Regular functions on spherical nilpotent
orbits in complex symmetric pairs: Classical
non-Hermitian cases
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Abstract Given a classical semisimple complex algebraic group G and a symmetric pair
(G, K) of non-Hermitian type, we study the closures of the spherical nilpotent K-orbits
in the isotropy representation of K. For all such orbit closures, we study the normality,
and we describe the K-module structure of the ring of regular functions of the normal-

izations.
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Introduction

Let G be a connected semisimple complex algebraic group, and let K be the fixed
point subgroup of an algebraic involution 6 of G. Then K is a reductive group,
which is connected if G is simply connected.

The Lie algebra g of G splits into the sum of eigenspaces of 6,

g=tadp,

where the Lie algebra £ of K is the eigenspace of eigenvalue 1, and p is the
eigenspace of eigenvalue —1. The adjoint action of G on g, once restricted to K,
leaves £ and p stable.

Therefore, p provides an interesting representation of K, called the isotropy
representation, where one may want to study the geometry of the K-orbits. With
this aim, one looks at the so-called nilpotent cone N, C p, which consists of the
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elements whose K-orbit closure contains the origin. In this case, N, actually
consists of the nilpotent elements of g which belong to p. By a fundamental
result of Kostant and Rallis [21, Theorem 2], as in the case of the adjoint action
of G on g, there are finitely many nilpotent K-orbits in p.

Provided K is connected, we restrict our attention to the spherical nilpotent
K-orbits in p. Here spherical means with an open orbit for a Borel subgroup of
K or, equivalently, with a ring of regular functions which affords a multiplicity-
free representation of K. The classification of these orbits is known and due to
King [19].

In the present article, we begin a systematic study of the closures of the
spherical nilpotent K-orbits in p. In particular, we analyze their normality and
describe the K-module structure of the coordinate rings of their normalizations.
This is done by making use of the technical machinery of spherical varieties,
which is recalled in Section 1.

Here we will deal with the case where (G, K) is a classical symmetric pair
with K semisimple; the other cases will be treated in forthcoming articles. The
semisimplicity of K is equivalent to the fact that p is a simple K-module, in
which case G/K is also called a symmetric space of non-Hermitian type.

Let Gr be a real form of G with Lie algebra gr and Cartan decomposition
gr = fr + pgr, so that 6 is induced by the corresponding Cartan involution of
GRr. Then K is the complexification of a maximal compact subgroup Kr C Gg,
and the Kostant—Sekiguchi-Pokovié correspondence (see [14], [30]) establishes
a bijection between the set of the nilpotent Gr-orbits in gr and the set of the
nilpotent K-orbits in p. Let us briefly recall how it works. More details and
references can be found in [12].

Every nonzero nilpotent element e € gg lies in an sl(2)-triple {h,e, f} C gr.
Every sl(2)-triple {h,e, f} C gr is conjugate to a Cayley triple {h' €', f'} C gr,
that is, an s[(2)-triple with 8(h') = =4/, 8(e’) = — f/, and 8(f') = —€’. To a Cayley
triple in gr one can associate its Cayley transform

the fyo {ile— ). gle+ FHim), (et f—im)}

this is a normal triple in g, that is, an s[(2)-triple {h/,€¢’, f'} with A’ € £ and
e, f/ €p. By [21], any nonzero nilpotent element e € p lies in a normal triple
{h,e, f} C g, and any two normal triples with the same nilpositive element e are
conjugated under K. Then the desired bijective correspondence is constructed
as follows. Let O C gr be an adjoint nilpotent orbit, choose an element e € O
belonging to a Cayley triple {h,e, f}, consider its Cayley transform {h',€’, f'},
and let @' = K¢'. Then O’ C p is the nilpotent K-orbit corresponding to O.

Among the nice geometric properties of the Kostant—Sekiguchi-Dokovié cor-
respondence, we just recall here one result concerning sphericality: the spherical
nilpotent K-orbits in p correspond to the adjoint nilpotent Gg-orbits in gg which
are multiplicity free as Hamiltonian Kg-spaces (see [18]).

In accordance with the philosophy of the orbit method (see, e.g., [1]), the
unitary representations of Gg should be parameterized by the (co-)adjoint orbits
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of Gg. In particular, one is interested in the so-called unipotent representations of
GR, namely, those which should be attached to nilpotent orbits. The K-module
structure of the ring of regular functions on a nilpotent K-orbit in p (which
we compute in our spherical cases) should give information on the corresponding
unitary representation of Gg. Unitary representations that should be attached to
the spherical nilpotent K-orbits are studied in [17] (when G is a classical group)
and [29] (when G is the special linear group). When G is the symplectic group,
for particular spherical nilpotent K-orbits, such representations are constructed
in [32] and [33].

The normality and the K-module structure of the coordinate ring of the clo-
sure of a spherical nilpotent K-orbit in p have been studied in several particular
cases, with different methods, by Nishiyama [24], [25], by Nishiyama, Ochiai, and
Zhu [26], and by Binegar [2]. In Appendix A we report the list of the spherical
nilpotent K-orbits in p for all symmetric pairs (g,€) of classical non-Hermitian
type. In the classical cases, the adjoint nilpotent orbits in real simple algebras
are classified in terms of signed partitions, as explained in [12, Chapter 9]. In the
list, every orbit is labeled with its corresponding signed partition.

