gal(K̃CM

∞ /F )]]∨(ψ)), where

O[[Gal(K̃CM
∞ /F )]](ψ) is the maximal ψ-isotypic quotient of O[[Gal(K̃CM

∞ /F )]]

defined in the same manner as XΣp,(ψ) and O[[Gal(K̃CM
∞ /F )]]∨(ψ) is its Pontrja-

gin dual. We may thus calculate, by using Lemma 3.15 (1) and (2), the kernel
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of φ
FS/K̃CM

∞
as

Ker(φ
FS/K̃CM

∞
) = HomO[Gal(F (μp)/F )](XΣp,(ψ),ACM

η )Γ̃

(1)
= HomΛCM

O

(
XΣp,(ψ),Twηgalψ−1(O[[Gal(K̃CM

∞ /F )]](ψ))
∨)

=HomΛCM
O

(
Twηgalψ−1(O[[Gal(K̃CM

∞ /F )]](ψ)),X
∨
Σp,(ψ)

)
(2)
= HomΛCM

O

(
O[[Gal(K̃CM

∞ /F )]](ψ),Twηgal,−1ψ(X
∨
Σp,(ψ))

)
=Twηgal,−1ψ(XΣp,(ψ))

∨.

The last equality follows from Lemma 3.15 (1) and the fact that the ΛCM
O -module

O[[Gal(K̃CM
∞ /F )]](ψ) is free of rank one. As a consequence of this calculation and

Lemma 3.15 (3), we obtain the following proposition.

PROPOSITION 3.16

The Pontrjagin dual of the Selmer group SelΣACM
η

is pseudoisomorphic to

Twηgal,−1ψ(XΣp,(ψ)) as a ΛCM
O -module. In particular, we obtain the following

equality among characteristic ideals:

CharΛCM
O

SelΣ,∨
ACM

η
=CharΛCM

O

(
Twηgal,−1ψ(XΣp,(ψ))

)
=Twηgalψ−1(CharΛCM

O
XΣp,(ψ)).

REMARK 3.17

We can define ΛCM
O -modules T CM

ψ and ACM
ψ similarly to T CM

η and ACM
η , namely,

we set T CM
ψ =O(ψ)⊗O ΛCM,�

O and ACM
ψ = T CM

ψ ⊗ΛCM
O

ΛCM,∨
O . Then we readily

verify that the Pontrjagin dual of the Selmer group SelΣACM
ψ

associated to ACM
ψ

and the maximal ψ-isotypic quotient XΣp,(ψ) of XΣp ⊗Zp O are pseudoisomorphic

as ΛCM
O -modules by the same argument as above (and they are isomorphic when

the cardinality of Δ is relatively prime to p). In other words, SelΣACM
η

is co-

pseudoisomorphic to Twηgal,−1ψ(Sel
Σ
ACM

ψ
) as a ΛCM

O -module.

We have defined the finitely generated ΛCM
O -module XΣp ⊗Zp O in a similar way

to the manner in which one defines the (classical) Iwasawa module X{p} for an

algebraic number field K: namely X{p} is the Galois group Gal(M{p}/K(μp∞)) of

the maximal abelian pro-p extension M{p} of K(μp∞) which is unramified out-

side places lying above p. Proposition 3.16 describes the relation between Selmer

groups (of Greenberg type) and Iwasawa modules constructed in a classical way.

The algebraic structure of the Iwasawa moduleXΣp,(ψ) has been thoroughly stud-

ied by Perrin-Riou [40] (for imaginary quadratic fields) and Hida and Tilouine

[24] (for general CM fields).
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3.2. Exact control theorem
We prove in this section the exact control theorem (Theorem B) for the Selmer

group SelΣACM
η

associated to a größencharacter η of type (A0) defined on a CM field

F (see Definition 3.6). Recall that the Iwasawa algebra ΛCM
O =O[[Gal(F̃∞/F )]]

is a semilocal ring, each of whose components is isomorphic to the ring of formal

power series over O in d + 1 + δF,p variables. Therefore, there exists a regular

sequence {x1, . . . , xd+δF,p
} in ΛCM

O such that each xj belongs to the kernel Acyc

of the augmentation map ΛCM
O � Λcyc

O = O[[Gal(F (μp∞)/F )]]. Such a regular

sequence {x1, . . . , xd+δF,p
} is contained in the Jacobson radical of ΛCM

O , and thus,

its arbitrary permutation is also regular. For each j with 0≤ j ≤ d+ δF,p, let Aj

denote the ideal of ΛCM
O generated by x1, . . . , xj :

(3.6) Aj = (x1, . . . , xj).

As the convention we use the symbol A0 for the zero ideal of ΛCM
O . Let ACM

η [Aj ]

denote the ΛCM
O -submodule of ACM

η consisting of all the elements annihilated

by Aj .

We here introduce the following nontriviality condition (ntr)P on ACM
η for

each place P of F lying above p:

(ntr)P for each maximal idealM of the semilocal Iwasawa algebra ΛCM
O , the max-

imal M-torsion submodule ACM
η [M] of ACM

η is not trivial as a DP-module.

THEOREM 3.18 (EXACT CONTROL THEOREM, THEOREM B)

Assume that the nontriviality condition (ntr)P is fulfilled for every place P con-

tained in Σc
p. Let {x1, . . . , xd+δF,p

} be an arbitrary regular sequence in ΛCM
O , all of

whose elements belong to Acyc, and let us define Aj as the ideal of ΛCM
O generated

by x1, x2, . . . , xj . Then the natural map

SelΣACM
η [Aj ]

−→ SelΣACM
η

[Aj ]

induced by the natural inclusion ACM
η [Aj ] ↪→ACM

η is an isomorphism for each j

with 0≤ j ≤ d+ δF,p.

For the proof of Theorem 3.18, we first replace our Selmer group SelΣACM
η

by

the strict Selmer group SelΣ,str
ACM

η
defined below. We then control the strict Selmer

group under specialization with respect to the regular sequence {x1, . . . , xj}.

DEFINITION 3.19

For each j with 0≤ j ≤ d+ δF,p, we define the strict Selmer group SelΣ,str
ACM

η [Aj ]
as

the kernel of the global-to-local map

H1
(
FS/F,ACM

η [Aj ]
)
−→
∏
λ∈S
λ�p∞

H1
(
Iλ,ACM

η [Aj ]
)
×
∏

P∈Σc
p

H1
(
FP,ACM

η [Aj ]
)
.
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Since, for the strict Selmer group SelΣ,str
ACM

η [Aj ]
, only the local conditions at places

contained in Σc
p are modified compared to the definition of the usual Selmer

group SelΣACM
η [Aj ]

in Definition 3.6, we have the following comparison result.

LEMMA 3.20

Let the notation be as in Theorem 3.18, and assume that the condition (ntr)P
is fulfilled for each place P contained in Σc

p. Then for every 0≤ j ≤ d+ δF,p the

natural injection SelΣ,str
ACM

η [Aj ]
↪→ SelΣACM

η [Aj ]
induces an isomorphism.

Proof

We consider the following commutative diagram:

(3.7)

0 SelΣ,str
ACM

η [Aj ]
H1
(
FS/F,ACM

η [Aj ]
)

Rstr

(
F,ACM

η [Aj ]
)

αj

0 SelΣACM
η [Aj ]

H1
(
FS/F,ACM

η [Aj ]
)

R
(
F,ACM

η [Aj ]
)
,

where we use the following abbreviations on the direct products of local coho-

mology groups:

Rstr

(
F,ACM

η [Aj ]
)
=
∏
λ∈S
λ�p∞

H1
(
Iλ,ACM

η [Aj ]
)
×
∏

P∈Σc
p

H1
(
FP,ACM

η [Aj ]
)
,

R
(
F,ACM

η [Aj ]
)
=
∏
λ∈S
λ�p∞

H1
(
Iλ,ACM

η [Aj ]
)
×
∏

P∈Σc
p

H1
(
IP,ACM

η [Aj ]
)
.

The rightmost vertical map αj of diagram (3.7) is defined as the usual restriction

maps on the Σc
p-components and as the identity maps on the other components.

The snake lemma implies that the natural map SelΣ,str
ACM

η [Aj ]
→ SelΣACM

η [Aj ]
is an

injection whose cokernel is isomorphic to a certain submodule of Ker(αj). On

the other hand, Ker(αj) is isomorphic to
∏

P∈Σc
p
H1(DP/IP,ACM

η [Aj ]
IP) due to

the inflation-restriction sequence.

We now verify that each component H1(DP/IP,ACM
η [Aj ]

IP) of the direct

product above is trivial. Since the the Pontrjagin dual (ACM
η )∨ of ACM

η is isomor-

phic to ΛCM
O as a ΛCM

O -module, we have (ACM
η [Aj ]

IP)∨ ∼=ΛCM
O /JP with the anni-

hilator ideal JP of (ACM
η [Aj ]

IP)∨. We denote by fP the value of the (geometric)

Frobenius element at P acting on ACM
η [Aj ]

IP . Then the unramified cohomology

group H1(DP/IP,ACM
η [Aj ]

IP) is described as ACM
η [Aj ]

IP/(fP − 1)ACM
η [Aj ]

IP ,

and hence, it is trivial if and only if the multiplication by fP−1 on ACM
η [Aj ]

IP is

surjective; in other words, it is trivial if and only if the multiplication by fP − 1

induces an injective endomorphism on ΛCM
O /JP. The latter condition is obviously

fulfilled when fP−1 is invertible in ΛCM
O /JP or, equivalently, when it is invertible

in ΛCM
O /M for each maximal ideal of ΛCM

O containing JP. The condition (ntr)P
thus implies the triviality of each cohomology group H1(DP/IP,ACM

η [Aj ]
IP),
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since (ntr)P asserts that the value of fP does not equal 1 in ΛCM
O /M. Conse-

quently, the strict Selmer group SelΣ,str
ACM

η [Aj ]
is isomorphic to SelΣACM

η [Aj ]
for every

j with 0 ≤ j ≤ d+ δF,p when we assume the condition (ntr)P for each place P

contained in Σc
p. �

Let us return to the proof of Theorem 3.18.

Proof of Theorem 3.18

In order to control the strict Selmer group SelΣ,str
ACM

η [Aj ]
, we consider the following

diagram for each j:

(3.8)

0 SelΣ,str

ACM
η [Aj+1]

H1
(
FS/F,ACM

η [Aj+1]
)

αj

Rstr

(
F,ACM

η [Aj+1]
)

βj

0 SelΣ,str

ACM
η [Aj ]

[xj+1] H1
(
FS/F,ACM

η [Aj ]
)
[xj+1] Rstr

(
F,ACM

η [Aj ]
)
[xj+1],

where the symbol Rstr(F,ACM
η [Ak]) denotes the groups introduced in diagram

(3.7). The middle and rightmost vertical maps αj , βj are induced from the long

exact sequence in Galois cohomology associated to the following short exact

sequence of Gal(FS/F )-modules:

0→ACM
η [Aj+1]→ACM

η [Aj ]
×xj+1−−−−→ACM

η [Aj ]→ 0.(3.9)

In particular αj is surjective by construction. It thus suffices, by the snake lemma

applied to (3.8), to verify that the map αj (resp., βj) is injective in order to prove

that the map SelΣ,str
ACM

η [Aj+1]
→ SelΣ,str

ACM
η [Aj ]

[xj+1] under consideration is injective

(resp., surjective).

As for the kernel of αj , we first observe that it is isomorphic to the quo-

tient module H0(FS/F,ACM
η [Aj ])/xj+1H

0(FS/F,ACM
η [Aj ]) by the long exact

sequence of cohomology of Gal(FS/F ) obtained from (3.9). Obviously, the global

zeroth cohomology group H0(FS/F,ACM
η [Aj ]) is a submodule of the local zeroth

cohomology group H0(FP,ACM
η [Aj ]) for an arbitrary place P in Σc

p. As we shall

see in the next paragraph, the latter cohomology group H0(FP,ACM
η [Aj ]) is triv-

ial under the condition (ntr)P. This implies that Ker(αj) is trivial.

Next we verify the triviality of the kernel of βj . For each place w in S, let

βj,w denote the map induced by βj on the w-component of Rstr(F,ACM
η [Aj+1]).

Then by the long exact sequence of group cohomology for Dw- or Iw-modules

associated to the short exact sequence (3.9), we have

Ker(βj,w)

∼=
{
H0(Fw,ACM

η [Aj ])/xj+1H
0(Fw,ACM

η [Aj ]) for w ∈Σc
p,

H0(Iw,ACM
η [Aj ])/xj+1H

0(Iw,ACM
η [Aj ]) for w ∈ S \ (Σp ∪Σc

p ∪Σ∞).

For a place w in Σc
p, the cohomology group H0(Fw,ACM

η [Aj ]) itself is trivial

under the condition (ntr)w. In fact, it is easy to redescribe H0(Fw,ACM
η [Aj ]) as
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H0(Dw/Iw,ACM
η [Aj ]

Iw) by definition. We denote by fw the value of the Frobenius

element at w acting on ACM
η [Aj ]

Iw . Then we readily see that the Pontrjagin dual

of H0(Dw/Iw,ACM
η [Aj ]

Iw) is isomorphic to the cokernel of the multiplication

of fw − 1 on ΛCM
O /Jw, where Jw is the annihilator ideal of (ACM

η [Aj ]
Iw)∨. The

element fw − 1 is, however, a unit of ΛCM
O /Jw thanks to the condition (ntr)w

as discussed in the proof of Lemma 3.20, and in particular, the cokernel of the

multiplication of fw − 1 is trivial. This completes the proof of the triviality of

the kernel of βj,w.

For a place w in S \ (Σp ∪Σc
p ∪Σ∞), the inertia subgroup Iw acts on O(η)

through a finite quotient and acts on ΛCM,�
O trivially. Let Ew denote the (finite)

image of Iw under the Galois character ηgal, and let �nwO denote the ideal of

O generated by every element of the form ζ − 1 with ζ belonging to Ew. Here

� denotes a uniformizer of O. Then one readily sees that the cohomology group

H0(Iw,ACM
η [Aj ]) is none other than the maximal �nw -torsion submodule of

ACM
η [Aj ]. The Pontrjagin dual of Ker(βj,w) is thus isomorphic to the kernel of the

multiplication of xj+1 on ΛCM
O /(�nw , x1, . . . , xj). The sequence x1, . . . , xj+1,�

nw

is, however, a regular sequence contained in the Jacobson radical of ΛCM
O , and

thus, its permutation �nw , x1, . . . , xj+1 is also a regular sequence in ΛCM
O . We

therefore see that the kernel of βj,w is trivial. �

We finally remark that, by applying the arguments from the proof of Lemma 3.20

to the discrete ΛCM
O -module ACM

ψ , we obtain the following result.

LEMMA 3.21

The natural injection SelΣ,str

ACM
ψ

↪→ SelΣACM
ψ

is a co-pseudoisomorphism of discrete

ΛCM
O -modules. Furthermore, if the following condition (ntr)ψ,P on ACM

ψ is ful-

filled for each place P ∈Σc
p, then the injection above is an isomorphism.

(ntr)ψ,P For each maximal ideal M of ΛCM
O , the maximal M-torsion submodule

ACM
ψ [M] of ACM

ψ is not trivial as a DP-module.

Proof

We may verify that (ACM
ψ )IP is a co-pseudonull ΛCM

O -module for each place

P of F in Σc
p by arguments similar to the proof of the ΛCM

O -co-pseudonullity of

(ACM
η )IK,w̃0 (see the proof of Lemma 3.11). Therefore, the first half of the claim is

true because the cokernel of the natural injection SelΣ,str

ACM
ψ

↪→ SelΣACM
ψ

is a submod-

ule of the direct product of unramified cohomology groups H1(DP/IP, (ACM
ψ )IP)

for places P in Σc
p, which are all co-pseudonull.

The second half of the claim is verified by the same argument as the proof

of Lemma 3.20. �
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3.3. Greenberg’s criterion for almost divisibility
As is well known, the characteristic ideal of a finitely generated torsion mod-

ule over a complete Noetherian regular local domain is not necessarily pre-

served under base-change (or specialization) procedures. Indeed, the existence

of a nontrivial pseudonull submodule causes peculiar behavior of the character-

istic ideal under specialization. Therefore, when we discuss specialization of the

multivariable Iwasawa main conjecture (or, in particular, specialization of multi-

variable Selmer groups), it is crucial to check whether the Pontrjagin dual of the

Selmer group contains nontrivial pseudonull submodules or not. Greenberg [17]

has recently presented certain sufficient conditions for the pseudonull submodule

of the Pontrjagin dual of the Selmer group to be trivial, which is applicable to

quite general situations. In this section we introduce various hypotheses which

are necessary to state Greenberg’s criterion, and then we briefly review the main

results of [17].

3.3.1. Algebraic settings

Let Λ0 be the ring O[[T1, . . . , Tm]] of formal power series over the ring of integers

O of a finite extension of Qp, and let R be a Λ0-algebra which is isomorphic to

the direct product of a finite number of copies of Λ0. For each cofinitely gener-

ated discrete R-module A, we define the R-corank corankR(A) of A as a finite

set (corankRi(eiA))i∈I of nonnegative integers, where each Ri denotes a local

component of the semilocal ring R cut out by an idempotent ei. We endow the

set of the coranks of cofinitely generated discrete R-modules with the compo-

nentwise partial order ; namely, the notation corankR(A1)≤ corankR(A2) means

that corankRi(eiA1)≤ corankRi(eiA2) holds for every i in I . The characteristic

ideal of a finitely generated torsion R-module for the semilocal ring R is also

defined componentwise as follows.

DEFINITION 3.22 (CHARACTERISTIC IDEAL OF R-MODULES)

LetM be a finitely generated torsionR-module. Thenwe define the (R-)character-

istic ideal CharR(M) of M as the ideal of R corresponding to
∏

i∈I CharRi(eiM)

under the indecomposable decomposition R=
∏

i∈I Ri of R. Here CharRi(eiM)

denotes the characteristic ideal of the finitely generated torsion module eiM

over the complete Noetherian regular local ring Ri, which is defined in the usual

manner.

By definition the characteristic ideal CharR(M) is a principal ideal of R.

REMARK 3.23

Greenberg [16], [17] assumes that the coefficient ring R is a local ring equipped

with several good properties (which Greenberg calls a reflexive ring). In our

setting the coefficient ring R is a semilocal ring and is no longer local. However,

each local component of R is a complete Noetherian regular local ring isomorphic

to Λ0, which is compatible with Greenberg’s setting. Indeed, it is not difficult at
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all to extend Greenberg’s results from [16] and [17] to our semilocal coefficient

case by using the decomposition of the coefficient ring R and R-modules. In

Section 3.3.3 we shall introduce statements of Greenberg’s results of [16] and [17]

extended to the semilocal coefficient case.

Now let K, S, and T be as in Section 3.1.1. Since the semilocal ring R=
∏

i∈I Ri

satisfies all the conditions introduced in Section 3.1.1, we can consider the Selmer

group of R-linear GK-representations. For the discrete R-module A= T ⊗R R∨

associated to T , we specify an R-submodule L(Kv,A) of the local Galois coho-

mology group H1(Kv,A) for each v in S, which we call a local condition at v. We

denote such a specification of local conditions by L for brevity. Set QL(Kv,A)

as the quotient H1(Kv,A)/L(Kv,A) for each v in S. We define L(K,A) as the

product of the R-submodules L(Kv,A) for all places v in S, and similarly we

introduce notation on products of local cohomology groups as follows:

P (K,A) =
∏
v∈S

H1(Kv,A), QL(K,A) =
∏
v∈S

QL(Kv,A).

The L-Selmer group SelL(K,A) associated to A is defined to be the kernel of the

natural global-to-local homomorphism

φL : H1(KS/K,A)→QL(K,A)(3.10)

induced by restriction morphisms of Galois cohomologies. Then, by definition,

SelL(K,A) is an R-submodule of the first cohomology group H1(KS/K,A) of

the Galois group Gal(KS/K) with coefficients in A. When we take the trivial

specification Ltriv or, in other words, when we impose the minimal local con-

dition L(Kv,A) = 0 on each place v in S, the Ltriv-Selmer group is denoted by

X1(K, S,A) in [15] and [17] and is referred to as the fine S-Selmer group asso-

ciated to A after Coates and Sujatha [7].

Concerning the algebraic structure of the L-Selmer groups, the following two

statements are known to be equivalent (see [15, Proposition 2.4] for the proof):

• the Pontrjagin dual Sel∨L(K,A) of the L-Selmer group SelL(K,A) does not

contain nontrivial Λ0-pseudonull submodules;

• the L-Selmer group SelL(K,A) is almost divisible as a discrete Λ0-module;

that is, the equality PSelL(K,A) = SelL(K,A) holds for all but finitely many

prime ideals P of height one of Λ0.

3.3.2. Various hypotheses

Greenberg has thoroughly studied the almost Λ0-divisibility of the L-Selmer

group and established certain useful criteria for almost Λ0-divisibility in [15],

[16], and [17]. Now let us introduce various hypotheses which are necessary to

state Greenberg’s criteria (see also [17, Section 2]).

The first two hypotheses concern the Kummer dual (or sometimes denoted by

Cartier dual in the literature) T ∗ =Homcts(A, μp∞) of A. For a place v contained

in S, we consider the following two statements:



Iwasawa main conjecture for CM Hilbert cusp forms 57

(LOC
(1)
A,v) the local Galois invariant submodule H0

cts(Kv,T ∗) of T ∗ is trivial;

(LOC
(2)
A,v) the quotient module T ∗/H0

cts(Kv,T ∗) is reflexive as an R-module.

The next hypothesis concerns the generalized second Tate–Šafarevič group

X2(K, S,A) defined as the kernel of the global-to-local morphism

H2(KS/K,A)→
∏
v∈S

H2(Kv,A)

induced by usual restriction morphisms. Then we consider:

(LEOA) the generalized second Tate–Šafarevič group X2(K, S,A) is cotorsion

as an R-module.

One of the significant features concerning the hypothesis (LEOA) is that it

behaves well under specialization procedures with respect to height-one prime

ideals; namely, the condition (LEOA) holds if and only if the condition (LEOA[Π])

holds (as a condition on the Λ0/(Π)-module A[Π]) for all but finitely many prime

ideals (Π) of height one of Λ0 (generated by a prime element Π). Here we denote

by A[Π] the maximal Π-torsion submodule of A. We refer to [15, Lemma 4.4.1

and Remark 2.1.3] for the proof of this property.

Finally, we introduce the hypothesis on the global-to-local morphism φL:

(SURA,L) the global-to-local morphism φL is surjective.

3.3.3. Greenberg’s criterion

The following criterion for the almost divisibility of SelL(K,A) is due to Green-

berg [17]. We state it for modules over the semilocal ring R=
∏

i∈I Ri, contrary

to the settings in [17].

THEOREM 3.24 ([17, PROPOSITION 4.1.1])

Let R be a finite Λ0-algebra which is isomorphic to the direct product of finitely

many copies of Λ0, and let K, S, and A be as above. Assume that the local

condition L(K,A) (⊂ P (K,A)) is almost Λ0-divisible, and all the conditions

(LOC
(1)
A,v0

) (for a certain nonarchimedean place v0 in S), (LOC
(2)
A,v) (for every

place v in S), (LEOA), and (SURA,L) hold. Furthermore suppose that at least

one of the following conditions is fulfilled:

(a) for each maximal ideal M of R, the maximal M-torsion submodule A[M]

has no subquotient isomorphic to μp as a Galois representation of Gal(K/K) over

Fp;

(b) the discrete module A is cofree as an Λ0-module, and for each maximal

ideal M of R, the maximal M-torsion submodule A[M] has no quotient isomor-

phic to μp as a Galois representation of Gal(K/K) over Fp;

(c) there exists a place v0 contained in S such that H0
cts(Kv0 ,T ∗) is trivial

and such that QL(Kv0 ,A) is coreflexive as a Λ0-module.

Then the L-Selmer group SelL(K,A) is almost divisible as a Λ0-module.
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REMARK 3.25

Among various assumptions of Theorem 3.24, the almost Λ0-divisibility of the

local condition L(K,A) and the hypotheses (LEOA) and (SURA,L) are rather

nontrivial and not so easy to verify. In fact, the hypothesis (LEOA) is closely

related to the weak Leopoldt conjecture in classical settings and is quite nontrivial

(see [15, Introduction and Section 6.D] for further discussion and for several

examples where the hypothesis (LEOA) is not valid). The surjectivity condition

(SURA,L) of the global-to-local morphism φL is closely related to the triviality

of the dual Selmer group, as discussed later in Section 3.3.4. Finally, the local

condition L(K,A) often tends to be not almost divisible; even in our CM setting,

the unramified cohomology group H1
ur(FPc ,ACM

η ) at a place Pc in Σc
p might not

be almost divisible in general, and we cannot directly apply Greenberg’s criterion

to SelΣACM
η

. This is one of the reasons why we replace our Selmer group SelΣACM
η

with the strict Selmer group SelΣ,str
ACM

η
in Section 3.4.

3.3.4. Dual Selmer groups and the surjectivity hypothesis

By virtue of Poitou and Tate’s [34, (8.6.10)] long exact sequence on Galois coho-

mology groups, the cokernel of the global-to-local homomorphism φL is rep-

resented in terms of the dual Selmer group SelL∗(K,T ∗) of SelL(K,A), which

enables us to check the hypothesis (SURA,L) by investigating the triviality of

SelL∗(K,T ∗). We here define the dual Selmer group SelL∗(K,T ∗) and introduce

a criterion for its triviality, which is also due to Greenberg [16]. In the following

paragraphs the subscript “cts” denotes the Galois cohomology groups of contin-

uous cocycles.

Let T ∗ =Homcts(A, μp∞) denote the Kummer dual of A. Then the natural

pairing A×T ∗ → μp∞ combined with the cup product of the Galois cohomology

induces the local Tate pairing

H1(Kv,A)×H1
cts(Kv,T ∗)→Qp/Zp(3.11)

for each v in S, which is a perfect pairing as is well known. We specify a sub-

group L∗(Kv,T ∗) of H1
cts(Kv,T ∗) as the orthogonal complement of L(Kv,A)

under the local Tate pairing (3.11). We denote such specifications of submod-

ules of the local Galois cohomology groups H1
cts(Kv,T ∗) by L∗. The dual Selmer

group SelL∗(K,T ∗) for T ∗ is then defined as the kernel of the global-to-local

homomorphism

φL∗ : H1
cts(KS/K,T ∗)→QL∗(K,T ∗),

whereQL∗(K,T ∗) is defined as the direct product
∏

v∈S H1
cts(Kv,T ∗)/L∗(Kv,T ∗).

Meanwhile the fine S-Selmer group X1(K, S,T ∗) associated to T ∗ is defined as

the local-to-global map H1
cts(KS/K,T ∗)→

∏
v∈S H1

cts(Kv,T ∗). Then one readily

verifies that the Pontrjagin dual of the cokernel of φL is isomorphic to the quo-

tient SelL∗(K,T ∗)/X1(K, S,T ∗), and the Pontrjagin dual of the cokernel of φL∗
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is isomorphic to SelL(K,A)/X1(K, S,A) (see [16, Proposition 3.1.1]). In partic-

ular, the triviality of the dual Selmer group SelL∗(K,T ∗) implies the validity of

the hypothesis (SURA,L).

Greenberg himself has given a sufficient condition for the dual Selmer group

SelL∗(K,T ∗) to vanish. In order to state it, we here introduce another hypothesis:

(CRKA,L) the following equality among R-coranks holds (recall the definition

and conventions on the R-corank in Section 3.3.1):

corankRH1(KS/K,A) = corankR SelL(K,A) + corankRQL(K,A).

Recall that we have the following equality on R-coranks by the definition of the

L-Selmer group as the kernel of the global-to-local morphism (3.10):

corankRH1(KS/K,A)

= corankR SelL(K,A) + corankRQL(K,A)− corankRCoker(φL).

Hence, it is obvious that the following inequality always holds:

corankRH1(KS/K,A)≤ corankR SelL(K,A) + corankRQL(K,A).

It is also obvious that the condition (CRKA,L) is valid if and only if the cokernel

of the global-to-local morphism φL is cotorsion as an Λ0-module.

PROPOSITION 3.26 ([16, PROPOSITION 3.2.1])

Suppose that A is a divisible R-module, and both of the conditions (LEOA) and

(CRKA,L) hold for A and a specification L. Furthermore, assume that at least

one of the conditions (a), (b) in the statement of Theorem 3.24 or the following

condition (c ′) is fulfilled:

(c′) there exists a place v0 contained in S such that H0
cts(Kv0 ,T ∗) is trivial

and such that QL(Kv0 ,A) is divisible as a Λ0-module.

Then the dual Selmer group SelL∗(K,T ∗) is trivial; in particular, the surjectivity

condition (SURA,L) holds for A and L.

Obviously the condition (c) in Theorem 3.24 implies the condition (c′) above.

3.4. Inductive specialization of the characteristic ideals
In the rest of this section we shall state the main result of the algebraic side of

this article (Theorem 3.27) and prove it. As in Section 3.1.2, we denote by F+

a totally real number field of degree d which satisfies the condition (unrF+). Let

f be a p-ordinary p-stabilized newform of cohomological weight κ, level N, and

nebentypus ε defined on F+, and suppose that f has complex multiplication.

We denote by η the größencharacter of type (A0) defined on a totally imaginary

quadratic extension F over F+ satisfying the ordinarity condition (ordF/F+), to

which the cusp form fη = ϑ(η)p-st is associated. As we have already mentioned,

it is always possible to assume that η is admissible and ordinary with respect
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to an appropriate p-ordinary CM type Σ of F . We choose a branch character ψ

associated to η and fix it (see Definition 3.8).

Recall the ψ-branch LΣ
p (ψ) of Katz, Hida, and Tilouine’s p-adic L-function

LKHT
p,Σ (F ) defined in Section 1; namely, LΣ

p (ψ) is the image of LKHT
p,Σ (F ) under

the ψ-twisting map

Ôur
[[
Gal(FCp∞/F )

]]
→Ôur

[[
Gal(F̃∞/F )

]]
, g �→ ψ(g)g|F̃∞

.

THEOREM 3.27

Let the notation be as above. Furthermore, assume the following three conditions:

• the nontriviality condition (ntr)P for every place P of F contained in Σc
p;

• (IMCF,ψ) the ((d+ 1+ δF,p)-variable) Iwasawa’s main conjecture

CharΛCM
O

(XΣp,(ψ)) =
(
LΣ
p (ψ)
)

holds as an equality of ideals in ΛCM
O ⊗̂OÔur for the CM number field F and the

branch character ψ;

• (NVLcyc
p (fη)) the cyclotomic p-adic L-function Lcyc

p (fη) for fη = ϑ(η)p-st

does not vanish in the sense that each component of Lcyc
p (fη) in the indecompos-

able decomposition of Λcyc
O ⊗̂OÔur does not equal zero.

Then we have the following equality of ideals of Λcyc
O :(

CharΛCM
O

(SelΣACM
η

)∨
)
⊗ΛCM

O
Λcyc
O =CharΛcyc

O
(SelAcyc

fη
)∨,(3.12)

where the tensor product on the left-hand side is taken with respect to the canon-

ical quotient map ΛCM
O � Λcyc

O .

The rest of this section is devoted to the proof of Theorem 3.27. We shall verify

Theorem 3.27 by induction on the Krull dimension of the coefficient ring ΛCM
O ,

applying repeatedly the specialization lemma introduced below in Section 3.4.1

(Lemma 3.29), Greenberg’s criterion for almost divisibility (Theorem 3.24), and

the exact control theorem (Theorem 3.18).

REMARK 3.28

The conditions (IMCF,ψ) and (NVLcyc
p (fη)) imply an important algebraic property

of the Selmer group:

(COTAcyc
fη

) the Selmer group SelAcyc
fη

is a cotorsion Λcyc
O -module.

In order to deduce the conclusion of Theorem 3.27, we may replace the

analytic condition (NVLcyc
p (fη)) by the algebraic condition (COTAcyc

fη
). We also

remark that we use the analytic condition (NVLcyc
p (fη)) only at the final step of

our inductive argument (see Section 3.4.6).
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3.4.1. The specialization lemma

First, we recall the following elementary lemma (which we shall refer to as the

specialization lemma later), describing the behavior of characteristic ideals under

specialization procedures.

LEMMA 3.29

Let R be a finite Λ0-algebra which is isomorphic to the direct product of finitely

many copies of Λ0, and let M be an R-module which is finitely generated and tor-

sion. Assume that M contains no nontrivial pseudonull Λ0-submodules. Let (Π)

denote a prime ideal of height one of Λ0, and assume that (Π) does not divide

the characteristic ideal CharR(M) of M . Then the quotient module M/ΠM is

finitely generated and torsion as an R/ΠR-module, and the base change

CharR(M)⊗R R/ΠR of the characteristic ideal CharR(M) coincides with the

characteristic ideal CharR/ΠR(M/ΠM) of the R/ΠR-module M/ΠM as an

ideal of the quotient ring R/ΠR.

Here we remark that (commutative) Noetherian regular local rings are unique

factorization domains, and hence every height-one prime ideal of Λ0 is a principal

ideal.

We readily verify the lemma above in essentially the same way as the proof of

[35, Lemma 3.1]. We thus omit the proof here, just emphasizing that the triviality

of the pseudonull Λ0-submodule of M plays a crucial role in the verification of

Lemma 3.29.

3.4.2. Settings on regular sequences and local conditions

We now apply the results of Sections 3.3 and 3.4 to the case where R is the

semilocal Iwasawa algebra ΛCM
O =O[[Gal(F̃∞/F )]] and Λ0 is the local Iwasawa

algebra O[[Gal(F̃ /F )]], which is isomorphic to the ring of formal power series in

d+1+ δF,p variables. Here we henceforth choose and fix a splitting of the group

extension

1 Gal(F̃∞/F̃ )∼=Gal
(
F (μp)/F

)
Gal(F̃∞/F ) Gal(F̃ /F ) 1

and regard O[[Gal(F̃ /F )]] as a subring of ΛCM
O by using this splitting. This iden-

tification endows the semilocal algebra ΛCM
O with the Λ0-module structure. In

the following arguments, we inductively find elements γ1, . . . , γd+δF,p
of Gal(F̃ /F )

so that γ1 − 1, . . . , γd+δF,p
− 1 is a regular sequence of Λ0 =O[[Gal(F̃ /F )]] con-

tained in Acyc and they satisfy certain “nice” properties. We here prepare nota-

tion on regular sequences. Let j be a natural number with 1≤ j ≤ d+ δF,p, and

suppose that we have already chosen elements γ1, . . . , γj of Gal(F̃ /F ) such that

γ1−1, . . . , γj −1 is a regular sequence of Λ0 contained in Acyc. We set xk = γk−1

for each k with 1 ≤ k ≤ j, and let Aj denote the ideal of ΛCM
O generated by

x1, . . . , xj with the convention that A0 denotes the zero ideal in ΛCM
O . Then the

notation introduced here is compatible with that introduced in Section 3.2. We
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also define Λ
(j)
0 to be the quotient ring Λ0/(x1, x2, . . . , xj), which is a complete

Noetherian regular local ring isomorphic to the ring of formal power series in

d+ 1+ δF,p − j variables.