For every orbit we provide an explicit description of a representative e € p, as
an element of a normal triple {h,e, f}, and the centralizer of e, which we denote
by K.. All these data can be directly computed using King’s [19] paper on the
classification of the spherical nilpotent K-orbits (but we point out a missing case
therein; see Remark A.1).

The first datum which is somewhat new in this work is the Luna spherical
system associated with N (K. ), the normalizer of K, in K, which is a wonderful
subgroup of K. It is equal to K], the stabilizer of the line through e, and note
that K|/ K. = C*. The Luna spherical systems are used to deduce the normality
or nonnormality of the K-orbits and to compute the corresponding K-modules
of regular functions.

Appendix B consists of two sets of tables, where we summarize our results
on the spherical nilpotent K-orbits in p. Given such an orbit O = Ke, in the first
set (see Tables 2-10) we describe the normality of its closure O, and if 0O—0

denotes the normalization, then we describe the K-module structure of C[O] by

giving a set of generators of its weight semigroup I'(O) (i.e., the set of the highest
weights occurring in C[0)]). The second set (see Tables 11-19) contains the Luna
spherical systems of Ny (K.).

In Section 1 we compute the Luna spherical systems. In Section 2 we study
the multiplication of sections of globally generated line bundles on the corre-
sponding wonderful varieties, which turns out to be always surjective in all cases

except one. In Section 3 we deduce our results on normality and semigroups.

Notation

Simple roots of irreducible root systems are denoted by a1, as,... and enumer-
ated as in Bourbaki; when belonging to different irreducible components they
are denoted by ay,as,..., af,ab, ..., o&f,ay, ..., and so on. For the fundamental
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weights we adopt the same convention, they are denoted by wy,ws, ..., w},wh,. ..,
wi,w, ..., and so on. In the tables for the orthogonal cases at the end of the arti-
cle we use a variation of the fundamental weights w;, s, ..., which is explained
in Appendix B. By V(\) we denote the simple module of highest weight \; the
acting group will be clear from the context.

1. Spherical systems

In this section we compute the Luna spherical systems given in the tables at
the end of the article, in Appendix B. First, let us briefly explain what a Luna
spherical system is (see, e.g., [5] for a plain introduction).

1.1. Luna spherical systems

Recall that a subgroup H of K is called wonderful if the homogeneous space
K/H admits an open equivariant embedding in a wonderful K-variety. A K-
variety is called wonderful if it is smooth and complete with an open K-orbit
whose complement is the union of D1,..., D, smooth prime K-stable divisors
with nonempty transversal crossings such that two points z,z’ lie in the same
K-orbit if and only if

{ZiEEDZ}:{ZLC/GDZ}

The wonderful embedding of K/H is unique up to equivariant isomorphism and
is a projective spherical K-variety. The number r of prime K-stable divisors is
called the rank of X.

Let us fix, inside K, a maximal torus 7" and a Borel subgroup B containing 7.
This choice yields a root system R and a set of simple roots S in R. Let us also
denote by (-,-) the scalar product in the Euclidean space spanned by R, by o
the coroot associated with «, and by (-,-) the usual Cartan pairing

(a,A)

(¥, Ay = (@)

For any spherical K-variety X, the set of colors, which is denoted by Ax,
is the set of prime B-stable, non-K-stable divisors of X. It is a finite set. In
our case, if X is the wonderful embedding of K/H, then the colors of K/H are
just the irreducible components of the complement of the open B-orbit, and the
colors of X are just the closures of the colors of K/H, so that the two sets Ax
and Ag/y are naturally identified.

For any spherical K-variety X one can also define another finite set, the set
of spherical roots, usually denoted by Y x . Here we recall its definition only in the
wonderful case. Suppose X is the wonderful embedding of K/H. By definition,
X contains a unique closed K-orbit; therefore, every Borel subgroup of K fixes
in X a unique point. Let us call z the point fixed by B~, the opposite of the
Borel subgroup B. For all K-stable prime divisors D;, let ¢; be the T-eigenvalue
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occurring in the normal space of D; at z
T.X
T.D;
Then the set of spherical roots is the set ¥x = {o1,...,0,}, also denoted by

Y i/ - The spherical roots are linearly independent, and the corresponding reflec-
tions

Ny —2 (0i,7) o
generate a finite group of orthogonal transformations which is called the little
Weyl group of X . In our case, in which the center of K acts trivially, the spherical
roots are elements of NS, that is, linear combinations with nonnegative integer
coefficients of simple roots.

The Picard group of a wonderful variety X is freely generated by the equiv-
alence classes of the colors of X. Expressing the classes of the K-stable divisors
in terms of the basis given by the classes of colors

[Di] = Z cx/u(D,0:)[D],
DeAk/u

we get a Z-bilinear pairing, which is also called a Cartan pairing,
CK/H: ZAK/H X ZEK/H — 7.

It is known to satisfy quite strong restrictions, as follows.

For any simple root o € S, the set of colors moved by «, which is denoted by
Ag (), is the set of colors that are not stable under the action of the minimal
parabolic subgroup Pj,). Any simple root o moves at most two colors, and more
precisely, there are exactly four cases.

Case p. a moves no colors.

Case a. o moves two colors. This happens if and only if a € Yk, g, and in
this case we have

(2) CK/H(D,O')SlfOI' allDeAK/H(a) andUEEK/H,
(3) ZDGAK/H(a) cx/u(D,o)=(a", o) forall 0 € Xk .

Case 2a. a moves one color and 2a € Y /pg. In this case if D € Ag /g (a),
then we have cx/p(D,0) = 3(aV,0) for all 0 € Sy .