Now we introduce the local condition Lstr corresponding to the strict Selmer

group; namely, we set for each nonarchimedean place v in S

Lstr

(
Fv,ACM

η [Aj ]
)
=

⎧⎪⎪⎨⎪⎪⎩
H1

ur(Fv,ACM
η [Aj ]) for v in S \ (Σp ∪Σc

p),

H1(Fv,ACM
η [Aj ]) for v ∈Σp,

0 for v ∈Σc
p,

where H1
ur(Fv,ACM

η [Aj ]) denotes the unramified cohomology group defined to be

H1(Dv/Iv,ACM
η [Aj ]

Iv ). We also introduce the local condition Lstr(F,ACM
ψ ) for

the discrete ΛCM
O -module ACM

ψ in the same manner.

The discrete ΛCM
O /Aj -module ACM

η [Aj ] corresponds to the continuous Galois

representation T CM
η /AjT CM

η ; that is, the Pontrjagin duality induces an isomor-

phism of ΛCM
O /Aj-linear Gal(FS/F )-representations

ACM
η [Aj ]∼= (T CM

η /AjT CM
η )⊗ΛCM

O /Aj
(ΛCM

O /Aj)
∨.

We thus denote the Kummer dual of ACM
η [Aj ] by (T CM

η /AjT CM
η )∗, following

Greenberg’s notation introduced in Section 3.3.4. Then the local condition L∗
str

for the dual strict Selmer group SelL∗
str
(F, (T CM

η /AjT CM
η )∗) is calculated as

(3.13)

L∗
str

(
Fv, (T CM

η /AjT CM
η )∗

)
=

⎧⎪⎪⎨⎪⎪⎩
H1

ur(Fv, (T CM
η /AjT CM

η )∗) for v ∈ S \ (Σp ∪Σc
p),

0 for v ∈Σp,

H1
cts(Fv, (T CM

η /AjT CM
η )∗) for v ∈Σc

p,

where the unramified cohomology H1
ur(Fv, (T CM

η /AjT CM
η )∗) is defined in the

usual manner asH1
cts(Dv/Iv, (T CM

η /AjT CM
η )∗,Iv ). Indeed, (3.13) follows for places

of F lying above p directly from the definition of the local condition of the dual

Selmer groups based upon the local Tate duality (3.11). Now we temporarily

abbreviate ACM
η [Aj ] as A and (T CM

η /AjT CM
η )∗ as T ∗ for brevity. Then for a

nonarchimedean place of F contained in S but not lying above p, it is well

known that the unramified cohomology groups are the orthogonal complements

of each other under the local Tate pairing (3.11) for finite Galois modules A[Jn]

and T ∗/JnT ∗. Here J is the Jacobian radical of ΛCM
O and n is an arbitrary natu-

ral number. Since T ∗ is obviously complete with respect to the J-adic topology,

we readily obtain (3.13) for such a place by employing standard limit arguments

based upon Tate’s theorem on the inverse limits of Galois cohomologies (e.g.,

refer to [34, Corollary 2.3.5], [15, Remark 3.5.1]).

3.4.3. Preliminary step: verification of several hypotheses

As the preliminary step of our inductive arguments, we here verify the local

hypotheses (LOC
(1)
ACM

η [Aj ],v
) and (LOC

(2)
ACM

η [Aj ],v
), the almost Λ

(j)
0 -divisibility of
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Lstr(F,ACM
η [Aj ]) and the condition (c) in Theorem 3.24 for every j. First, we

readily observe that the local hypothesis (LOC
(1)
ACM

η [Aj ],v
) is valid for every nonar-

chimedean place v in S (and hence the local hypothesis (LOC
(2)

ACM
η [Aj ],v

) is auto-

matically satisfied for every place v in S). In fact (T CM
η /AjT CM

η )∗ is a free

ΛCM
O /Aj -module of rank one on which every element g of Gal(FS/F ) acts by

the multiplication of χ−1
p,cycη

gal(g−1)g−1. Now let v be a nonarchimedean place

v in S. Since every nonarchimedean place of F does not split completely in the

cyclotomic Zp-extension F cyc
∞ of F , the image of the decomposition subgroup Dv

at v in Gal(F cyc
∞ /F ) is not trivial. In particular, there exists an element g0 of Dv

such that the image of ξg0 := χ−1
p,cycη

gal(g−1
0 )g−1

0 − 1 in ΛCM
O /Aj does not vanish

(because it is nonzero in the quotient Λcyc
O of ΛCM

O /Aj). The definition of ξg0
implies that, under the indecomposable decomposition of ΛCM

O , no components

of ξg0 equal zero. Since every indecomposable component of ΛCM
O /Aj is a domain,

we readily see that the ξg0 -torsion submodule of the free ΛCM
O /Aj -module of rank

one is trivial. This implies that the Dv-invariant of (T CM
η /AjT CM

η )∗ equals zero,

and thus, (LOC
(1)
ACM

η [Aj ],v
) holds for every j and for every nonarchimedean v in S.

We now verify the almost divisibility of the local condition Lstr(Fv,ACM
η [Aj ]).

There is nothing to prove for a place in Σc
p, since the local condition is trivial

at such a place. For a place P in Σp, the local condition Lstr(FP,ACM
η [Aj ])

coincides with the whole cohomology group H1(FP,ACM
η [Aj ]), and its almost

Λ
(j)
0 -divisibility follows from the hypothesis (LOC

(2)
ACM

η [Aj ],P
) and [15, Proposition

5.4]. Finally, take a nonarchimedean place λ from S \ (Σp ∪ Σc
p). By the same

argument as the proof of Theorem 3.18, the image of the inertia subgroup Iλ
under the Galois character ηgal is finite and is contained in the set of roots

of unity in O. Thus, ACM
η [Aj ]

Iλ is isomorphic to ACM
η [Aj +�nΛCM

O ] for some

nonnegative integer n, which is almost Λ
(j)
0 -divisible because ACM

η [Aj +�nΛCM
O ]

is divisible for every height-one prime ideal of Λ
(j)
0 relatively prime to�Λ

(j)
0 . Since

H1
ur(Fλ,ACM

η [Aj ]) is isomorphic to a quotient of ACM
η [Aj ]

Iλ , H1
ur(Fλ,ACM

η [Aj ])

must also be almost Λ
(j)
0 -divisible.

We finally remark that every place P belonging to Σp satisfies the condition

(c) in Theorem 3.24. Indeed, the first half of the condition (c) is no other than

(LOC
(1)
ACM

η [Aj ],P
), and the second half of the condition (c) follows from the fact

that QLstr(FP,ACM
η [Aj ]) is trivial by construction.

REMARK 3.30

It is also possible to verify the hypotheses (LOC
(1)

ACM
ψ ,v

) and (LOC
(2)

ACM
ψ ,v

) for

each nonarchimedean place contained in S, the almost Λ0-divisibility of the local

condition Lstr(F,ACM
ψ ), and the condition (c) in Theorem 3.24 for ACM

ψ and

every place P in Σp by exactly the same arguments as above.
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3.4.4. First step: almost divisibility of the initial strict Selmer group

We shall verify the almost Λ0-divisibility of the initial strict Selmer group SelΣ,str
ACM

η
.

Identifying SelΣ,str
ACM

η
with Twηgal,−1ψ(Sel

Σ,str

ACM
ψ

) by exactly the same arguments as

in Remark 3.17, we readily see that the almost Λ0-divisibility of SelΣ,str
ACM

η
is equiv-

alent to that of SelΣ,str

ACM
ψ

. In order to deduce the almost Λ0-divisibility of SelΣ,str

ACM
ψ

from Theorem 3.24 and Proposition 3.26, it suffices to verify the remaining two

hypotheses (CRKACM
ψ ,Lstr

) and (LEOACM
ψ

); recall that we have already verified

in the preceding step all the other hypotheses required in Theorem 3.24 and

Proposition 3.26 (see also Remark 3.30).

We have already observed in Remark 3.17 and Lemma 3.21 that the Iwasawa

module XΣp,(ψ) and the Pontrjagin dual of the strict Selmer group SelΣ,str
Aψ

are

pseudoisomorphic to each other as ΛCM
O -modules. Now we introduce the following

hypothesis concerning the algebraic structure of the Iwasawa module XΣp,(ψ):

(TORXΣp,(ψ)
) the ΛCM

O -module XΣp,(ψ) is a torsion module.

Note that the condition (TORXΣp,(ψ)
) is equivalent to the following condition

on the algebraic structure of the strict Selmer group SelΣ,str

ACM
ψ

by the discussion

above:

(COTACM
ψ

) the strict Selmer group SelΣ,str

ACM
ψ

is cotorsion as a ΛCM
O -module.

LEMMA 3.31

The following two statements are equivalent for the discrete ΛCM
O -module ACM

ψ :

(1) both the conditions (CRKACM
ψ ,Lstr

) and (LEOACM
ψ

) hold;

(2) the condition (COTACM
ψ

) (or the condition (TORXΣp,(ψ)
)) holds.

Proof

We abbreviate the ΛCM
O -corank of a cofinitely generated ΛCM

O -module M just as

“corankM” in the proof of Lemma 3.31 so as to simplify the notation. We shall

henceforth verify that the following equation among ΛCM
O -coranks holds:

corankSelΣ,str

ACM
ψ

= corankX2(F,S,ACM
ψ ) + corankCoker(φLstr).(3.14)

Once (3.14) is proved, the equivalence between assertions (1) and (2) immediately

follows; assertion (1) is fulfilled if and only if the right-hand side of (3.14) equals

zero, whereas assertion (2) is fulfilled if and only if the left-hand side of (3.14)

equals zero. Recall that the validity of the corank condition (CRKACM
ψ ,Lstr

) is

equivalent to the ΛCM
O -cotorsionness of the cokernel of φLstr .

In order to deduce (3.14), we consider the equation

(3.15)
corankSelΣ,str

ACM
ψ

= corankH1(FS/F,ACM
ψ )

− corankQLstr(F,ACM
ψ ) + corankCoker(φLstr),
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which is deduced from the exact sequence

0 SelΣ,str

ACM
ψ

H1(FS/F,ACM
ψ )

φLstr
QLstr(F,ACM

ψ ) Coker(φLstr) 0

defining the strict Selmer group SelΣ,str

ACM
ψ

, and we calculate the right-hand side of

(3.15) by utilizing Euler–Poincaré characteristic formulae studied in [15].

We first calculate the ΛCM
O -corank of the global cohomologyH1(FS/F,ACM

ψ ).

By the global Euler–Poincaré characteristic formula [15, Proposition 4.1], we have

the equality

(3.16)

corankH1(FS/F,ACM
ψ )

= corankH0(FS/F,ACM
ψ )

+ corankH2(FS/F,ACM
ψ ) + d corank(ACM

ψ ).

Recall that d denotes the extension degree [F+ :Q] of the totally real field F+

over Q. We claim that H0(FS/F,ACM
ψ ) is a cotorsion ΛCM

O -module. Indeed, ACM
ψ

is naturally identified with the Pontrjagin dual of ΛCM
O , on which an element g

of Gal(FS/F ) acts by the multiplication of ψ(g)g|F̃∞
. Let us take an arbitrary

element g0 of Gal(FS/F ) whose image in Gal(F̃ /F ) under the natural surjection

Gal(FS/F )�Gal(F̃ /F ) is nontrivial. Then we readily see that the g0-invariant

of ACM
ψ is isomorphic to a ΛCM

O -module (ΛCM
O /(ψ(g0)g0|F̃∞

− 1)ΛCM
O )∨, which is

obviously a cotorsion ΛCM
O -module. The zeroth cohomology H0(FS/F,ACM

ψ ) is

obviously a subgroup of the g0-invariant of ACM
ψ , and thus, it is also a cotorsion

ΛCM
O -module:

(3.17) corankH0(FS/F,ACM
ψ ) = 0.

We next investigate the ΛCM
O -corank of the second cohomology H2(FS/F,ACM

ψ ).

The nine-term exact sequence due to Poitou and Tate (see [34, (8.6.3)(i)], [15,

Section 4.B]) implies that the cokernel of the global-to-local homomorphism

φ(2) : H2(FS/F,ACM
ψ )→

∏
v∈S\Σ∞

H2(Fv,ACM
ψ )

is isomorphic to the Pontrjagin dual of H0
cts(FS/F, (T CM

ψ )∗), which is trivial

because the hypothesis (LOC
(1)

ACM
ψ ,v

) holds for every v in S \Σ∞. The kernel of

φ(2) is X2(F,S,ACM
ψ ) by definition. Furthermore, by virtue of the local Tate

duality, the Pontrjagin dual of H2(Fv,ACM
ψ ) is isomorphic to H0

cts(Fv, (T CM
ψ )∗)

for each v in S \ Σ∞, and hence, it equals zero by the hypothesis (LOC
(1)

ACM
ψ ,v

)

again. Combining these calculations, we conclude that the corank of the whole

second cohomology group H2(FS/F,ACM
ψ ) equals that of the generalized second

Tate–Šafarevič group X2(F,S,ACM
ψ ):

(3.18) corankH2(FS/F,ACM
ψ ) = corankX2(F,S,ACM

ψ ).
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By (3.16), (3.17), and (3.18), we have the following formula:

corankH1(FS/F,ACM
ψ ) = corankX2(F,S,ACM

ψ ) + d corankACM
ψ .(3.19)

We now study the ΛCM
O -corank of QLstr(F,ACM

ψ ). First, let us take a place Pc

in Σc
p. Applying the local Euler–Poincaré characteristic formula [15, Proposition

4.2] to the local cohomology group H1(FPc ,ACM
ψ ), we obtain

corankQLstr(FPc ,ACM
ψ )

= corankH1(FPc ,ACM
ψ )

= corankH0(FPc ,ACM
ψ ) + corankH2(FPc ,ACM

ψ ) + [FPc : Qp] corankACM
ψ .

We claim that the ΛCM
O -coranks of H0(FPc ,ACM

ψ ) and H2(FPc ,ACM
ψ ) are both

equal to zero. Indeed, since each place of F above p does not split completely

in F̃ /F , the image of DPc in Gal(F̃ /F ) contains a nontrivial element. We thus

apply the same arguments as those we made for H0(FS/F,ACM
ψ ) and conclude

that H0(FPc ,ACM
ψ ) is cotorsion as a ΛCM

O -module. On the other hand, as we have

already checked in the computation of the ΛCM
O -corank of H2(FS/F,ACM

ψ ), the

second local cohomology group H2(FPc ,ACM
ψ ) is trivial due to the hypothesis

(LOC
(1)

ACM
ψ ,Pc). Hence, we obtain the following formula for each place Pc in Σc

p:

corankQLstr(FPc ,ACM
ψ ) = [FPc :Qp] corankACM

ψ .(3.20)

Next, let λ be a nonarchimedean place in S \ (Σp ∪ Σc
p). We also calculate the

corank of QLstr(Fλ,ACM
ψ ) by applying the local Euler–Poincaré characteristic

formula [15, Proposition 4.2] to the local cohomology H1(Fλ,ACM
ψ ) as follows:

corankQLstr(Fλ,ACM
ψ )

= corankH1(Fλ,ACM
ψ )− corankH1

ur(Fλ,ACM
ψ )

= corankH0(Fλ,ACM
ψ ) + corankH2(Fλ,ACM

ψ )− corankH1
ur(Fλ,ACM

ψ ).

We claim that the right-hand side of this equality is zero; that is,

corankQLstr(Fλ,ACM
ψ ) = 0(3.21)

holds. Indeed, the second cohomology group H2(Fλ,ACM
ψ ) is trivial by the hypo-

thesis (LOC
(1)

ACM
ψ ,λ

) as we have already mentioned, and the ΛCM
O -corank of the

unramified cohomology H1
ur(Fλ,ACM

ψ ) equals that of H0(Fλ,ACM
ψ ), since the

residue characteristic at λ does not equal p; this fact is well known for finite

Galois modules, and we readily generalize it by using a specialization trick similar

to the one used in the proof of [15, Proposition 4.1].

Substituting (3.19), (3.20), and (3.21) for (3.15), we obtain the desired equa-

tion (3.14) as

corankSelΣ,str

ACM
ψ

= corankX2(F,S,ACM
ψ ) + d corankACM

ψ
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−
∑

Pc∈Σc
p

[FPc : Qp] corankACM
ψ + corankCoker(φLstr)

= corankX2(F,S,ACM
ψ ) + corankCoker(φLstr)

+
(
d−

∑
p|prF+

[F+
p :Qp]

)
corankACM

ψ

= corankX2(F,S,ACM
ψ ) + corankCoker(φLstr). �

Note that the assumption (TORXΣp,(ψ)
) clearly holds when the Σp-ramified Iwa-

sawa module XΣp =Gal(MΣp/K̃
CM
∞ ) is torsion as an O[[Gal(K̃CM

∞ /F )]]-module.

As a part of their research on the anticyclotomic Iwasawa main conjecture for CM

number fields, Hida and Tilouine [24, Section 1.2] have thoroughly studied alge-

braic properties of XΣp , and showed that XΣp is torsion over O[[Gal(K̃CM
∞ /F )]]

if the Σ-Leopoldt condition (the condition (L
K̃CM

∞ ,Σ
) in the terminology of [24])

is valid for the extension K̃CM
∞ /F . See [24, Theorem 1.2.2(ii)] for details of the

discussion. Note that our extension K̃CM
∞ is always regarded as a subfield of the

ray class field FCp∞ modulo Cp∞ over F for an appropriate integral ideal C of F .

Since the extension K̃CM
∞ /F contains the cyclotomic Zp-extension, we observe

that the Σ-Leopoldt condition is valid for the extension K̃CM
∞ /F by reducing

to the validity of the weak Leopoldt conjecture for the cyclotomic Zp-extension

of an arbitrary number field due to the classical works of Iwasawa and Green-

berg [12, Proof of Theorem 3] (or by directly applying [24, Theorem 1.2.2(iii)]).