Case b. a moves one color and 2a ¢ Yk . In this case if D € Ak, (),
then we have cx g (D,0) = (a",0) for all 0 € Xk .

The set of simple roots moving no colors is denoted by S} JH- The set of colors
A,y is a disjoint union of subsets A‘;(/H, A%?/H, and A';(/H which consist of
colors moved by simple roots of type (a), (2a), and (b), respectively. The set

A;‘(/H is also denoted by Ag .

Case a. A color in Ag,g may be moved by several simple roots.
Case 2a. A color in A%‘/ g is moved by a unique simple root.
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Case b. A color in Al}{ /i May be moved by at most two simple roots. In this
case, two simple roots o and 8 move the same color if and only if a and § are
orthogonal and o+ 3 € Y/ g

Note that the full Cartan pairing cx/p: ZAg g X ZX kg — Z is determined
by its restriction to Ag /g X Xk . If H is a wonderful subgroup of K, then the
triple (Sf(/H,EK/mAK/H), endowed with the map cx/p: Ax g X Ex/m — 7Z,
is called the spherical system of H.

1.2. Luna diagrams
In Appendix B, we present the spherical systems of the wonderful subgroups
H =Ng(K.) of K by providing the sets of spherical roots ¥k, and the Luna
diagrams. The Luna diagram of a spherical system consists of the Dynkin diagram
of K decorated with some extra symbols from which one can read off all the data
of the spherical system. Let us briefly explain how it works. Here we only explain
how to read off the missing data (the set SE{/H and the map cx/p: A g XXk /H;
see, e.g., [5] for a complete description).

Every circle (shadowed or not) represents a color. Circles corresponding to
the same color are joined by a line. The colors moved by a simple root are close
to the corresponding vertex of the Dynkin diagram.

Case p. No circle is placed in correspondence to the vertex.

Case a. Two circles are placed: one above and one below the vertex.
Case 2a. One circle is placed below the vertex.

Case b. One circle is placed around the vertex.

Therefore, the set SP is given by the vertices with no circles. It is worth saying
that in general SP is included in {a € S: (aV,0) =0 Vo € X}.

To read off the map ¢: A x ¥ — Z, one has to know that an arrow (it looks
more like a pointer but it has a source and a target) starting from a circle D
above a vertex o and pointing toward a spherical root ¢ nonorthogonal to «
means that ¢(D, o) = —1. Vice versa, the Luna diagram is organized so that the
colors D corresponding to circles that lie above the vertices have ¢(D,o) > —1
for all o € 3, so if there is no arrow starting from a circle D above a vertex « and
pointing toward a spherical root o nonorthogonal to « (with D ¢ A(0)), then
this means that ¢(D,o) = 0. These together with the properties of the Cartan
pairing for colors of type (a), explained above, allows us to recover the map
c: AxXY—7Z.

The two colors moved by a € SN Y will be denoted by DF and D, . The
former refers to the circle placed above the vertex, while the latter refers to the
circle placed below. The color moved by a simple root « ¢ X will be denoted
by D,.

As an example we show in detail how to recover the map ¢: A x ¥ — Z for
the first case of the list where a nonempty set A g,z occurs (case 4.4 with g > 2).
The group K is of type C,, x C,, with p and ¢ greater than 2. The set of spherical
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roots is
/ !/ / !/ /! !/
= {01, a,04, 05,0 +2(ah 4 +al 1)+l },

and the Luna diagram is as follows.

5 <6 ] &

o 99 ‘
Here the set SP is given by the simple roots «; for all 4 <i <p and o] for all

4 <i<gq. The elements of A, that is, the colors of type (a), are five:
+ _pt - _p- + _ pt -
Daz—Da,Q, DO“—D%7 Dal—Da,17 D

/e
ay

D,
We know that, for all colors D of type (a), ¢(D,0) =1if 0 € S and D € A(0), and
c(D,0) <0 otherwise. Therefore, let us show how to determine c¢(Dg,, o) for all
o€ X. First D, € Aap); then ¢(Dg,, a2) = 1. Since there is an arrow from D,
to a1, ¢(DZ,,a1) = —1; furthermore, ¢(Dg,,a1) + ¢(DZ,,a1) = (ay,a1) = —1.
Thus, we have ¢(Dg,,a1) = 0. The other spherical roots o are orthogonal to as,
so ¢(Dg,,0) +c¢(DE,,0)=0.1f ¢(Dg,,0) is less than 0, then ¢(DJF,,o) must be

greater than 0, but this happens only if D € A(c). Therefore, ¢(D,,04) = -1
while it is 0 on the other two spherical roots c(Dg,,a}) = ¢(Dg,, o + 2(aj +

-+ ay 1) +a;)=0. The entire map c: A x ¥ — Z is as follows.

oy ay o oy o3
D10 1 0 -1 0
prl-1 1 0 1 0
D |1 -1 -1 1 0
pil1 0o 1 -1 0
D,|-1 0 1 o0 -1

1.3. Operations on spherical systems

Here we briefly recall the definition and the essential properties of some combina-
torial operations on spherical systems which correspond to geometric operations
on wonderful varieties (see, e.g., [5] for some more details and references).

1.3.1. Subsystems

All (irreducible) K-subvarieties of a wonderful K-variety X are wonderful. They
are exactly the K-orbit closures of X and are in correspondence with the subsets
of ¥x.If Dy,..., D, are the K-stable prime divisors of X, recall that the spherical
roots o1, ...,0, are T-eigenvalues occurring, respectively, in the normal spaces of
D; at z, T,X/T,D;. Therefore, every K-subvariety X’ of X is the intersection
of some K-stable prime divisors

X' =D

iel

for some I C {1,...,r}. Its spherical system is thus given by
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. 5% = SE,
[ ] ZXI:{UiIi¢I},
e Ax/ = Uaesmle Ax («) with the map cx restricted to ZAx, X ZX x/.

1.8.2. Quotients

Let X7 and X2 be the wonderful embeddings of K/H; and K/Hs, respectively.
If H; is included in Hs with connected quotient Hy/H;, there exists a surjective
equivariant morphism from X; to X5 with connected fibers. In terms of spherical
systems this is equivalent to an operation called quotient, as follows. A subset A’
of Ax, is called distinguished if there exists a linear combination with positive
coeflicients

D'e Y npD
DeA’
such that c¢x, (D’,0) >0 for all 0 € Xx,. If A’ is distinguished, then the monoid

(NEx,)/A" ={0ceNZx, :¢x,(D,0)=0VD e A}

is known to be free (see [3]). Therefore, we can consider the following triple,
which is called the quotient of the spherical system of X; by A’:

o S% /A" ={acS:Ax (a) C A},

o Y, /A’ the basis of (NXx,)/A’,

o Ay /A= UaeS’ﬂ(le/A’) Ax, () endowed with the map cx, restricted to
Z(Ax, /&) x Z(Ex, ).

If X; and X5 are wonderful K-varieties with a surjective equivariant mor-
phism with connected fibers ¢: X1 — X, then A, ={D € Ax, : (D) = X}
is distinguished and the spherical system of X5 is equal to the quotient of the
spherical system of X; by A’W. If X; is a wonderful K-variety, then every dis-
tinguished subset A’ of Ay, corresponds in this way to a surjective equivariant
morphism with connected fibers onto a wonderful variety whose spherical system
is equal to the quotient of the spherical system of X; by A’

1.8.8. Parabolic inductions

Let @ be a parabolic subgroup of K, with Levi decomposition @ = LQ". A won-
derful K-variety X is said to be obtained by parabolic induction from the won-
derful L-variety Y if

X=KxqY,

where Q" acts trivially on Y. Further, since Y is a wonderful L-variety, the
radical of L acts trivially on Y, as well.

Clearly, if the wonderful K-variety X is obtained by parabolic induction
from the wonderful embedding of L/M, then X is the wonderful embedding
of K/(MQ"). In terms of spherical systems this corresponds to the following
situation. Assume that ) contains B~ and L contains T', and denote by Sy, the
subset of S generating the root subsystem of L. The wonderful K-variety X is
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obtained by parabolic induction from a wonderful L-variety Y if and only if
S% U{suppo:VoeXx} CSy.

In this case, the spherical system of Y, after the above inclusion, is equal to the
triple (S%,YXx,Ax). In plain words, the spherical system of X is obtained from
the spherical system of Y by letting the extra simple roots in S \. .S;, move one
extra color each so that they are all of type (b).

1.8.4. Localizations
Let @ be a parabolic subgroup of K, containing B~, and let Q = LQ" be its Levi
decomposition, with L containing T'. Denote by L' the radical of L, and denote
by St the subset of S generating the root subsystem of L.

Let X be a wonderful K-variety. Consider the subset of X of points fixed by
L*, and take its connected component which contains z, the unique point fixed
by B~ . It is a wonderful L-variety Y called the L-localization of X. The spherical
system of Y is obtained from the spherical system of X as follows:

o Sy =5%nN5Sg,
e Xy ={0€Xx:suppo CSL},
* Ay =Uaes,nzy Ax (@) with the map cx restricted to ZAy x ZYy-.

In this case the spherical system of Y is said to be obtained from the spherical
system of X by localization in Sp,.

1.4. Luna’s classification of wonderful varieties

Here we recall the statement of Luna’s theorem of the classification of wonderful
varieties (see [23, Théoréme 1], [13, Corollary 3], [9, Theorem 1.2.3]). In our case
the center of K always acts trivially, so here we assume for convenience that K
is a semisimple complex algebraic group of adjoint type. Let T, B, and S be as
above.

Every spherical root of any wonderful K-variety is the spherical root of a
wonderful K-variety of rank 1, and the wonderful varieties of rank 1 are well
known. In particular, the set X(K) of the spherical roots of all the wonderful
K-varieties is finite and is described by the following result.

THEOREM 1.1
Every spherical Toot o of any wonderful K-variety, for any semisimple complex
algebraic group K of adjoint type, belongs to Table 1.

There is an abstract notion of a Luna spherical system given as follows.

DEFINITION 1.2

A triple (SP,%,A), where SP is a subset of S, ¥ is a subset of 3(K) without
proportional elements, and A is a finite set endowed with a map ¢: A x X — Z
is called a spherical K -system if the following axioms hold.
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Table 1. Spherical roots

Type of support | Spherical root

A1 «Q

A1 20

A1 x Ay a+a

Anm o+t am

As a1+ 2az + a3

Bm o+t am

B 201 + -+ am)

Bs a1 + 202 + 303

Cn a1 +2(ae+ -+ am-1) +am
D 2(a1 + -+ am—2) Fam-—1+am
Fa a1+ 2a2 + 3as + 2a4

Go 2001 + a2

GQ 40[1 + 20[2

Go a1 + a2

(Al) Forall De A, ¢(D,o)<1forall c €%, and ¢(D,0)=1 only if 0 € S.
(A2) For all a € SNE, {De€A:¢(D,a)=1} has cardinality 2, and for all
ol

Y eD,0)=(a,0).
D:c¢(D,a)=1

(A3) For all D € A there exists a € S ﬁ ¥ with ¢(D,a) =1.