Consequently, the assumption (TORXΣp,(ψ)
) is fulfilled, and we have verified the

following proposition.

PROPOSITION 3.32

The strict Selmer group SelΣ,str

ACM
ψ

of ACM
ψ is cotorsion over ΛCM

O and almost divis-

ible over Λ0. The same claim holds for the strict Selmer group SelΣ,str
ACM

η
of ACM

η .

As a corollary of our computation so far, we deduce a consequence on the alge-

braic structure of the Iwasawa module XΣp,(ψ) when the Pontrjagin dual of

SelΣ,str

ACM
ψ

is exactly isomorphic to XΣp,(ψ).

COROLLARY 3.33 (THEOREM C)

Assume that the nontriviality condition (ntr)ψ,Pc is valid for each place Pc of F

belonging to Σc
p and that the order of the branch character ψ is relatively prime

to p (and in particular nontrivial). Then the Iwasawa module XΣp,(ψ) does not

contain nontrivial pseudonull Λ0-submodules.

Proof
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Under the assumptions, the Pontrjagin dual of SelΣ,str

ACM
ψ

is exactly isomorphic

to XΣp,(ψ) by Remark 3.9 and Lemma 3.21. The statement then follows from

Proposition 3.32. �

REMARK 3.34

The triviality of pseudonull submodules of the Iwasawa module XΣp,(ψ) has

already been studied by Perrin-Riou [40, Théorème 2.4] only when F is an imag-

inary quadratic field and ψ is a größencharacter of type (A0) associated to an

elliptic curve with complex multiplication. Her method essentially utilizes Win-

tenberger’s structure theorem [58, Section 4, Théorèm i), iii)] on projective limits

of local unit groups combined with Greenberg’s classical result [13, Proposition

5] on the triviality of the pseudonull submodules contained in the “p-ramified

Iwasawa module,” which seems to be rather different from ours. It was not clear

to us if the method used in [40] could be directly extended to general CM number

fields or not.

3.4.5. Intermediate steps: inductive specialization of the Selmer group

Next we shall inductively specialize the strict Selmer group SelΣ,str
ACM

η
so that the

characteristic ideal of its Pontrjagin dual behaves compatibly with respect to

each specialization procedure.

We use the same notation as in Section 3.4.2; in particular, Aj denotes the

ideal of ΛCM
O generated by a regular sequence x1, . . . , xj with xk = γk−1. We also

recall that the ideal Acyc of ΛCM
O is defined as the kernel of the natural surjection

ΛCM
O � Λcyc

O . Now let us consider the following three conditions (Γ0)j , (Γ1)j , and

(Γ2)j on the fixed elements γ1, . . . , γj of Gal(F̃ /F ):

(Γ0)j the sequence x1, . . . , xj is a regular sequence of ΛCM
O contained in Acyc;

(Γ1)j the hypothesis (LEOACM
η [Aj ]) is fulfilled for ACM

η [Aj ];

(Γ2)j the dual Selmer group SelL∗
str
(F, (T CM

η /AjT CM
η )∗) is trivial.

Here we regard the condition (Γ0)0 as the empty condition. The following propo-

sition is the key to our specialization arguments.

PROPOSITION 3.35

Let the notation be as above, and assume that the condition (ntr)Pc is fulfilled

for every place Pc of F contained in Σc
p. Suppose that, for a natural number j

with 1≤ j ≤ d+ δF,p − 1, all the conditions (Γ0)j−1, (Γ1)j−1, and (Γ2)j−1 are

fulfilled on a set of elements γ1, . . . , γj−1 of Gal(F̃ /F cyc
∞ ). Let SelΣ,str

ACM
η [Aj−1]

be the

strict Selmer group of ACM
η [Aj−1], and let (SelΣ,str

ACM
η [Aj−1]

)∨ be its Pontrjagin dual.

Then there exists an element γj of Gal(F̃ /F cyc
∞ ) such that the element xj = γj−1

of ΛCM
O does not divide in ΛCM

O /Aj−1 the characteristic ideal of the torsion part

of (SelΣ,str
ACM

η [Aj−1]
)∨, and all the conditions (Γ0)j , (Γ1)j , and (Γ2)j are fulfilled

on the tuples γ1, . . . , γj−1 and γj .
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We postpone the proof of Proposition 3.35, and we here deduce the base-change

compatibility of the characteristic ideal of (SelΣ,str
ACM

η
)∨ under intermediate special-

ization procedures from Proposition 3.35. First we note that, when j equals zero,

all the conditions (Γ0)0, (Γ1)0, and (Γ2)0 are fulfilled; indeed, the condition (Γ0)0
is empty by convention, and the condition (Γ1)0 follows from Lemma 3.31 and

the cotorsionness of the strict Selmer group SelΣ,str
ACM

η
(refer to the argument in Sec-

tion 3.4.4). The triviality of the dual Selmer group SelL∗
str
(F,T CM,∗

η ), namely the

condition (Γ2)0, also follows from Lemma 3.31 and the cotorsionness of the strict

Selmer group SelΣ,str
ACM

η
, combined with Proposition 3.26; recall that an arbitrary

place P contained in Σp satisfies the extra condition (c′) proposed in Proposi-

tion 3.26.

Now let j be a natural number with 1≤ j ≤ d+ δF,p − 1, and assume that

we have already chosen elements γ1, . . . , γj−1 of Gal(F̃ /F cyc
∞ ) so that all the con-

ditions (Γ0)j−1, (Γ1)j−1, and (Γ2)j−1 are fulfilled for them. We further assume

that SelΣ,str
ACM

η [Aj−1]
is cotorsion as a ΛCM

O /Aj−1-module, as an induction hypoth-

esis. Theorem 3.24 then enables us to conclude that the strict Selmer group

SelΣ,str
ACM

η [Aj−1]
is almost Λ

(j−1)
0 -divisible. Let (SelΣ,str

ACM
η [Aj−1]

)∨ denote the Pontrja-

gin dual of the strict Selmer group SelΣ,str
ACM

η [Aj−1]
. We apply Proposition 3.35 and

find an element γj of Gal(F̃ /F cyc
∞ ) so that xj = γj −1 does not divide the charac-

teristic ideal of (SelΣ,str
ACM

η [Aj−1]
)∨ and all the conditions (Γ0)j , (Γ1)j , and (Γ2)j are

fulfilled for the tuples γ1, . . . , γj−1 and γj . Then, from the exact control theorem

(Theorem 3.18) and the specialization lemma (Lemma 3.29), we readily deduce

the cotorsionness of the strict Selmer group SelΣ,str
ACM

η [Aj ]
as a ΛCM

O /Aj -module and

obtain the equality(
CharΛCM

O /Aj−1
(SelΣ,str

ACM
η [Aj−1]

)∨
)
⊗ΛCM

O /Aj−1
ΛCM
O /Aj

=CharΛCM
O /Aj

(SelΣ,str
ACM

η [Aj ]
)∨.

The induction proceeds until j achieves d+δF,p−1, and consequently, we see

that the strict Selmer group SelΣ,str
ACM

η [Ad+δF,p−1]
is cotorsion over ΛCM

O /Ad+δF,p−1

and the following equality among ideals of ΛCM
O /Ad+δF,p−1 holds:

(3.22)

(
CharΛCM

O
(SelΣ,str

ACM
η

)∨
)
⊗ΛCM

O
ΛCM
O /Ad+δF,p−1

=CharΛCM
O /Ad+δF,p−1

(SelΣ,str
ACM

η [Ad+δF,p−1]
)∨.

REMARK 3.36

We warn that we here exclude the case where j equals d+ δF,p due to the con-

straint imposed on j in Proposition 3.35; the case where j equals d+ δF,p shall

be dealt with later in Section 3.4.6 as the final specialization procedure.
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Let us return to the proof of Proposition 3.35. We first observe that the condition

(Γ2)j—the triviality of the dual Selmer group—is automatically fulfilled for an

appropriate choice of γj .

PROPOSITION 3.37

Let j be as above, and let γ1, . . . , γj−1 be elements of Gal(F̃ /F cyc
∞ ) for which all

the conditions (Γ0)j−1, (Γ1)j−1, and (Γ2)j−1 stated before Proposition 3.35 are

fulfilled. Assume further that the condition (ntr)Pc is fulfilled for every place Pc

of F contained in Σc
p. Let γj be an element of Gal(F̃ /F cyc

∞ ) such that the tuples

γ1, . . . , γj−1, γj satisfy the condition (Γ0)j and such that xj = γj − 1 does not

divide the characteristic ideal of the torsion part of (SelΣ,str
ACM

η [Aj−1]
)∨ in ΛCM

O /Aj−1.

Then the dual strict Selmer group SelL∗
str
(F, (T CM

η /AjT CM
η )∗) of (T CM

η /AjT CM
η )∗

is trivial.

Let us verify Proposition 3.35 admitting Proposition 3.37.

Proof of Proposition 3.35

Let γ1, . . . , γj−1 be elements of Gal(F̃ /F cyc
∞ ) as in the statement of Proposi-

tion 3.35, and let H be the closed subgroup of Gal(F̃ /F cyc
∞ ) topologically gener-

ated by γ1, . . . , γj−1. Set Γj−1 := Gal(F̃ /F cyc
∞ )/H and define CH as the set of all

the elements of Γj−1 with nontrivial images in Γj−1/(Γj−1)
p. Let us denote by

Y
(1)
j−1 the set of all the height-one prime ideals in Λ

(j−1)
0 dividing the character-

istic ideal of the torsion part of (SelΣ,str
ACM

η [Aj−1]
)∨, which is obviously a finite set.

Meanwhile, as we have remarked in Section 3.3.2, the validity of the hypothesis

(LEOACM
η [Aj−1]) implies the existence of a finite set Y

(2)
j−1 of exceptional prime

ideals of height one in Λ
(j−1)
0 , in the sense that the hypothesis (LEOACM

η [Aj−1][Π̄])

is true for every height-one prime ideal (Π̄) of Λ
(j−1)
0 which is not contained in

Y
(2)
j−1. Since the set of principal ideals in Λ

(j−1)
0 defined as {(γ̄−1)Λ

(j−1)
0 | γ̄ ∈ CH}

is infinite, we can choose an element γ̄j of CH such that the prime ideal (γ̄j − 1)

in Λ
(j−1)
0 generated by γ̄j − 1 is contained in neither Y

(1)
j−1 nor Y

(2)
j−1. Let us take

an arbitrary lift γj of γ̄j to Gal(F̃ /F cyc
∞ ). By construction, both the conditions

(Γ0)j and (Γ1)j are fulfilled on the tuples γ1, . . . , γj−1, γj of Gal(F̃ /F cyc
∞ ). We

now complete the proof of Proposition 3.35, since the condition (Γ2)j is also

fulfilled on them by virtue of Proposition 3.37. �

The remaining issue is the verification of Proposition 3.37. To simplify the nota-

tion, let us abbreviate the continuous Gal(FS/F )-representation (T CM
η /AkT CM

η )∗

and the discrete Gal(FS/F )-representation ACM
η [Ak] as T ∗

η,(k) and Aη,(k) respec-

tively in the proof of Proposition 3.37, where k equals j − 1 or j. We also use

the abbreviation X1
Aη,(k)

for the S-fine Selmer group X1(F,S,Aη,(k)) of Aη,(k).

Note that T ∗
η,(k) is a free ΛCM

O /Ak-module of rank one on which every element g

of Gal(FS/F ) acts by the multiplication of χ−1
p,cycη

gal(g−1)g. First recall that the
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cokernel of the global-to-local morphism

φL∗,(k)
str

: H1(FS/F,T ∗
η,(k))−→QL∗,(k)

str
(F,T ∗

η,(k))

is isomorphic to the kernel of the natural surjection (SelΣ,str
Aη,(k)

)∨ → (X1
Aη,(k)

)∨

for every k (see Section 3.3.4 for details); in particular, there exists a short exact

sequence

0 Coker(φL∗,(k)
str

) (SelΣ,str
Aη,(k)

)∨ (X1
Aη,(k)

)∨ 0(3.23)

for k = j − 1 or j. We consider the commutative diagram

(3.24)

0 Coker(φL∗,(j−1)
str

)

×xj

(SelΣ,str
Aη,(j−1)

)∨

×xj

(X1
Aη,(j−1)

)∨

×xj

0

0 Coker(φL∗,(j−1)
str

) (SelΣ,str
Aη,(j−1)

)∨ (X1
Aη,(j−1)

)∨ 0,

whose rows are the exact sequences (3.23) for k = j − 1 and vertical maps are
multiplication by xj . Note that the Pontrjagin dual of the strict Selmer group

SelΣ,str
Aη,(j−1)

does not contain nontrivial pseudonull Λ
(j−1)
0 -submodules due to the

assumptions (Γ0)j−1, (Γ1)j−1, and (Γ2)j−1 combined with Theorem 3.24. Since

xj does not divide the characteristic ideal of (SelΣ,str
Aη,(j−1)

)∨ by assumption, the

triviality of the pseudonull submodules of (SelΣ,str
Aη,(j−1)

)∨ implies that the middle

vertical map of (3.24) is injective (and so is the left vertical map). Thus, applying
the snake lemma to diagram (3.24), we obtain a four-term exact sequence

0 (X1
Aη,(j−1)

)∨[xj ]
δ̃∨1 C(j−1)

(
SelΣ,str

Aη,(j−1)
[xj ]
)∨ (

X1
Aη,(j−1)

[xj ]
)∨

0,

(3.25)

where we denote by δ̃∨1 the connecting homomorphism and define C(j−1) as

(3.26) C(j−1) := Coker
[
Coker(φL∗,(j−1)

str
)

×xj−−→Coker(φL∗,(j−1)
str

)
]
.

We also remark that there exists a natural commutative diagram

(3.27)

SelΣ,str
Aη,(j−1)

[xj ] X1
Aη,(j−1)

[xj ]

SelΣ,str
Aη,(j)

ιSel
j ∼

X1
Aη,(j)

ιX
1

j

both of whose vertical morphisms ιSelj and ιX
1

j are induced from the natural

inclusion ιAj : Aη,(j) =Aη,(j−1)[xj ] ↪→Aη,(j−1) of Gal(FS/F )-modules. Note that

the left vertical map ιSelj is an isomorphism due to the exact control theorem
(Theorem 3.18). Combining the Pontrjagin dual of the commutative diagram
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(3.27) with the exact sequence (3.25), we obtain the following diagram with
exact rows:

0 (X1
Aη,(j−1)

)∨[xj ]
δ̃∨1 C(j−1)

rCj

(
SelΣ,str

Aη,(j−1)
[xj ]
)∨

∼(ιSel
j )∨ �

(
X1

Aη,(j−1)
[xj ]
)∨

(ιX
1

j )∨

0

0 Coker(φL∗,(j)
str

) (SelΣ,str
Aη,(j)

)∨ (X1
Aη,(j)

)∨ 0.

(3.28)

Thanks to the commutativity of the right square of diagram (3.27), a homomor-

phism rCj : C(j−1) →Coker(φL∗,(j)
str

) (the dotted vertical arrow in diagram (3.28))

is induced. An easy diagram chase on (3.28) enables us to verify that the kernel

of the induced homomorphism rCj coincides with the image of δ̃∨1 , and therefore,

we obtain an exact sequence

0 (X1
Aη,(j−1)

)∨[xj ]
δ̃∨1

C(j−1)
rCj

Coker(φL∗,(j)
str

).(3.29)

Next recall that the dual Selmer group of T ∗
η,(k), which we denote by Sel∗,strT ∗

η,(k)

for brevity, is defined in terms of the exact sequence

0 Sel∗,strT ∗
η,(k)

H1
cts(FS/F,T ∗

η,(k))

φ
L∗,(k)
str

QL∗,(k)
str

(F,T ∗
η,(k)) Coker(φL∗,(k)

str
) 0

(3.30)

for k = j − 1 or j. When k equals j − 1, the triviality assumption (Γ2)j−1 on

Sel∗,strT ∗
η,(j−1)

suggests that the global-to-local morphism φL∗,(j−1)
str

in (3.30) is injec-

tive. We thus consider the commutative diagram
(3.31)

0 H1
cts(FS/F,T ∗

η,(j−1))

φ
L∗,(j−1)
str

×xj

QL∗,(j−1)
str

(F,T ∗
η,(j−1))

×xj

Coker(φL∗,(j−1)
str

)

×xj

0

0 H1
cts(FS/F,T ∗

η,(j−1))

φ
L∗,(j−1)
str

QL∗,(j−1)
str

(F,T ∗
η,(j−1)) Coker(φL∗,(j−1)

str
) 0,

whose horizontal rows are short exact sequences obtained by (3.30) for k = j − 1

and all of whose vertical maps are multiplication by xj . Note that the right

vertical arrow of (3.31) is injective, since it is the same as the left vertical arrow

of (3.24). The snake lemma applied to diagram (3.31) then suggests that the

cokernels of its vertical morphisms form a short exact sequence

0 H1,∗
(j−1)/xjH

1,∗
(j−1) Q∗

(j−1)/xjQ
∗
(j−1) C(j−1) 0(3.32)

with abbreviated notation

(3.33)
Hi,∗

(j−1) :=Hi
cts(FS/F,T ∗

η,(j−1)),

Q∗
(j−1) :=QL∗,(j−1)

str
(F,T ∗

η,(j−1)).
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Next we shall relate the short exact sequence (3.32) with the sequence (3.30)

for k = j, which concerns the dual Selmer group Sel∗,strT ∗
η,(j)

. To this end, we first

observe that the short exact sequence

0 T ∗
η,(j−1)

×xj

T ∗
η,(j−1)

πT
j

T ∗
η,(j) 0(3.34)

of Gal(FS/F )-modules induces the following exact sequence:

(3.35) 0−→H1,∗
(j−1)/xjH

1,∗
(j−1)

πH
j−−→H1,∗

(j)

δ1(j)−−→H2,∗
(j−1)[xj ]−→ 0.