(£1) For all a € S such that 2a € ¥, 1(aV,0) € Z< for all o € ¥\ {2a}.

(¥2) For all @ and § in S such that « and § are orthogonal and o+ g € ¥,
(aV,0)=(BY,0) for all o € X.

(S) For all ogEe,

e ifo=a; + -+ ay, with suppo of type B,,, then
{ag,...,am1}CSPC{acS:(a",0)=0};
e ifo=01+2(a+ -+ am-1) + ay, with suppo of type C,,, then
{az,...,am} CSPC {aES: (a¥, o) 20};
e otherwise

{aesuppa (", o) O}CSPC{OLGS aV 070}
The following is known as Luna’s theorem of classification of wonderful varieties.

THEOREM 1.3

The map which associates to a wonderful K -variety X its spherical system (S%,
Yx,Ax) is a bijection between the set of wonderful K -varieties up to equivariant
isomorphism and the set of spherical K -systems.
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1.5. The spherical systems of the list

Here we show that the spherical systems given in the tables of Appendix B
are indeed the spherical systems associated with Ny (K.), the normalizers of
the centralizers of the representatives e given in Appendix A. For all K, every
spherical system given in the tables satisfies the axioms of Definition 1.2, so
by Theorem 1.3 it is equal to a spherical system associated with a (uniquely
determined up to conjugation) wonderful subgroup of K. Here we compute this
wonderful subgroup for any spherical system of Appendix B.

1.5.1. Parabolic inductions and trivial factors
In all the spherical systems of Appendix B the set (suppX) U SP is properly
contained in S. Therefore, the corresponding wonderful K-varieties X can be
obtained by parabolic induction from wonderful L-varieties Y, where L is prop-
erly contained in K. We set Sy, = (supp ) U SP. Furthermore, in general supp ¥
and SP \ supp X are orthogonal, so that L is a direct product L; X Lo, where
Sp, =supp¥ and Sr, = SP N\ supp X, with Ly acting trivially on Y. In many
cases SP \ supp ¥ is nonempty. Note that the above decomposition L = L1 X Lo
is not uniquely determined, but here the center of L acts trivially on Y, so we
do not care which part of the center of L is contained in the two factors L; and
LQ.

In the following we will compute, in all our cases, the wonderful subgroups
associated with the spherical systems obtained by localization in Sz, = supp 2.

1.5.2. Trivial cases

Incases 1.1 (r=1),2.1 (r=1),31(r=1),4.1 (r=1),5.1,6.1,7.1 (r=1), 8.1
(r=1), and 9.1 (r=1), the set ¥ is empty, so the spherical system obtained
by localization in supp X is trivial. More explicitly, the parabolic subgroups @ of
K given in Appendix A are the wonderful subgroups associated with the given
spherical K-systems.

1.5.3. Symmetric cases

In cases 1.1, 2.1, 3.1, 4.1, 4.2 (¢=1), 43 (p=1), 7.1, 7.2 (r=0), 7.3 (r =
0), 8.1, 82 (r=0), 8.3 (r=0), 9.1, 9.2 (r=0), and 9.3 (r = 0), the spherical
system obtained by localization in supp X is the spherical system of a symmetric
subgroup Ny, (Lf) of Ly, where LY is the fixed point subgroup of an involution @
of Ly. The wonderful symmetric subgroups and their spherical systems are well
known (see, e.g., [8]). More precisely,

e in case 1.1 we get [8, case 6];

e incases 2.1,3.1,7.3 (r=0,p=1),82 (r=0,g=1),and 83 (r=0,p=1),
we get [8, case 5);

e in cases 4.1, 4.2 (¢=1),43 (p=1), 7.1, 7.2 (r=0,q=2), 8.1, 9.1, 9.2
(r=0,g=2), and 9.3 (r =0,p=2), we get [8, case 2[;

e in cases 7.3 (r=0,p>1),82 (r=0,¢>1), and 8.3 (r=0,p> 1), we get
[8, case 9];
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e in cases 7.2 (r=0,¢9>2),9.2 (r=0,9>2), and 9.3 (r=0,p > 2), we get
[8, case 15].

1.5.4. Other reductive cases

In cases 4.2 (¢ >1), 4.3 (p> 1), 4.6, and 4.7, the spherical system obtained by
localization in supp X is the spherical system of a wonderful reductive (but not
symmetric) subgroup of L;. More precisely,

e in cases 4.2 (¢>1) and 4.3 (p > 1) we get [8, case 42];
e in cases 4.6 and 4.7 we get [8, case 46 (p =5)].

1.5.5. Morphisms of type L

Note that in all the above cases the Levi subgroup L such that Sy = (supp X)USP
is equal to K}, the centralizer of h given in the list of Appendix A. In the
remaining cases this is no longer true, but we have the following situation.
In the remaining cases, namely, cases 4.4, 4.5, 7.2 (r > 0), 7.3 (r > 0), 8.2
(r>0), 83 (r>0),92 (r>0), and 9.3 (r > 0), the given spherical K-system
(SP, %, A) admits a distinguished set of colors A’ such that the corresponding
quotient

(SP/A"S/A AJA)

is the spherical system of a wonderful K-variety which is obtained by par-
abolic induction from a wonderful Kj-variety. Indeed, Sk, = (supp(X/A’)) U
(SP/A".