We shall construct a homomorphism connecting Q∗
(j−1)/xjQ

∗
(j−1) with Q∗

(j) in a

way similar to the construction of πH
j . Let v be a place of F contained in S, and

let us denote by πH
j,v the injection on the local cohomology groups

πH
j,v : H

1
cts(Fv,T ∗

η,(j−1))/xjH
1
cts(Fv,T ∗

η,(j−1))−→H1
cts(Fv,T ∗

η,(j))

induced by the cohomological long exact sequence associated to (3.34).

LEMMA 3.38

For each v in S, the map πH
j,v induces an injection

πQ
j,v : QL∗,(j−1)

str
(Fv,T ∗

η,(j−1))/xjQL∗,(j−1)
str

(Fv,T ∗
η,(j−1))−→QL∗,(j)

str
(Fv,T ∗

η,(j))

with a cokernel isomorphic to H2
cts(Fv,T ∗

η,(j−1))[xj ].

Proof

In this proof, k denotes either j − 1 or j. There is nothing to prove for a place

Pc in Σc
p, since the local quotient QL∗,(k)

str
(FPc ,T ∗

η,(k)) itself is trivial. For a place

P in Σp, the local quotient QL∗,(k)
str

(FP,T ∗
η,(k)) coincides with the whole local

cohomology group H1
cts(FP,T ∗

η,(k)) by definition, and thus, we define the desired

injection πQ
j,P to be πH

j,P itself. Now let us consider a (nonarchimedean) place

λ in S which does not divide p. If the inertia subgroup Iλ acts nontrivially on

T ∗
η,(k) or, in other words, if ηgal is ramified at λ, then the Iλ-invariant submodule

of T ∗
η,(k) is trivial; it is because every element g of Iλ acts as multiplication of

the nontrivial element ηgal(g−1) on each component of the free ΛCM
O /Ak-module

T ∗
η,(k) of rank one, which is torsion-free as a Λ

(k)
0 -module. This observation implies

the triviality of the unramified cohomology group H1
ur(Fλ,T ∗

η,(k)), and thus, the

desired map πQ
j,λ should be defined as πH

j,λ. Finally assume that Iλ acts triv-

ially on T ∗
η,(k), or in other words, assume that ηgal is unramified at λ. Then the

unramified cohomology group H1
ur(Fλ,T ∗

η,(k)) is just the first continuous coho-

mology group H1
cts(Dλ/Iλ,T ∗

η,(k)) of the procyclic group Dλ/Iλ, and thus, the

surjection πT
j : T ∗

η,(j−1) →T ∗
η,(j) induces an injection

πur
j,λ : H

1
ur(Fλ,T ∗

η,(j−1))/xjH
1
ur(Fλ,T ∗

η,(j−1))−→H1
ur(Fλ,T ∗

η,(j))
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with a cokernel isomorphic to H2
cts(Dλ/Iλ,T ∗

η,(j−1))[xj ] due to the cohomological

long exact sequence associated to (3.34), regarded as the short exact sequences of

continuous Dλ/Iλ-modules. However, the procyclic group Dλ/Iλ ∼= Ẑ has coho-

mological dimension 1, and hence, the cokernel of πur
j,λ should vanish; in other

words, the injection πur
j,v is indeed an isomorphism. We therefore obtain a com-

mutative diagram with exact rows

(3.36)

H1,ur,∗
λ,(j−1)

/xjH
1,ur,∗
λ,(j−1)

πur
j,λ∼

H1,∗
λ,(j−1)

/xjH
1,∗
λ,(j−1)

πH
j,λ

Q∗
λ,(j−1)/xjQ

∗
λ,(j−1)

π
Q
j,λ

0

0 H1,ur,∗
λ,(j)

H1,∗
λ,(j)

Q∗
λ,(j) 0.

Here H1
cts(Fλ,T ∗

η,(k)), H
1
cts(Dλ/Iλ,T ∗

η,(k)), and QL∗,(k)
str

(Fλ,T ∗
η,(k)) are abbreviated

asH1,∗
λ,(k),H

1,ur,∗
λ,(k) , and Q∗

λ,(k) respectively. The commutativity of the left square in

(3.36) is due to the functoriality of the inflation map H1,ur,∗
λ,(k) →H1,∗

λ,(k), by virtue

of which πH
j,λ induces a map πQ

j,λ on the quotient modules (the dotted arrow in

(3.36)). Moreover, the cokernel of πQ
j,λ is isomorphic to that of πH

j,λ due to the

isomorphy of the left vertical map πur
j,λ. This is the end of the proof, since the

cokernel of πH
j,λ is isomorphic to H2(Fλ,T ∗

η,(j−1))[xj ] due to the cohomological

long exact sequence associated to (3.34). �

Set πQ
j as πQ

j = (πQ
j,v)v∈S , and consider the diagram

(3.37)

0

0 0 Im(δ̃∨1 )

0 H1,∗
(j−1)/xjH

1,∗
(j−1)

πH
j �

Q∗
(j−1)/xjQ

∗
(j−1)

π
Q
j

C(j−1)

rCj

0

0 Sel∗,strT ∗
η,(j)

H1,∗
(j) φ

L∗,(j)
str

δ1(j)

Q∗
(j) Coker(φL∗,(j)

str
) 0

H2,∗
(j−1)[xj ]

∏
v∈S

H2,∗
v,(j−1)[xj ]

0 0

where the left vertical sequence is the one obtained in (3.32) and we use the

following abbreviations for each v in S, i = 1,2, and k = j − 1, j in addition to

the abbreviations from (3.26) and (3.33):

(3.38) Sel∗,strT ∗
η,(j)

:= SelL∗,(j)
str

(F,T ∗
η,(j)), Hi,∗

v,(k) :=Hi
cts(Fv,T ∗

η,(k)).
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The top and bottom rows of (3.37) are the sequences (3.32) and (3.30) for k = j,

respectively, which are hence exact. The right column is the exact sequence (3.29).

Here we replace (X1
Aη,(j−1)

)∨[xj ] in (3.29) by Im(δ̃∨1 ) for later convenience in

Appendix B. The other columns are also exact due to the cohomological long

exact sequence and Lemma 3.38. Since both the maps πH
j and πQ

j are induced

from the canonical surjection πT
j : T ∗

η,(j−1) →T ∗
η,(j) of the continuous Galois mod-

ules, the functoriality of the restriction maps guarantees the commutativity of

the left square. We here verify the commutativity of the right square in (3.37).

LEMMA 3.39

The right square in diagram (3.37) commutes.

Proof

Consider the diagram

(3.39)

Q∗
(j−1)/xjQ

∗
(j−1)

πQ
j

C(j−1)

rCj �

(
SelΣ,str

Aη,(j−1)
[xj ]
)∨

(ιSel
j )∨

Q∗
(j) Coker(φL∗,(j)

str
) (SelΣ,str

Aη,(j)
)∨

obtained as the composition of the right square in (3.37) and the left commutative

square in (3.28). It suffices to prove that the composite square (3.39) commutes,

since the morphism Coker(φL∗,(j)
str

)→ (SelΣ,str
Aη,(j)

)∨ in the bottom row is injective.

The local Tate duality induces isomorphisms Q∗
(j−1)/xjQ

∗
(j−1)

∼= (Lstr,(j−1)[xj ])
∨

and Q∗
(j)

∼= (Lstr,(j))
∨. Here we set

Lstr,(k) =
∏
v∈S

Lstr(Fv,Aη,(k)) =
∏
v∈S

v/∈Σp∪Σc
p

H1
ur(Fv,Aη,(k))×

∏
v∈Σp

H1(Fv,Aη,(k))

for k = j − 1 and j. By construction both of the compositions(
Lstr,(j−1)[xj ]

)∨ ∼=Q∗
(j−1)/xjQ

∗
(j−1) C(j−1)

(
SelΣ,str

Aη,(j−1)
[xj ]
)∨

,

(Lstr,(j))
∨ ∼=Q∗

(j) Coker(φL∗,(j)
str

) (SelΣ,str
Aη,(j)

)∨

of the maps appearing in the rows of diagram (3.39) with the local Tate duality

isomorphisms are induced from the dual of the global-to-local restriction map

φL(k)
str

: SelΣ,str
Aη,(k)

→ Lstr,(k). Define ιLj : Lstr,(j) → Lstr,(j−1) to be the homomor-

phism induced from the canonical inclusion ιAj : Aη,(j) ↪→Aη,(j−1). By virtue of
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the functoriality of the restriction maps, we readily obtain a commutative square

Lstr,(j−1)[xj ] SelΣ,str
Aη,(j−1)

[xj ]

φ
L(j−1)
str

Lstr,(j)

ιLj

SelΣ,str
Aη,(j)

ιSel
j

φ
L(j)
str

whose Pontrjagin dual coincides with (3.39). Indeed, it is straightforward, from

the construction of the local Tate duality pairing as the usual cup product of

the group cohomology, to verify that the morphism πQ
j corresponds to the dual

(ιLj )
∨ : (Lstr,(j−1)[xj ])

∨ → (Lstr,(j))
∨ of ιLj with respect to the local Tate duality,

and thus, the proof is complete. Note that ιAj and πT
j correspond to each other

under the Pontrjagin duality. �

Now let us consider the coimage Coim(φL∗,(j)
str

) =H1,∗
(j) /Sel

∗,str
T ∗
η,(j)

of the global-to-

local morphism φL∗,(j)
str

and split the bottom row of (3.37) (or, in other words,

the exact sequence (3.30) for k = j) into two short exact sequences:

0 Sel∗,strT ∗
η,(j)

H1,∗
(j)

φ
L∗,(j)
str

Q∗
(j) Coker(φL∗,(j)

str
) 0

Coim(φL∗,(j)
str

)

0 0.

We define π̄H
j : H1,∗

(j−1)/xjH
1,∗
(j−1) →Coim(φL∗,(j)

str
) as the composition of πH

j with

the natural surjection H1,∗
(j) �Coim(φL∗,(j)

str
), and we define H2,∗

j as the cokernel

of π̄H
j . Then diagram (3.37) splits into the two diagrams

(3.40)

0 0

0 H1,∗
(j−1)/xjH

1,∗
(j−1)

πH
j

=
H1,∗

(j−1)/xjH
1,∗
(j−1)

π̄H
j

0

0 Sel∗,strT ∗
η,(j)

H1,∗
(j)

δ1(j)

Coim(φL∗,(j)
str

) 0

H2,∗
(j−1)[xj ] H2,∗

j 0

0 0
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and

(3.41)

0

0 0 Im(δ̃∨1 )

0 H1,∗
(j−1)/xjH

1,∗
(j−1)

π̄H
j

Q∗
(j−1)/xjQ

∗
(j−1)

π
Q
j

C(j−1)

rCj

0

0 Coim(φL∗,(j)
str

)

φ
L∗,(j)
str

Q∗
(j) Coker(φL∗,(j)

str
) 0

H2,∗
j

∏
v∈S

H2,∗
v,(j−1)[xj ]

0 0

with exact rows and columns. By applying the snake lemma to both diagrams

(3.40) and (3.41), we obtain two exact sequences

0 SelL∗,(j)
str

(F,T ∗
η,(j)) H2,∗

(j−1)[xj ]
prH2

H2,∗
j 0(3.42)

and

(3.43)

0 Im(δ̃∨1 )
δ2

H2,∗
j

∏
v∈S

H2
cts(Fv,T ∗

η,(j−1))[xj ].

(X1
Aη,(j−1)

)∨[xj ]

δ̃∨1 ∼ δsnake

Here we use the symbol δsnake for the composition δ2 ◦ δ̃∨1 to indicate that it is

constructed as the composition of the connecting homomorphisms derived from

the snake lemma. Meanwhile the Poitou–Tate nine-term exact sequence (see, e.g.,

[34, (8.6.10)]) provides the exact sequence

∏
v∈S

H0
cts(Fv,T ∗

η,(j−1))
∨ −→ (H2,∗

(j−1))
∨ Φ∨

PT−−−→X1
Aη,(j−1)

−→ 0 .
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By taking the Pontrjagin duals and the xj -torsion parts, we obtain the exact

sequence

(3.44) 0−→ (X1
Aη,(j−1)

)∨[xj ]
ΦPT−−−→H2,∗

(j−1)[xj ]
Res2,∗(j−1)−−−−−→

∏
v∈S

H2,∗
v,(j−1)[xj ],

where Res2,∗(j−1) denotes the map induced by the usual localization morphism.

Recall that the homomorphism ΦPT, which is often called the Poitou–Tate

morphism, is the one induced from the Poitou–Tate pairing. See also (B.6) in

Appendix B for the definition of ΦPT. The following proposition, whose proof is

slightly lengthy and is postponed until Appendix B, is the technical heart of the

proof of Proposition 3.37.

PROPOSITION 3.40
Consider the diagram

(3.45)

0 (X1
Aη,(j−1)

)∨[xj ]
ΦPT

H2,∗
(j−1)

[xj ]

Res
2,∗
(j−1)

pr
H2

∏
v∈S

H2
cts(Fv ,T ∗

η,(j−1))[xj ]

0 (X1
Aη,(j−1)

)∨[xj ]
δsnake

H2,∗
j

∏
v∈S

H2
cts(Fv ,T ∗

η,(j−1))[xj ]

where the top and bottom rows are the exact sequences (3.44) and (3.43), respec-

tively, and the middle vertical morphism prH2 is the quotient map defined in the

short exact sequence (3.42). Then diagram (3.45) commutes.

The commutativity of the right square in diagram (3.45) is obvious, since both

of the horizontal morphisms are induced from the global-to-local morphism

Res2,∗(j−1) : H
2,∗
(j−1) −→

∏
v∈S

H2
cts(Fv,T ∗

η,(j−1)).

Concerning the left square in (3.45), the top horizontal morphism ΦPT is the

one induced from the Poitou–Tate pairing, whereas the bottom horizontal mor-

phism δsnake is the composition of connecting morphisms derived from the snake

lemma and the local Tate duality isomorphisms. Therefore, we must carefully

study the relation between the global Poitou–Tate duality and the local Tate

duality to verify the commutativity of the left square. As we shall show below,

Proposition 3.37 follows immediately from Proposition 3.40.

Proof of Proposition 3.37 (admitting Proposition 3.40)

We observe from the short exact sequence (3.42) that the kernel of the mid-

dle vertical morphism prH2 in (3.45) is isomorphic to the dual Selmer group

SelL∗,(j)
str

(F,T ∗
η,(j)). We now readily verify its triviality by an easy diagram chase

on (3.45). �
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3.4.6. Final step: specialization from two variables to one variable

Suppose that we have already chosen elements γ1, . . . , γd+δF,p−1 of Gal(FS/F
cyc
∞ )

which satisfy all the conditions (Γ0)d+δF,p−1, (Γ1)d+δF,p−1, and (Γ2)d+δF,p−1 pro-

posed in Section 3.4.5. The existence of such tuples γ1, . . . , γd+δF,p−1 is justified

in Proposition 3.35. As the final step of the proof of Theorem 3.27, we discuss the

cyclotomic specialization of the strict Selmer group SelΣ,str
ACM

η [Ad+δF,p−1]
. We have

already verified in Section 3.4.5 that SelΣ,str
ACM

η [Ad+δF,p−1]
is cotorsion and almost

divisible as a Λ
(d+δF,p−1)
0 -module and that the equality (3.22) holds. In this sit-

uation the kernel of the natural surjection ΛCM
O /Ad+δF,p−1 � Λcyc

O is a princi-

pal ideal of ΛCM
O /Ad+δF,p−1 generated by xd+δF,p

= γd+δF,p
− 1, where γd+δF,p

is a lift of a topological generator of Gal(F̃ /F cyc
∞ )/〈γ1, . . . , γd+δF,p−1〉 ∼= Zp to

Gal(F̃ /F cyc
∞ ).

We henceforth denote ΛCM
O /Ad+δF,p−1 by Λ

(d+δF,p−1)
O to simplify the nota-

tion. In order to apply the specialization lemma (Lemma 3.29) to the finitely

generated torsion Λ
(d+δF,p−1)
O -module (SelΣ,str

ACM
η [Ad+δF,p−1]

)∨ and the prime ideal

(xd+δF,p
) of Λ

(d+δF,p−1)
0 of height one, we must verify that xd+δF,p

does not

divide the characteristic ideal of (SelΣ,str
ACM

η [Ad+δF,p−1]
)∨. Until the previous steps

we could choose a specializing element xj = γj − 1 avoiding the prime divisors of

the characteristic power series of the Pontrjagin dual of the strict Selmer group.

At this final step, however, the specializing element xd+δF,p
(or, more precisely,

the principal ideal xd+δF,p
Λ
(d+δF,p−1)
0 which it generates) is uniquely determined,

and we are not allowed to choose it freely. We still require the following claim.

CLAIM

Let the notation be as before, and let us assume both of (IMCF,ψ) and

(NVLcyc
p (fη)) (see Theorem 3.27 for details on these assumptions). Then the spe-

cializing element xd+δF,p
is relatively prime to the characteristic ideal of the Pon-

trjagin dual of the Λ
(d+δF,p−1)
O -module SelΣ,str

ACM
η [Ad+δF,p−1]

.

Proof

In order to prove the claim, we assume that xd+δF,p
does divide the characteristic

ideal of (SelΣ,str
ACM

η [Ad+δF,p−1]
)∨ and then deduce a contradiction. The cyclotomic

specialization of the characteristic ideal

(3.46)

(
CharΛCM

O
(SelΣ,str

ACM
η

)∨
)
⊗ΛCM

O
Λcyc
O

=
(
Char

Λ
(d+δF,p−1)

O
(SelΣ,str

ACM
η [Ad+δF,p−1]

)∨
)

⊗
Λ

(d+δF,p−1)

O
Λ
(d+δF,p−1)
O /xd+δF,p

Λ
(d+δF,p−1)
O
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is then trivial. Meanwhile, we obtain the equality of ideals of Ôur[[Gal(F̃ /F )]]

(3.47)
CharΛCM

O
(SelΣ,str

ACM
η

)∨ =Twηgalψ−1

(
CharΛCM

O
(SelΣ,str

ACM
ψ

)∨
)

=
(
Twηgalψ−1

(
LΣ
p (ψ)
))

by the Iwasawa main conjecture (IMCF,ψ) for F and ψ. We see from (3.46) and

(3.47) that Lcyc
p,CM(η) is trivial, because it is the projection of Twηgalψ−1(LΣ

p (ψ))

(multiplied by a unit) onto the Iwasawa algebra Ôur[[Gal(F+(μp∞)/F+)]]. On

the other hand, we have already observed in Corollary 2.25 that the element

Lcyc
p,CM(η) is a nonzero multiple of the cyclotomic p-adic L-function Lcyc

p (fη) of

fη = ϑ(η)p-st in each component of Ôur[[Gal(F+(μp∞)/F+)]]⊗Zp Qp. The non-

vanishing assumption (NVLcyc
p (fη)) thus leads us to a contradiction, which com-

pletes the proof of the claim. �

Due to the claim, we can apply the specialization lemma (Lemma 3.29) to

(SelΣ,str
ACM

η [Ad+δF,p−1]
)∨ and xd+δF,p

Λ
(d+δF,p−1)
0 . We thus observe that the strict

Selmer group SelΣ,str
Acyc

η
of the cyclotomic deformation Acyc

η of η is cotorsion as

a Λcyc
O -module, and we obtain the base-change compatibility of the characteristic

ideal with respect to the cyclotomic specialization:(
CharΛCM

O
(SelΣ,str

ACM
η

)∨
)
⊗ΛCM

O
Λcyc
O =CharΛcyc

O
(SelΣ,str

Acyc
η

)∨.

This is the end of the proof of Theorem 3.27.

3.5. Application to the Iwasawa main conjecture
We shall prove the main theorem of this article (Theorem 3.41). First let us recall

the notation and the settings. As in Section 1, let p be an odd prime number,

and let F+ be a totally real number field of degree d satisfying the unrami-

fiedness condition (unrF+). Consider a nearly p-ordinary p-stabilized newform

fη = ϑ(η)p-st with complex multiplication defined on F+, which is associated to

a größencharacter η of type (A0) on a totally imaginary quadratic extension F

of F+ satisfying the p-ordinarity condition (ordF/F+). We may assume that η is

admissible and ordinary with respect to an appropriate p-ordinary CM type Σ

of F , which we henceforth fix. Finally we choose and fix a branch character ψ

associated to η (see Definition 3.8).

THEOREM 3.41 (THEOREM D)

Let the notation be as above, and assume that all the following conditions are

fulfilled:

• the nontriviality condition (ntr)P for every place P of F contained in Σc
p;

• the (d+ δF,p +1)-variable Iwasawa main conjecture (IMCF,ψ) for the CM

field F and the branch character ψ;

• the assumption (NVLcyc
p (fη)) concerning the nonvanishing of the cyclotomic

p-adic L-function associated to fη = ϑ(η)p-st.
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Then the cyclotomic Iwasawa main conjecture for the Hilbert cusp form fη is

true up to μ-invariants; that is, the equality(
Lcyc
p

(
fη
))

=CharΛcyc
O

(Sel∨Acyc
fη

)(3.48)

holds as an equation of ideals of Ôur[[Gal(F+(μp∞)/F+)]]⊗Zp Qp. Furthermore,

the equality (3.48) holds as an equation of ideals of Λcyc
O if Conjecture 2.26 is

true for fη.

Proof

The claim follows directly from Corollary 2.25 and Theorem 3.27. �

REMARK 3.42 (ON THE MULTIVARIABLE IWASAWA MAIN CONJECTURE (IMCF,ψ))

Concerning the multivariable Iwasawa main conjecture for CM number fields

(IMCF,ψ), Ming-Lun Hsieh [25] has recently obtained several remarkable results

over the (d+ 1)-variable Iwasawa algebra associated to the Galois group of the

compositum of the anticyclotomic Zd
p-extension (d-variable) and the cyclotomic

Zp-extension (1-variable). If we assume the Leopoldt conjecture, which claims

that the Leopoldt defect δF,p would equal zero, then the Iwasawa algebra above

coincides with O[[Gal(F̃ /F )]] (which is isomorphic to each component of ΛCM
O ).

Thus, Hsieh’s result [25, Theorem 8.16] combined with the Leopoldt conjecture

implies a one-sided divisibility relation

LΣ
p (ψ) |CharΛCM

O
(Sel∨ACM

ψ
)

in our cases under certain technical assumptions. Also [25, Theorems 8.17 and

8.18] combined with the Leopoldt conjecture imply that the whole equality

LΣ
p (ψ) = CharΛCM

O
(Sel∨ACM

ψ
)

holds in our cases under certain technical assumptions.

REMARK 3.43 (ON THE NONVANISHING OF THE CYCLOTOMIC p-ADIC L-FUNCTIONS)

We here discuss the validity of the nonvanishing assumption (NVLcyc
p (f)) for gen-

eral Hilbert cusp forms. As in Theorem 2.15, let f be a normalized nearly p-

ordinary eigencuspform in Sκ(N, ε;Q) which is stabilized at p. If the region of

the convergence of the (twisted) Dirichlet series

L(f,φ, s) =
∑

a⊂rF+

C(a;f)φ∗(a)

Nas
(3.49)

contains at least one of κmax
1 +1, κmax

1 +2, . . . , κ2,min, then the cyclotomic p-adic

L-function Lcyc
p (f) associated to f does not vanish obviously. Indeed, the value

L(f,φ, j) of the (complex) L-function at such a point never equals zero, and

hence, the nonvanishing of Lcyc
p (f) immediately follows from the interpolation

formula (2.14). The Ramanujan–Petersson conjecture for Hilbert modular forms,

which was verified by Brylinski and Labesse [5, Théorème 3.4.5] and Blasius [3,

Theorem 1], suggests that the Dirichlet series (3.49) absolutely converges in the
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region Re(s) > [κ]/2 + 1, and thus, the nonvanishing of the cyclotomic p-adic

L-function of Lcyc
p (f) is automatically deduced when the inequality

κ2,min >
[κ]

2
+ 1

holds. In contrast, it is very hard to verify the nonvanishing of Lcyc
p (f) when

none of the critical points are contained in the region of convergence. For elliptic

modular forms, Rohrlich [42], [43] has verified in general situations that there

exists a Dirichlet character φ of p-power conductor such that at least one of the

critical values L(f,φ−1, j) does not vanish, and thus, the condition (NVLcyc
p (f)) is

fulfilled for general elliptic modular forms. For Hilbert modular forms, however,

there have not been enough results yet to verify the condition (NVLcyc
p (f)) for

general f .

Appendix A: Complex multiplication of Hilbert modular cusp forms

Let F+ be a totally real number field, and consider a Hilbert eigencuspform f

defined over GL(2)F+ of cohomological weight κ, level N, and nebentypus ε. Sup-

pose that [κ] is strictly greater than zero. We further assume that f is a primitive

form in the sense of Miyake [32], and we denote by Qf the Hecke field associated

to f . Then due to results of many people including Ohta [38], Carayol [6], Wiles

[57], Taylor [53], and Blasius and Rogawski [4], we can canonically attach to f

a strictly compatible system (ρf,λ)λ of 2-dimensional λ-adic representations of

the absolute Galois group GF+ of F+; namely, for each finite place λ of F+ with

residue characteristic �, the 2-dimensional λ-adic representation

ρf,λ : GF+ →AutQf,λ
Vf,λ

is unramified outside �N and characterized by the formulae

Tr ρf,λ(Frobq) =C(q;f), detρf,λ(Frobq) = χ−1
�,cycε

gal
+ (Frobq)

for each prime ideal q of F+ relatively prime to �N, where χ�,cyc denotes the

�-adic cyclotomic character. Further, each Galois representation ρf,λ is known to

be irreducible (see [54, Theorem 3.1]).

The following statement is widely known for elliptic modular forms due to

Ribet [41].

PROPOSITION A.1

Let f be a primitive Hilbert cusp form as above. Then the following three state-

ments on f are equivalent:

(1) the primitive form f has complex multiplication;

(2) the absolute Galois group GF+ contains an open subgroup H of index

two such that the image of H under the associated λ-adic Galois representation

ρf,λ is abelian for every finite place λ of Qf ;

(3) there exist a totally imaginary quadratic extension F of F+, a CM type

Σ of F , and a primitive Σ-admissible größencharacter η (in the sense that the



Iwasawa main conjecture for CM Hilbert cusp forms 83

modulus of η coincides with its conductor) of type (A0) on F such that f coincides

with the theta lift ϑ(η) of η. Furthermore the infinity type of η is described as∑
σ∈Σ κ1,σ|F+

σ+
∑

σ̄∈Σc κ2,σ̄|F+
σ̄.

In the cases above, ρf,λ is isomorphic to the induced representation IndF
+

F ηgal of

the 1-dimensional λ-adic representation ηgal : GF →Q×
f,λ, which corresponds to

the �-adic avatar η̂� of the größencharacter η of type (A0) introduced in statement

(3). Here we consider the �-adic avatar η̂� with respect to a specific embedding

Q ↪→Q� which induces λ on Qf .

The proof of Proposition A.1 proceeds analogously to Ribet’s arguments in [41,

Sections 3 and 4]. It is based upon a precise study of the λ-adic Galois rep-

resentation ρf,λ associated to the Hilbert modular cusp form f with complex

multiplication.

REMARK A.2

Due to the lack of appropriate references, we decided to give a proof of Proposi-

tion A.1 in this appendix. After the first redaction of the article, we learned that

some of the results in Proposition A.1, say, the equivalence between statements

(1) and (3), have already been proved in [28, Proposition 6.5] with the language

of automorphic representation. We still leave the proof of Proposition A.1 below,

believing that the proof with the language of Galois representation has its own

value.

Proof of Proposition A.1

We first prove that statement (3) implies statement (1). Assume that f is obtained

as the theta lift ϑ(η) of a primitive größencharacter η of type (A0) defined on

a totally imaginary quadratic extension F of F+. Then one easily observes by

the construction of the theta lift (refer to Proposition 2.13 for details) that the

Fourier coefficient C(q, ϑ(η)) at a prime ideal q of F+ equals zero if and only if q

is ramified or inert in F or, equivalently, the evaluation of the quadratic charac-

ter νF/F+ : A×
F+ → C× associated to the quadratic extension F/F+ at q equals

either 0 or −1. This is equivalent to the validity of (2.7) when one replaces the

character ν appearing in (2.7) by the quadratic character νF/F+ .

Next we prove that statement (1) implies statement (2). Assume that f has

complex multiplication by a nontrivial größencharacter ν on A×
F+ : then ν is a

quadratic character (see the arguments in Section 2.1.5). For each q in a set of

prime ideals of F+ of density one, (2.7) implies that the traces Tr ρf,λ(Frobq)

and Tr ρf⊗ν,λ(Frobq) coincide for each q in the same set of prime ideals. Since

both ρf,λ and ρf⊗ν,λ are irreducible by [54, Theorem 3.1], Čebotarev’s density

theorem suggests that they are isomorphic to each other as λ-adic representations

of GF+ . In other words, there exists a (2× 2)-matrix M in GL2(Qf,λ) such that

the equality

ρf,λ(g) =Mρf⊗ν,λ(g)M
−1 = ν(g)Mρf,λ(g)M

−1(A.1)
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holds for an arbitrary element g of GF+ when we fix noncanonical identifications

Vf,λ
∼=Q⊕2

f,λ and Vf⊗ν,λ
∼=Q⊕2

f,λ. Let us denote by H the kernel of the quadratic

character ν, which is a subgroup of index two of GF+ . Take an element g0 from

the complement of H in GF+ , and set T = ρf,λ(g0). We then obtain the equality

T = −MTM−1 by (A.1), from which we readily observe that M is semisimple

but not a scalar matrix. Also (A.1) implies that the image of H under ρf,λ is

contained in the commutant of the semisimple, nonscalar matrix M , and thus

it is abelian. The subgroup H satisfies all the required conditions in statement

(2), and hence, statement (2) follows from statement (1). We remark that, since

H is defined as the kernel of the rational quadratic character ν, it is determined

independently of the choice of a finite place λ of Qf .

We finally verify that statement (2) implies statement (3), which is a crucial

part of the proof. Suppose that GF+ contains an open subgroup H of index two

such that the image of H under each λ-adic representation ρf,λ is abelian. Let

F denote the subfield of Q corresponding to H , which is a quadratic extension

of F+. By assumption, the restriction ρf,λ|H of ρf,λ to H is a semisimple, abelian

λ-adic representation of H for every finite place λ of Qf , and therefore, ρf,λ|H
is locally algebraic due to the local algebraicity theorem proved by Serre [47,

Chapter III, Section 3] and Henniart [19, Section 6]. In other words, there exists

a morphism of algebraic groups r : SF,m/Qf
→GL(2)/Qf

giving rise to the strictly

compatible system (ρf,λ|H)λ of the λ-adic representations ρf,λ|H of H . Here

SF,m/Qf
denotes the base change to Qf of Serre’s algebraic group SF,m associated

to the field F of modulus m. By construction SF,m is defined over Q, and it

is an extension of the ray class group Cl(F )m of F modulo m (regarded as a

constant group scheme) by a certain algebraic torus TF,m defined over Q. In

particular, it is of multiplicative type. See [47, Chapter II] for details on SF,m.

The algebraic representation r is thus (Qf -rational and) semisimple; namely,

there exists a Qf -rational pair of algebraic characters (ηalg1 , ηalg2 ) of SF,m/Q (in

the sense that the summation ηalg1 + ηalg2 is invariant under the natural action of

Gal(Q/Qf )) such that r is isomorphic to the direct sum ηalg1 ⊕ ηalg2 over Q. For

each i= 1,2 and each finite place λ of Qf , let η
gal
i,λ denote the 1-dimensional λ-adic

representation associated to ηalgi , and let ηi denote the größencharacter of type

(A0) on F associated to ηalgi . Then by construction ηgali,λ is the Galois character

of H associated to the �-adic avatar η̂i,� of ηi, and ρf,λ|H is equivalent to the

direct sum of ηgal1,λ and ηgal2,λ. Now let c denote the generator of the quotient group

GF+/H , and let us take its arbitrary lift c̃ to GF+ . We define the c-conjugation

ρf,λ|cH of ρf,λ|H by ρf,λ|cH(h) = ρf,λ|H(c̃hc̃−1) for each element h in H . Note that

ρf,λ|cH is well defined independently of the choice of c̃. Then, since ρf,λ is defined

on GF+ , the trace of ρf,λ|cH obviously coincides with that of ρf,λ|H . Furthermore,

both ρf,λ|H and ρf,λ|cH are semisimple, and hence, they are isomorphic to each

other by Čebotarev’s density theorem. Consequently, either of the following two

cases occurs: (ηgal,ci,λ = ηgali,λ for i= 1,2) or (ηgal,c1,λ = ηgal2,λ and ηgal,c2,λ = ηgal1,λ). If the

former case occurs, then the equality ρf,λ(c̃h) = ρf,λ(hc̃) holds for every h in H .

This means that ρf,λ is an abelian representation of GF+ , which contradicts the
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irreducibility of ρf,λ. Therefore, the latter case does occur, and in particular, the

conjugation by ρf,λ(g̃) induces the interchange of η
gal
1,λ and ηgal2,λ if g̃ is an element

of the complement of H in GF+ . From this fact we readily verify that the image

ρf,λ(g̃) of such g̃ is conjugate to a matrix both of whose diagonal entries equal

zero, and thus, Tr ρf,λ(Frobq) is trivial for a prime ideal q of F+ which is inert

in F . If a prime ideal q of F+ splits completely in F , then on the contrary,

the decomposition group at q is naturally identified with H . Combining these

observations, we obtain the following formula for each prime ideal q which does

not divide �N:

(A.2)

Tr ρf,λ(Frobq)

=

{
ηgal1,λ(FrobQ) + ηgal1,λ(FrobQc) if q splits in F as q=QQ

c,

0 otherwise.

Here we use ηgal2,λ(FrobQ) = ηgal,c1,λ (FrobQ) = ηgal1,λ(FrobQc) in the former case. This

calculation (combined with Čebotarev’s density theorem and the irreducibility of

ρf,λ) implies that the λ-adic representation ρf,λ is isomorphic to the induced rep-

resentation Ind
GF+

H ηgal1,λ of ηgal1,λ. We remark that this is canonically extended to an

isomorphism between the strict compatible systems (ρf,λ)λ and (Ind
GF+

H ηgal1,λ)λ;

namely, ρf,λ is isomorphic to Ind
GF+

H ηgal1,λ for every finite place λ of Qf which

is not contained in either of the exceptional sets of the two strictly compatible

systems.