Such a distinguished set of colors A’ is minimal, that is, does not contain
any proper nonempty distinguished subset. Moreover, the corresponding quotient
has higher defect, which means the following. The defect of a spherical system is
defined as the nonnegative integer given by the difference between the number
of colors and the number of spherical roots.

In all our cases, we have

(1) card(A N\ A') — card(X/A’) > card A — card .

Therefore, the set A’ corresponds to a minimal surjective equivariant morphism
with connected fibers of type L in the sense of [5, Proposition 2.3.5]. In particular,
the minimal quotients of higher defect have been studied in [7, Section 5.3]. Let
us recall their description.

Let H; be the wonderful subgroup associated with the spherical K-system
(SP, 3, A), let A’ be a distinguished subset satisfying the condition (1), and let
H, be the wonderful subgroup of K associated with the quotient of (SP,X,A)
by A’. We can assume H; C Hs. Recall that the quotient Hs/H; is connected.

Under the condition (1) we have that H}' is properly contained in HY. Take
Levi decompositions Hy = Ly, Hi' and Hy = Ly, Hy with Ly, C Ly,. Then
Lie HY/ Lie H' is a simple Ly, -module, and Ly, and Ly, differ only by their
connected center. The defect of a spherical system is equal to the dimension of
the connected center of the associated wonderful subgroup, so the codimension
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of Ly, in Ly, is equal to
d=card(A~ A") —card(X/A’) — (card A — card X2).

The quotient Lie HY /Lie H{' can be described as follows. There exist d + 1
Lp,-submodules of Lie Hy, Wy, ..., Wy, isomorphic as Lz, -modules but not as
Lp,-modules. By denoting by V' the L,-complement of Wy @®---® W, in Lie Hy,
as an Ly, -module,

LicH} =W &V,

where W is a cosimple Ly, -submodule of Wy & - - - & Wy which projects nontriv-
ially on every summand Wy, ..., Wy.

As stated above, in our cases we always have Hy C @, with Q = K, Q" given
in the list of Appendix A, Ly, C Kj, and HY = Q".

One can say something more about the inclusion of Wy, ..., Wy in Lie Q".
One has to consider the set Sas, whose general definition involves the notion of
external negative color (see [5, Section 2.3.5] and [7, Section 5.2]). Without going
into technical details, in our cases it holds that

Sar = (suppX) \ (supp(X/A")).

Moreover, card Sar =d + 1, say, Sa» ={fo,...,B4}. Assuming @ contains B~
we have that Wy,..., Wy are, respectively, included in the simple L-submodules
V(=Bo),...,V(—B4) containing the root spaces of —fy, ..., —B4. In our cases the
integer d 4 1, the cardinality of S, is always equal to 2 or 3.

In the following, for all the remaining cases, we describe the quotient of
(SP,3,A) by A’ and describe Ly, in Kj. The knowledge of Sas will be enough
to uniquely determine the modules Wy, ..., Wy.

REMARK 1.4

Actually, the results contained in [7] allow us to reduce the computation of the
wonderful subgroup associated with a spherical system to the computation of
the wonderful subgroups associated with somewhat smaller spherical systems. In
particular, [7, Section 5.3] allows us to reduce the computation of the wonderful
subgroup associated with a spherical system with a quotient of higher defect
to the computation of the wonderful subgroups associated with some spherical
subsystems. Moreover, many of the spherical systems under consideration have
a tail (see [7, Section 6]), and these cases can also be reduced to some smaller
cases. Similar general considerations could be done for the cases obtained by
“collapsing” the tails. We prefer to avoid as far as possible the technicalities and
give a direct explicit description of our wonderful subgroups even if they are
already somewhat known.

1.5.6. Type B
(a) Tail case. Localizing the spherical systems of cases 7.3 (0 <r <p), 82 (0<
r<q), and 8.3 (0 <7 <p) in supp X, we obtain the following spherical system,
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which we label as a¥(s, s) + b/(t), for a group of semisimple type Ag x By, with
t>1:

Sp:{a;+27"'va;+t}7

Y={on,...,a50a,. .0, 2(al - Fal )],

A={Dy,...,Das11}, with A =AU {Dys42} and full Cartan pairing as
follows:

o1 = D1 + Dy — Ds,

o =—Doi_9 4+ Daj—1 + Doy — Do;yq for 2<i<s,

o =—Dgy;i_1+ Dy + Dojy1 — Dajyo for 1 <i<s,

2(0&2+1 +-- a/ert) = 72D25+1 + 2D25+2.

If t =1, then the Luna diagram is as follows.

]
|

é>> &> O S <o <O

© 9 ) ?jo% 00

If t > 1, then it is as follows.

]

b & 6 5 .

00 [0 99 0

The combinatorics is the same, so from now on we just report the diagram for
t>1.
Consider the quotient by A’ ={Dy;:1<i<s}:

S/A ={ao+al,...,as+al_,2(cl + -+ al,) )

)
;

It is a spherical system obtained by parabolic induction from the direct product
of case 2 and the rank 1 case 9 (resp., the rank 1 case 4) if ¢ > 1 (resp., t=1),
the labels referring to [8]. We have Sar = {1, }.

(b) Collapsed tail. Localizing the spherical systems of cases 7.3 (r =p), 8.2
(r=4q), and 8.3 (r =p) in suppX, we obtain the following spherical system,
which is labeled as abY(s,s) or S-6 in [3], for a group of semisimple type Ag X
B,:

SP =10,

Y={aq,...,asd],...,al},

A={Ds,...,Das11} = A, with Cartan pairing as follows:
ay =Dy + D2 — D3,

;= —Doi_9+ Doj_1 + Doy — Do;yq for 2<i<s,

o =—Dg;_1+ Doj+ Doj11 — Dojyg for 1 <i<s—2,
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_1=—Dos_3+ Dos_o+ Dos_1 — Das — Dogi1,

!
as
!
oy =—Dos_1+ Dos+ Dagyy.

The Luna diagram is as follows.

o?ic?@

Consider the quotient by A’ ={Dy;:1<1i<s}:

35 0

(J>>g)>__é>>d> J)<é5
=t

S/A ={as+al,...;as+a_}.

T ===

It is a spherical system obtained by parabolic induction from [8, case 2]. We have
Sar ={ay,al}.

1.5.7. Type C

(a) Tail case. Localizing the spherical systems of cases 4.4 (¢ > 2) and 4.5 (p > 2)
in supp ¥, we obtain the following spherical system, which we label as a¥(2,2) +
c(t), for a group of semisimple type Ag X Cyiq with ¢ > 2:

SP={a,..., 001},

Y= {a17a27a/1aa,270/2 +2(aé T +O‘;) +a;&+1}v

A={Dy,...,Ds}, with A=A U{Dg} and full Cartan pairing as follows:
ay=—Dy + D3+ Dy — Ds,

ag = D1+ Dy — D3,

oy =—D3 + Dy + D5,

oy =—D1 + Dy + D3 — Dy — Dg,

o5 =—Ds + Dg.

The Luna diagram is as follows.

55 &
Q O 0 0

Consider the quotient by A’ ={Dy, Dy}:

® -t

B/A" = {1 +ag,0p +2(a5 4+ +af) +Fagg )

1S

(2 © C, © & ---

It is a spherical system obtained by parabolic induction from [8, case 42], already
considered in Section 1.5.4. We have Sar = {ag,a] }.
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(b) Collapsed tail. Localizing the spherical systems of cases 4.4 (¢ =2) and
4.5 (p=2) in supp2, we obtain the spherical system ab¥(2,2) for a group of
semisimple type Ay X Bo, a particular case of the spherical system obtained above
in Section 1.5.6.

1.5.8. Type D

(a) Tail case. Localizing the spherical systems of cases 7.2 (0 <r <q—1), 9.2
(0<r<g—1),and 9.3 (0 <r <p—1) in supp X, we obtain the following spherical
system for a group of semisimple type As X Dgqy with ¢ > 2:

SP = {a;+27 cee 7a;+t}7

Y={on,...,a5 0, al,2(al R ol o) Fal o Fal )

A={Dy,...,Dos11}, with A =AU {Dys42} and full Cartan pairing as
follows:

oy = D1+ Dy — Ds,

oy = —Doj_9 4 Do;_1 + Do — Doy for 2 <i <os,

o =—Dg;_1+ Doj+ Doiy1 — Dojyo for 1 <i<s,

02541 = —2D2511 +2Dos 0.

It is [6, case 60], labeled as a¥(s, s) + d(t).

(b) Collapsed tail. Localizing the spherical systems of cases 7.2 (r =¢q — 1),
92 (r=qg—1),and 9.3 (r=p—1) in supp X, we obtain the following spherical
system for a group of semisimple type Ag X Dgq:

SP =),

Y={ai,...,as0a],..., a1}

A={Dy,...,Das12} = A, with Cartan pairing as follows:
ay =Dy + D2 — D3,

o =—Doi_9+ Da;i_1 4+ Doy — Dojq for 2<i<s—1,

ay=—Das 9+ Dag 1+ Das — Doagy1 — Dagyo,
i =—D2i_1+ Doj + Dajy1 — Dojyp for 1 <i<s—1,
t'=—Dags_1+ Das + Dosi1 — Dogyo,

g1 =—Das 1+ Dag — Dagy1 + Dagpa.

It is [6, case 40], labeled as ad¥(s,s 4+ 1) or S-10 in [3], and considered also in
[4, Section 5] as the spherical system of the comodel wonderful variety of cotype
Da(st1)-

2. Projective normality

This section is devoted to proving the following result, which we need in order
to study the singularities of closures of spherical nilpotent K-orbits in p.

THEOREM 2.1

Let (g,¢) be a classical symmetric pair of non-Hermitian type, and let O Cp be a
spherical nilpotent K -orbit. If (g,%) = (sp(2p+ 2q),sp(2p) +5p(2q)), assume that
the signed partition of O is neither (+3*,+1%7=8) nor (—3*,—124-8) (Cases 4.6
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and 4.7 in Appendiz A). Let X be the wonderful K -variety associated to O. Then
the multiplication of sections

Mg o F(X,L:) ®F(X,£/) — F(X,E@El)

is surjective for all globally generated line bundles L,L’ € Pic(X).

We point out that multiplication is not surjective if (g,€) = (sp(2p+ 2q),sp(2p) +
sp(2q)) and O is the spherical nilpotent orbit corresponding to the signed parti-
tions (+3%,+1%P78) or (—3%,—12978)) (see Example 2.7 below). These cases will
be treated separately in Section 3.1 with an ad hoc argument.