Now, we verify that the field F corresponding to the subgroup H of GF+ is a

purely imaginary quadratic extension of F+ (and thus F is, in particular, a CM

number field). Indeed, if F is not purely imaginary over F+, then every algebraic

character of Tm is described as an integral power of the norm character (see [47,

Chapter II, Section 3.3]). In particular, each λ-adic character ηgali,λ is described as

ηgali,λ = χ−ni

�,cycη
f
i,λ

for a certain integer ni and a certain character ηfi,λ of H of finite order. Then

the determinants of ρf,λ and Ind
GF+

H ηgal1,λ are calculated as follows:

detρf,λ = χ−1
�,cycε

gal
+ = χ

−[κ]
�,cycε

f
+,

det(Ind
GF+

H ηgal1,λ) = ηgal1,λη
gal
2,λ = χ−n1−n2

�,cyc (ηf1,λη
f
2,λ),

where εf+ denotes the finite part of εgal+ . Since these two 1-dimensional λ-adic

representations must coincide, we obtain the equality n1+n2 = [κ]. Furthermore,

(A.2) implies that

C(q;f) = Tr ρf,λ(Frobq) = ηf1,λ(Q)N qn1 + ηf2,λ(Q)N qn2

holds for each prime ideal q � �N of F+ which splits in F as q =QQ
c, because

χ�,cyc(Frobq) equals N q−1. By virtue of the Ramanujan–Petersson conjecture∣∣C(q;f)
∣∣≤ 2N q[κ]/2
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established by Brylinski and Labesse [4, Théorème 3.4.5] and Blasius [3, Theo-

rem 1], both n1 and n2 must be less than or equal to [κ]/2. We thus conclude

that, by combining this observation with the equality n1 +n2 = [κ], both n1 and

n2 equal [κ]/2. More specifically, the restriction ρf,λ|H is equivalent to the λ-adic

representation of the form (
ηf1,λ 0

0 ηf2,λ

)
⊗ χ

−[κ]/2
�,cyc ,

which has a finite image in PGL2(Qf,λ). This contradicts the fact that ρf,λ has

an infinite image in PGL2(Qf,λ) (one readily verifies this fact in the same manner

as in [41, Theorem (4.3)]), and thus, the field F corresponding to H is purely

imaginary over F+.

Next, we verify that the infinity type μ=
∑

σ∈IF
μσσ of η = η1 is described

in terms of the weight of f . To this end, we take a finite place p of F+ which

satisfies the following two properties:

(i)p the prime ideal p is contained in neither the exceptional set of the strictly

compatible system (ρf,λ)λ nor that of (Ind
GF+

H ηgalλ )λ;

(ii)p the unique prime ideal pZ of Z lying below p splits completely in the

extension F/Q.

The existence of such a finite place p is guaranteed by Čebotarev’s density theo-

rem. Now we fix an algebraic closure Qp of the completion F+
p of F+ at p and an

embedding ιp : Q ↪→ Qp. For each embedding τ : F+ ↪→ Q (i.e., τ is an element

of IF+ under the notation of Section 2.1.1), let pτ denote the finite place of F+

lying above pZ induced by the composition ιp ◦ τ : F+ ↪→Qp. Note that, due to

the condition (ii)p on p, the correspondence τ �→ pτ induces a bijection between

IF+ and the set of prime ideals of F+ lying above pZ. Let λ0 denote the finite

place of Qf induced by the embedding Qf ⊂ Q
ιp−→ Qp, and let us consider the

isomorphism

ρf,λ0
∼= Ind

GF+

H ηgalλ0
: GF+ →GL2(Qf,λ0)

of the λ0-adic representations of GF+ . It is obvious from their constructions that

both of ρf,λ0 |Dpτ
and (Ind

GF+

H ηgalλ0
)|Dpτ

are Hodge–Tate representations of Dpτ

for each τ in IF+ , and we shall compare their Hodge–Tate weights. As we have

remarked in the paragraphs preceding Remark 2.4, the Hodge type at τ of the

motive M(f)/F+ associated to f is given by {(κ1,τ , κ2,τ ), (κ2,τ , κ1,τ )}, and we

thus see that the Hodge–Tate weights of ρf,λ0 |Dpτ
are {κ1,τ , κ2,τ} via the com-

parison isomorphism in p-adic Hodge theory. Now let us study the Hodge–Tate

weight of (Ind
GF+

H ηgalλ0
)|Dpτ

for each τ in IF+ . Let wτ denote the unique (com-

plex) place of F lying above the real place of F+ determined by τ , which is

identified with the pair {στ,1, στ,2} of embeddings of F into Q whose restrictions

to F+ coincide with τ . Then the p-adic embeddings ιp ◦ στ,1 and ιp ◦ στ,2 of F

induce distinct prime ideals Pτ,1 and Pτ,2, which are interchanged by complex

conjugation. Recall that the Hodge type at wτ of the motive M(η)/F associated
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to the größencharacter η of type (A0) is given by {(μστ,1 , μστ,2), (μστ,2 , μστ,1)}
(see [2, Proposition (3.2.3)] or [46, Chapter 1, Section 4] for details). Since

(Ind
GF+

H ηgalλ0
)|Dpτ

is isomorphic to the direct sum ηgalλ0
|DPτ,1

⊕ηgalλ0
|DPτ,2

, we read-

ily see that the Hodge–Tate weights of (Ind
GF+

H ηgalλ0
)|Dpτ

are {μστ,1 , μστ,2}. By
comparing the Hodge–Tate weights, we can consider without loss of general-

ity that the two integers κ1,τ and κ2,τ coincide with μστ,1 and μστ,2 , respec-

tively. Furthermore, the inequality κ1,τ < κ2,τ holds for each τ in IF+ since

we have assumed that the weight κ of f was cohomological. Therefore, if we

set Σ = {στ,1 : F ↪→ Q | τ ∈ IF+}, then it is straightforward to verify that Σ is

a p-ordinary CM type of F with respect to which the infinity type μ of the

größencharacter η is admissible. Moreover, we readily redescribe μ in terms of κ

and Σ as in statement (3).

Finally, we verify that the primitive form f is described as the theta lift of

η. Since the infinity type of η is Σ-admissible, we have the theta lift ϑ(η) of

η by Proposition-Definition 2.13. The construction of η implies that the local

L-factors of f and ϑ(η) coincide at every prime ideal q � �N of F+ which splits

completely in F , and we thus conclude that f and ϑ(η) coincide up to a scalar

multiple due to the strong multiplicity one theorem for Hilbert modular forms.

However, both the Fourier coefficient at rF+ of f and that of ϑ(η) equal 1, and

hence, the primitive form f exactly coincides with the theta lift ϑ(η) of η. �

As an application of Proposition A.1, we can deduce conditions for the primi-

tive cusp form ϑ(η) with complex multiplication to be nearly p-ordinary. In the

following proposition we fix a p-adic embedding ιp : Q ↪→Qp.

PROPOSITION A.3

Let p be a prime number, and let f be a primitive Hilbert modular cusp form

with complex multiplication as above. Then f is nearly p-ordinary (with respect

to the specific p-adic embedding ιp) if and only if there exist a totally imaginary

quadratic extension F/F+ satisfying the ordinarity condition (ordF/F+) for the

prime number p, a p-ordinary CM type Σ of F , and a primitive Σ-admissible

and Σ-ordinary größencharacter η of type (A0) on F such that f is obtained as

the theta lift ϑ(η) of η.

Proof

We can easily verify that the condition is sufficient. Indeed, let F/F+, Σ, and

η be as in the statement. By the characterization of the Fourier coefficients of

the theta lifts, we readily see that, for every prime ideal p =PPc lying above

p, the eigenvalue C0(p;ϑ(η)) of the normalized Hecke operator U0(p) at ϑ(η)

equals the summation of {pκμ,1}−1η∗(P) and {pκμ,1}−1η∗(Pc). Note that the

value {pκμ,1}−1η∗(P) does not vanish, since η is unramified at P ∈ Σp due to

the ordinarity of η with respect to Σ. Moreover, we readily observe that, by

construction, {pκμ,1}−1η∗(P) has the same p-adic valuation as the evaluation

η̂P(�P) of the P-component of the p-adic avatar η̂ of η at a uniformizer �P of
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FP. Therefore, C0(p;ϑ(η)) is a p-adic unit for each p, and consequently ϑ(η) is

nearly p-ordinary.

Conversely let f be a nearly p-ordinary Hilbert modular cusp form with

complex multiplication, and let us take a totally imaginary quadratic extension

F/F+, a CM type Σ, and a Σ-admissible größencharacter η of type (A0) on F

as in Proposition A.1; then f is obtained as the theta lift of η. We denote by

Vf the Galois representation associated to f , which is isomorphic to the induced

representation IndF
+

F ηgal by Proposition A.1. First assume that there exists a

place p of F+ lying above p which does not split in F , and let P denote the

unique place of F above p. Since we can regard the decomposition group DP

of GF at P as a subgroup of the decomposition group Dp at p of index 2,

we readily identify the restriction of Vf to Dp with the induced representation

Ind
Dp

DP
ηgal|DP

, which is irreducible. Therefore, Vf |Dp
admits no 1-dimensional

Dp-subrepresentations. This contradicts Proposition 2.11, and thus, all places

of F+ lying above p split in F . In other words, the quadratic extension F/F+

satisfies the condition (ordF/F+) for p.

We next prove that Σ is a p-ordinary CM type. Let p be a place of F+

lying above p, which splits completely in F as p=PP
c by the arguments above.

The quadratic equation (2.6) in Proposition 2.11 has two roots �
−κ1,p

p η∗(P)

and �
−κ1,p

p η∗(Pc), one of which is a p-adic unit due to the near p-ordinarity of

f = ϑ(η). We can assume without loss of generality that �
−κ1,p

p η∗(P) is a p-adic

unit. Define ΣP and Σc
P as follows:

ΣP = {σ ∈Σ | ιp ◦ σ induces P}= {σ1, . . . , σs},

Σc
P = {σ̄ ∈Σc | ιp ◦ σ̄ induces P}= {σ̄s+1, . . . , σ̄s+t}.

We shall verify that Σc
P is empty or, in other words, that t equals 0. Since p splits

in F , the decomposition groupDp at p is contained inGF , and thus the restriction

of Vf to Dp is isomorphic to the direct sum of ηgal|DP
and ηgal,c|DP

. Hence, (2.6)

in Proposition 2.11 suggests that αf (�p) = ηgal(Frob�P
) = η̂(�P) coincides with

�
−κ1,p

p η∗(P). Here we identify F+
p with FP and define the uniformizer �P of

FP as �p via this identification. By the definition of the p-adic avatar (2.2), we

have

η̂(�P) =�
−
∑s

i=1 μσi
−
∑t

j=1 μσ̄s+j

P
η∗(P),(A.3)

where we denote by μ=
∑

σ∈Σ(μσσ + μσ̄σ̄) the infinity type of η. On the other

hand, since κ1 = κμ,1 equals
∑

σ∈Σ μσσ|F+ by the characterization of the weight

of the theta lift (see (2.8) for details), we have

�
−κ1,p

p η∗(P) =�
−
∑s+t

i=1 μσi

P
η∗(P).(A.4)

Comparing the exponents of �P in (A.3) and (A.4), we obtain the equality

t∑
j=1

(μσ̄s+j − μσs+j ) = 0.
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The Σ-admissibility of η implies the inequality μσ̄s+j > μσs+j for each j, which

forces t to be 0. Therefore, the CM type Σ is indeed a p-ordinary CM type.

Finally, we readily see by the argument above that the place P | p is an

element of Σ if and only if �
−κ1,p

p η∗(P) is a p-unit. This implies that the

größencharacter η is ordinary with respect to Σ. �

Appendix B: Comparison of the global and local duality pairings

In this appendix we provide the proof of Proposition 3.40. We work in the same

setting and use the same notation as in Section 3.4.5. First we recall that, as

is explained in the paragraphs preceding [16, Proposition 3.3.1], the Pontrjagin

dual of the cokernel of the global-to-local morphism φL∗,(j−1)
str

is identified with

the image of the global-to-local map

Res1(j−1)|SelΣ,str
Aη,(j−1)

: SelΣ,str
Aη,(j−1)

→ Lstr(F,Aη,(j−1))
(
⊂
∏
v∈S

H1(Fv,Aη,(j−1))
)

via the local Tate duality isomorphism

Φlocal = (Φlocal,v)v∈S :
∏
v∈S

H1(Fv,Aη,(j−1))
∨ ∼−→

∏
v∈S

H1
cts(Fv,T ∗

η,(j−1)).

In other words, the summation of the local Tate pairing

〈·, ·〉local =
∑
v∈S

〈·, ·〉v :
∏
v∈S

H1(Fv,Aη,(j−1))×
∏
v∈S

H1
cts(Fv,T ∗

η,(j−1))→Qp/Zp

induces a perfect pairing

〈·, ·〉local : Im(Res1(j−1)|SelΣ,str
Aη,(j−1)

)×Coker(φL∗,(j−1)
str

)→Qp/Zp,

for which we use the same symbol 〈·, ·〉local to simplify the notation. Since the

module C(j−1) introduced in diagram (3.28) is defined as the cokernel of the

multiplication of xj on Coker(φL∗,(j−1)
str

), the perfect pairing 〈·, ·〉local above also

induces a perfect pairing

〈·, ·〉local : K(j−1) ×C(j−1) →Qp/Zp,

where K(j−1) is defined as

(B.1) K(j−1) := Ker
[
Im(Res1(j−1)|SelΣ,str

Aη,(j−1)

)
×xj−−→ Im(Res1(j−1)|SelΣ,str

Aη,(j−1)

)
]
.
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Now consider the commutative diagram
(B.2)

K(j−1)

0 X1
Aη,(j−1)

×xj

SelΣ,str
Aη,(j−1)

Res1(j−1)

×xj

Im
(
Res1(j−1)|SelΣ,str

Aη,(j−1)

)
×xj

0

0 X1
Aη,(j−1)

SelΣ,str
Aη,(j−1)

Res1(j−1)

Im
(
Res1(j−1)|SelΣ,str

Aη,(j−1)

)
0

X1
Aη,(j−1)

/xjX1
Aη,(j−1)

0

whose rows are exact by the definition of the S-fine Selmer group X1
Aη,(j−1)

. We

denote by

δ1 : K(j−1) X1
Aη,(j−1)

/xjX1
Aη,(j−1)

the connecting homomorphism associated to diagram (B.2) through the snake

lemma.

Diagram (B.2) is obtained as the Pontrjagin dual of diagram (3.24), and we

thus observe that the connecting homomorphism δ̃∨1 in diagram (3.28) is obtained

as the composition

(X1
Aη,(j−1)

)∨[xj ]
δ∨1

(K(j−1))∨
Φlocal

∼
C(j−1),(B.3)

where δ∨1 denotes the dual morphism of δ1 and Φlocal is the isomorphism induced

by the perfect pairing 〈·, ·〉local. By construction, the local Tate duality map

Φlocal isomorphically sends the image of δ∨1 onto that of δ̃∨1 , or in other words,

the perfect pairing 〈·, ·〉local induces a perfect pairing

〈·, ·〉local : Coim(δ1)× Im(δ̃∨1 )→Qp/Zp,

which makes the following diagram commutative:

(B.4)

K(j−1) × C(j−1)
〈·,·〉local

Qp/Zp

Coim(δ1) × Im(δ̃∨1 )
〈·,·〉local

Qp/Zp.

Recall that we have defined the (injective) morphism δ2 : Im(δ̃∨1 ) → H2,∗
j

as the connecting homomorphism associated to diagram (3.41) via the snake

lemma. See the paragraph preceding the short exact sequences (3.42) and (3.43)

for the definition of the module H2,∗
j . Let X2

T ∗
η,(j−1)

denote the kernel of the
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global-to-local morphism

Res2,∗(j−1) : H
2,∗
(j−1) −→

∏
v∈S

H2
cts(Fv,T ∗

η,(j−1)).

Combining the short exact sequence defining X2
T ∗
η,(j−1)

and the sequence (3.43)

with Im(δ̃∨1 ) replaced by Im(δ2), we obtain the following commutative diagram

with exact rows:

0 X2
T ∗
η,(j−1)

prX 2

H2,∗
(j−1)

prH2

Res2,∗(j−1) ∏
v∈S

H2
cts(Fv,T ∗

η,(j−1)) 0

0 Im(δ2) H2,∗
j

∏
v∈S

H2
cts(Fv,T ∗

η,(j−1)) 0.

We readily observe that the middle vertical morphism prH2 , which is defined in

(3.42), induces a surjection prX2 : X2
T ∗
η,(j−1)

� Im(δ2). Note that the right com-

mutative square of the diagram above is the same as that of diagram (3.45). The

rest of this appendix is devoted to the verification of the following proposition.

PROPOSITION B.1

Let 〈·, ·〉PT : denote the perfect pairing

X1
Aη,(j−1)

/xjX1
Aη,(j−1)

×X2
T ∗
η,(j−1)

[xj ]→Qp/Zp

induced from the Poitou–Tate pairing X1
Aη,(j−1)

×X2
T ∗
η,(j−1)

→Qp/Zp. Then the

equality 〈
(sv)v∈S , (tv)v∈S

〉
local

=
〈
δ1
(
(sv)v∈S

)
, δ2
(
(tv)v∈S

)∼〉
PT

(B.5)

holds for arbitrary elements (sv)v∈S and (tv)v∈S in Coim(δ1) and Im(δ̃∨1 ), respec-

tively, where δ2((tv)v∈S)
∼ denotes an arbitrary element of X2(F,S,T ∗

η,(j−1))[xj ]

which is sent to δ2((tv)v∈S) by the map prX2 introduced above.

In particular, the perfect pairing 〈·, ·〉PT induces a pairing

X1
Aη,(j−1)

/xjX1
Aη,(j−1)

× Im(δ2) Qp/Zp,
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which makes the following diagram commutative:

Coim(δ1)

δ1 ∼

× Im(δ̃∨1 )

δ2∼

〈·,·〉local
Qp/Zp

X1
Aη,(j−1)

/xjX1
Aη,(j−1)

× Im(δ2) Qp/Zp

X1
Aη,(j−1)

/xjX1
Aη,(j−1)

× X2
T ∗
η,(j−1)

[xj ]
〈·,·〉PT

prX 2

Qp/Zp.

We readily observe that Proposition 3.40 is a direct consequence of Proposi-

tion B.1. As we remarked just after Proposition 3.40, the commutativity of the

right square of the diagram in Proposition 3.40 is obvious, and we thus only

need to check the commutativity of the left square of the diagram there. Let

f : X1
Aη,(j−1)

→Qp/Zp be an arbitrary element of (X1
Aη,(j−1)

)∨[xj ], and let a be

an arbitrary element of X1
Aη,(j−1)

/xjX1
Aη,(j−1)

. Then there exists a unique ele-

ment b of Coim(δ1) satisfying δ1(b) = a. By definition the duality isomorphisms

Φlocal and ΦPT are characterized by the relations

δ∨1 (f)(b) =
〈
b,Φlocal

(
δ∨1 (f)

)〉
local

, f(a) =
〈
a,ΦPT(f)

〉
PT

.(B.6)

Proposition B.1 thus provides the following equality:〈
a,ΦPT(f)

〉
PT

= f(a) = f
(
δ1(b)
)
= δ∨1 (f)(b)

=
〈
b,Φlocal

(
δ∨1 (f)

)〉
local

=
〈
δ1(b), δ2

(
Φlocal

(
δ∨1 (f)

))∼〉
PT

(here we apply Proposition B.1)

=
〈
a, δ2
(
Φlocal

(
δ∨1 (f)

))∼〉
PT

.

The perfectness of the Poitou–Tate pairing thus implies the equality

ΦPT(f) = δ2
(
Φlocal

(
δ∨1 (f)

))∼
.(B.7)

Since the connecting homomorphism δsnake appearing in Proposition 3.40 is

decomposed as δsnake = δ2 ◦Φlocal ◦ δ∨1 due to (3.43) and (B.3), we finally deduce

the desired equality

prH2 ◦ΦPT(f) = δ2
(
Φlocal

(
δ∨1 (f)

))
= δsnake(f)

by applying prX2(= prH2) to both sides of (B.7). The final equality shows the

commutativity of the left square of the diagram in Proposition 3.40.

The proof of Proposition B.1 requires a somewhat lengthy computation. We

first calculate the cohomology classes δ1((sv)v∈S) and δ2((tv)v∈S) explicitly and

then check that 〈δ1((sv)v∈S), δ2((tv)v∈S)
∼〉PT coincides with 〈(sv)v∈S , (tv)v∈S〉local

by a direct computation. In order to estimate the value 〈δ1((sv)v∈S), δ2((tv)v∈S)
∼〉PT,
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we utilize the explicit evaluation formula of the Poitou–Tate duality pairing

〈·, ·〉PT : X1
Aη,(j−1)

× X2
T ∗
η,(j−1)

→ Qp/Zp, which we recall below (see [52, Sec-

tion 3] for details1). In the rest of the article, we denote by C•(G,M) the stan-

dard cochain complex of a continuous G-module M over a profinite group G,

and we denote by dM (or just d if it is clear from the context) its coboundary

homomorphism. Let [f ] be an element of X2
T ∗
η,(j−1)

represented by a continuous

2-cocycle f in C2(Gal(FS/F ),T ∗
η,(j−1)), and let [f ′] be an element of X1

Aη,(j−1)

represented by a continuous 1-cocycle f ′ in C1(Gal(FS/F ),Aη,(j−1)). For each v

in S, we denote by fv the restriction of f to the decomposition group Dv at v.

Since [f ] is locally trivial at v, there exists a 1-cochain gv in C1(Dv,T ∗
η,(j−1)) sat-

isfying dgv = fv . Recall that F has no real places, which implies the triviality of

the global cohomology group H3(FS/F,μp∞) (see, e.g., [34, (8.6.10)(ii)]). Thus,

there exists a 2-cochain h in C2(Gal(FS/F ), μp∞) satisfying dh = f ′ ∪ f . Then

the value 〈[f ′], [f ]〉PT is explicitly calculated as〈
[f ′], [f ]

〉
PT

=
∑
v∈S

{−f ′
v ∪ gv − hv}v,(B.8)

where, for each v in S, hv denotes the restriction of h to the decomposition

subgroupDv , and {·}v : H2(Fv, μp∞)
∼−→Qp/Zp is the invariant isomorphism at v.

Now let us calculate δ1((sv)v∈S) and δ2((tv)v∈S).

Calculation of δ1((sv)v∈S). Let (sv)v∈S be an arbitrary element of Coim(δ1).

There exists an element [z] of SelΣ,str
Aη,(j−1)

, represented by a 1-cocycle z in

C1(Gal(FS/F ),Aη,(j−1)), which is sent to (sv)v∈S by Res1(j−1). Then, follow-

ing the definition of the connecting homomorphism δ1 given in diagram (B.2),

the evaluation of δ2 at (sv)v∈S is calculated as

δ1
(
(sv)v∈S

)
= [xjz] mod xjX1

Aη,(j−1)
.

For each v in S, we denote by zv the restriction of the 1-cocycle z to the decom-

position group Dv at v.

Calculation of δ2((tv)v∈S). Let (tv)v∈S be an arbitrary element of Im(δ̃∨1 ).

We calculate δ2((tv)v∈S) by diagram chasing on (3.37) (or on (3.41)). For each

v in S, take a cocycle wv of C1(Fv,T ∗
η,(j−1)) so that the element represented

by the cohomology class ([wv])v∈S in Q∗
(j−1) is sent to (tv)v∈S under the natu-

ral surjection Q∗
(j−1)/xjQ

∗
(j−1) � C(j−1). Here we use the same symbol (tv)v∈S

for its image in C(j−1). Denoting by w̄v the image of wv under the surjection

C1(Fv,T ∗
η,(j−1))� C1(Fv,T ∗

η,(j)), we have πQ
j (([wv])v∈S) = ([w̄v])v∈S . Then dia-

gram (3.41) implies that there exists a unique element � of Coim(φL∗,(j)
str

) satisfy-

ing φL∗,(j)
str

(�) = ([w̄v])v∈S . The image of � in H2,∗
j is none other than δ2((tv)v∈S)

by definition.

1Indeed, the explicit description of the Poitou–Tate pairing is proposed only for finite Galois

modules in [52] and other parts of the literature, but it is straightforward to justify the same
description under our settings by the standard limit argument based upon Tate’s theorem on

the inverse limits of Galois cohomology groups.
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We do a little more precise computation. Let us take an arbitrary lift �̃ of

� with respect to the canonical surjection H1,∗
(j) �Coim(φL∗,(j)

str
), which is repre-

sented by a 1-cocycle w̃ in C1(Gal(FS/F ),T ∗
η,(j)). Then diagram (3.40) implies

that the image of δ1(j)([w̃]) in H2,∗
j coincides with δ2((tv)v∈S). In other words,

δ1(j)([w̃]) is regarded as a lift δ2((tv)v∈S)
∼ of δ2((tv)v∈S). The element δ1(j)([w̃]) is,

however, calculated in the usual manner; namely, if we take a 1-cochain (not nec-

essarily a 1-cocycle) ŵ of C1(Gal(FS/F ),T ∗
η,(j−1)) which is sent to w̃ under the

natural surjection C1(Gal(FS/F ),T ∗
η,(j−1)) � C1(Gal(FS/F ),T ∗

η,(j)), then the

image δ1(j)([w̃]) of [w̃] coincides with [x−1
j dŵ]. Note that the lift δ2((tv)v∈S)

∼

of δ2((tv)v∈S) is determined uniquely modulo Sel∗,strT ∗
η,(j)

, but this ambiguity corre-

sponds to that of the choices of lifts �̃= [w̃] of �. Therefore, each δ2((tv)v∈S)
∼ is

obtained in this procedure, or more specifically, we obtain an explicit description

of an arbitrary lift δ2((tv)v∈S)
∼ of δ2((tv)v∈S) as [x

−1
j dŵ], for an appropriate ŵ

as above.

Replacement of local cochains. As we have obtained explicit descriptions of

δ1((sv)v∈S) and δ2((tv)v∈S)
∼, we evaluate these elements under the Poitou–Tate

pairing: 〈
δ1
(
(sv)v∈S

)
, δ2
(
(tv)v∈S

)∼〉
PT

=
〈
[xjz], [x

−1
j dŵ]

〉
PT

.(B.9)

In order to apply the explicit formula (B.8) to (B.9), we need to find a 1-cochain

w̌v of C1(Fv,T ∗
η,(j−1)) satisfying the equality dw̌v = x−1

j dŵv of cocycles for each

v in S, where ŵv denotes the restriction of ŵ to the decomposition group Dv .

In order to find such a nice 1-cochain w̌v , we first study the relation between ŵv

and wv , the cocycle which we first took in the computation of δ2((tv)v∈S) above.

LEMMA B.2

For each v in S, there exist 1-cochains �v and cv in C1(Fv,T ∗
η,(j−1)) satisfying

the following two properties:

(1) the image of �v under the surjection C1(Fv,T ∗
η,(j−1))�C1(Fv,T ∗

η,(j)) is

a 1-cocycle representing a cohomology class contained in Lstr(Fv,T ∗
η,(j));

(2) the cochains ŵv and wv + �v + xjcv coincide modulo coboundaries.

Proof

Let w̃v denote the restriction of the cocycle w̃ to the decomposition group Dv .

Then by construction, w̃v satisfies the equation(
[w̃v]
)
v∈S

(
= φL∗,(j)

str

(
[w̃]
))

=
(
[w̄v]
)
v∈S

in Q∗
(j), and hence, there exists a 1-cocycle �̄v of C1(Fv,T ∗

η,(j)), representing a

cohomology class contained in L∗
str(Fv,T ∗

η,(j)), such that w̃v coincides with w̄v+ �̄v

modulo coboundaries. Let �v be an arbitrary 1-cochain in C1(Fv,T ∗
η,(j−1)) which

is sent to �̄v under the natural surjection C1(Fv,T ∗
η,(j−1))�C1(Fv,T ∗

η,(j)). Again

by construction, ŵv and wv + �v have the same image w̄v + �̄v in C1(Fv,T ∗
η,(j)).



Iwasawa main conjecture for CM Hilbert cusp forms 95

We now readily verify the existence of a cochain cv satisfying the claim due to

the natural exact sequence

C1/B1(Fv,T ∗
η,(j−1))

×xj−−→C1/B1(Fv,T ∗
η,(j−1))�C1/B1(Fv,T ∗

η,(j))→ 0.

Here C1/B1(Fv,T ∗
η,(k)) denotes the quotient of C1(Fv,T ∗

η,(k)) with respect to its

submodule consisting of all coboundaries. �

Lemma B.2 enables us to replace ŵv by wv + �v +xjcv in the computation of the

Poitou–Tate pairing (B.9).

Computation of the Poitou–Tate pairing. We are ready to calculate the eval-

uation of the Poitou–Tate pairing (B.9). On the one hand, we readily observe

that the local cocycle x−1
j dŵv is redescribed as

x−1
j dŵv = x−1

j d(wv + �v + xjcv) = x−1
j d�v + dcv(B.10)

up to coboundaries by virtue of Lemma B.2. On the other hand, the cohomology

class ([x−1
j dŵv])v∈S is the restriction of the element δ2((tv)v∈S)

∼ = [x−1
j dŵ],

which is an element of X2
T ∗
η,(j−1)

by construction. This observation implies that

each x−1
j dŵv = x−1

j d�v + dcv is itself a coboundary. Let us take for every v in

S a 1-cochain λv in C1(Fv,T ∗
η,(j)) satisfying x−1

j d�v = dλv , so that the equality

x−1
j dŵv = d(λv + cv) holds up to coboundaries. Moreover, the equation

xjz ∪ x−1
j dŵ = z ∪ dŵ =−d(z ∪ ŵ)

holds since z is a 1-cocycle. Applying the explicit formula (B.8) for f = x−1
j dŵ,

f ′ = xjz, gv = λv + cv , and hv =−(z ∪ ŵ)v =−zv ∪ ŵv , we calculate the value of

the Poitou–Tate pairing 〈δ1((sv)v∈S), δ2((tv)v∈S)
∼〉PT as follows:

(B.11)

〈
δ1
(
(sv)v∈S

)
, δ2
(
(tv)v∈S

)∼〉
PT

=
∑
v∈S

{
−[xjzv]∪ [λv + cv]− (−zv ∪ ŵv)

}
v

=
∑
v∈S

{
−[zv]∪ xj [λv + cv] + [zv]∪ [wv + �v + xjcv]

}
v

=
∑
v∈S

{
[zv]∪ [wv]

}
v
+
∑
v∈S

{
[zv]∪ [�v − xjλv]

}
v

=
∑
v∈S

〈sv, tv〉v +
∑
v∈S

〈
sv, [�

′
v]
〉
v
.

Here we set �′v = �v − xjλv , which is indeed a cocycle as one readily checks:

d�′v = d�v − xjdλv = d�v − xj(x
−1
j d�v) = 0.

We also note that the last equality of (B.11) is just the definition of the local

Tate duality: 〈[av], [bv]〉v = {[av]∪ [bv]}v .
Completion of the proof. Let us complete the verification of (B.5). Due to the

previous computation (B.11), it suffices to show that 〈sv, [�′v]〉v equals 0 for each

place v in S. Since sv is an element of Lstr(Fv,Aη,(j−1))[xj ] and L∗
str(Fv,T ∗

η,(j−1))
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is defined as the orthogonal compliment of Lstr(Fv,Aη,(j−1)) with respect to the

local Tate pairing 〈·, ·〉v , the triviality of 〈sv, [�′v]〉v is reduced to the following

claim.

CLAIM

For each place v in S, the 1-cocycle �′v represents a cohomology class contained

in L∗
str(Fv,T ∗

η,(j−1)) + xjH
1
cts(Fv,T ∗

η,(j−1)).

The following lemma is the technical key to the verification of the claim. Let

δ1v,(j) : H
1
cts(Fv,T ∗

η,(j))→H2
cts(Fv,T ∗

η,(j−1))

denote the connecting homomorphism of the cohomological long exact sequence

associated to (3.34).

LEMMA B.3

Let v be a finite place in S, and let ξ̄v be an arbitrary cocycle of C1(Fv,T ∗
η,(j)) rep-

resenting a cohomology class contained in L∗
str(Fv,T ∗

η,(j)). Furthermore, assume

that the image of the cohomology class [ξ̄v] under δ1v,(j) is trivial when v is a place

belonging to Σc
p. Then there exists a lift ξ̃v of ξv to C1(Fv,T ∗

η,(j−1)) such that ξ̃v
is also a cocycle and it represents a cohomology class in L∗

str(Fv,T ∗
η,(j−1)).

Proof

The statement is nontrivial only when v is a place in Σc
p or a place not lying above

p such that the inertia group Iv acts trivially on T ∗
η,(k); otherwise, the local con-

dition L∗
str(Fv,T ∗

η,(k)) is trivial and there is nothing to prove. In the former case,

the local condition L∗
str(Fv,T ∗

η,(k)) coincides with the whole cohomology group

H1
cts(Fv,T ∗

η,(k)). The assumption δ1v,(j)([ξ̄v]) = 0 then guarantees the existence

of a cohomology class [ξ̃′v] of H
1
cts(Fv,T ∗

η,(j−1)) whose image in H1
cts(Fv,T ∗

η,(j))

coincides with [ξ̄v]. In the latter case, the local condition L∗
str(Fv,T ∗

η,(k)) is iso-

morphic to H1
cts(Dv/Iv,T ∗

η,(k)). Consider the cohomological long exact sequence

associated to (3.34):

H1
cts(Dv/Iv,T ∗

η,(j−1))
(�)

H1
cts(Dv/Iv,T ∗

η,(j)) H2
cts(Dv/Iv,T ∗

η,(j−1)).

Since the procyclic quotient Dv/Iv ∼= Ẑ has cohomological dimension 1, the sec-

ond cohomology group H2
cts(Dv/Iv,T ∗

η,(j−1)) should be trivial, and hence, the

natural map (�) is surjective.

We thus find in both cases a cocycle ξ̃′v of C1(Fv,T ∗
η,(j−1)) representing a

cohomology class in L∗
str(Fv,T ∗

η,(j−1)), whose image in C1(Fv,T ∗
η,(j)) coincides

with ξ̄v up to coboundaries. Since the natural surjection T ∗
η,(j−1) � T ∗

η,(j) obvi-

ously induces a surjection C•(Fv,T ∗
η,(j−1))�C•(Fv,T ∗

η,(j)) on the cochain com-

plexes, we can take a lift of an arbitrary coboundary in C1(Fv,T ∗
η,(j)) from the
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submodule of coboundaries in C1(Fv,T ∗
η,(j−1)). This enables us to construct a

desired cocycle ξ̃v by modifying ξ̃′v in the same cohomology class. �

Proof of Proposition B.1

We first recall that the cocycle �̄v satisfies δ1v,(j)([�̄v]) = 0 for every place v in S.

Indeed, δ1v,(j)([�̄v]) is calculated as [x−1
j d�v] due to the definition of the connecting

homomorphism δ1v,(j). Then, the cohomology class [x−1
j d�v] is trivial by (B.10)

and the fact that [x−1
j dŵ] = δ2((tv)v∈S) is an element of X2

T ∗
η,(j−1)

. Therefore,

by applying Lemma B.3, we find a 1-cocycle �̃v in C1(Fv,T ∗
η,(j−1)) which is a

lift of �̄v and represents a cohomology class contained in L∗
str(Fv,T ∗

η,(j−1)). It is

straightforward to see that �′v in the claim above is also a lift of �̄v by definition,

and thus, �̃v − �′v is contained in xjC
1(Fv,T ∗

η,(j−1)) due to the exact sequence

0→C1(Fv,T ∗
η,(j−1))

×xj−−→C1(Fv,T ∗
η,(j−1))�C1(Fv,T ∗

η,(j))→ 0.

This calculation verifies the claim above, and hence, the proof of Proposition B.1

is completed. �
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