Let us briefly recall here some generalities about the multiplication of sections
of line bundles on a wonderful variety (for more details and references, see [4]). Let
X be a wonderful K-variety with set of spherical roots ¥ and set of colors A.
The classes of colors form a free basis for the Picard group of X and for the
semigroup of globally generated line bundles. Therefore, the Picard group of X
is identified with ZA, and the semigroup of globally generated line bundles is
identified with NA. Given E, F' € NA we will also write mg r meaning mg,, 2,

Given D € ZA we denote by Lp € Pic(X) the corresponding line bundle, and
we fix sp € I'(X,Lp) a section whose associated divisor is D. Recall that every
line bundle on X has a unique K-linearization. Then sp is a highest weight
vector, and we denote by Vp C T'(X,Lp) the K-submodule generated by sp.
Since X is a spherical variety, I'(X, Lp) is a multiplicity-free K-module; hence,
Vp is uniquely determined and sp is uniquely determined up to a scalar factor.

By identifying 3 with the set of K-stable prime divisors of X, every o € Z3
determines a line bundle £, € Pic(X), and the map Z3 — Pic(X) is injective.
The line bundle £, is effective if and only if 0 € NX, and for all 0 € Z¥ we fix a
section s € I'(X, L,) whose associated divisor is o. Such a section is a highest
weight vector of weight 0 and is uniquely determined up to a scalar factor.

By identifying Pic(X) with ZA, we regard ZY as a sublattice of ZA. This
defines a partial order <sx; on ZA as follows: if D, E € ZA, then D <y, F if and
only if E — D € NX. This allows us to describe the space of global sections of Lg
as

IX.Lp)= € Ve
FeNA:F<sE
In particular, if £ € NA, then we have that T'(X,Lg) is an irreducible K-
module if and only if E is minuscule in NA with respect to <y or zero; that is,
if F € NA and F <y, E, then it must be F'=FE.
To any line bundle L on X, we attach two characters £g and wg as follows.
Let H be the stabilizer of a point xg in the open orbit of X, fix a maximal
torus T and a Borel subgroup B such that T C B, and let yy be the point fixed
by the opposite of the Borel subgroup B. Then we denote by g € Hom(H,C*)
the character given by the action of H over the fiber Lg ,,, and we denote by
wp € Hom(T',C*) the character given by the action of T over the fiber Lg ,,.
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If E € NA, then the set of sections Vg C I'(X, Lg) does not vanish on the
closed orbit of X, so it defines a regular map ¢g: X — P(V}). We choose
a nonzero element hg € V7 in the line ¢p(zg). Note that Vg is the irreducible
module of highest weight wg and that hg is determined by the condition g-hg =
Er(g)hg for all g€ H.

For D € A, the weight wp is combinatorially described as follows: if D € A22
and « € S is such that D € A(«), then wp = 2w,; otherwise wp = > w, for all
a € S such that D € A(a) (see [31, Lemma 30.24)).

2.1. General reductions
By making use of quotients and parabolic inductions, it is possible to reduce the
study of the multiplication maps. We recall such reductions from [4].

LEMMA 2.2 ([4, COROLLARY 1.4])

Let X be a wonderful variety with set of colors A, let X' be a quotient of X by a
distinguished subset Ag C A with set of colors A', and identify A with A~ Ay.
If D e NA and supp(D) N Ay =@ and if Lp € Pic(X) and L, € Pic(X') are
the line bundles corresponding to D regarded as an element in NA and in NA',
respectively, then I'(X,Lp) =T(X', L}). In particular, if mp g is surjective for
all D,E € NA, then mpr g is surjective for all D', E’ € NA'.

LEMMA 2.3 ([4, PROPOSITION 1.6])
Let X be a wonderful variety, and suppose that X is the parabolic induction of
a wonderful variety X'. Then for all £,L" in Pic(X) the multiplication mg o is

surjective if and only if the multiplication mg| ., 1|, is surjective.

Ix/
We now explain how to reduce the study of the multiplication maps with respect
to wonderful subvarieties.

LEMMA 2.4
Let X be a wonderful variety, and let X' C X be a wonderful subvariety. If mg r

is surjective for all globally generated L, L' € Pic(X), then mg o is surjective for
all globally generated L, L' € Pic(X’).

Proof
Denote by % and A the set of spherical roots and the set of colors of X, respec-
tively, and denote by ¥’ and A’ those of X’. The restriction of line bundles
induces a map p: NA — NA’, and the restriction of sections I'(X,Lp) —
(X', L,py) is surjective for all D € NA. Given E, F' € NA, the surjectivity of
Mmp(E),pr) follows then from the surjectivity of mpg r.

Set

0={DeA":¢(D,0)<0VoeX'}.
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Note that every D € NA([ is minuscule with respect to <y/ or zero; namely,
I(X',Lp) =Vp for all D € NA'. Indeed, if D € NA}, and D — o € NA for some
o € NX, then it follows that —o € NA; hence, both ¢ and —o define effective
divisors on X’. On the other hand the cone of effective divisors of X’ contains
no line, since X’ is complete; therefore, it must be o =0.

Let D € A. By reasoning as in [15, Section 1.13] with the combinatorial
description of p, it follows that for all D € A there exists D’ € (A’ \ A{) U {0}
such that p(D) — D’ € NA(), and conversely for all D’ € A’ \ Aj there exists
D e A with p(D) — D’ € NA|,.

Now let E, F' € NA’. Then by the previous discussion there exist £, F’ € NAj
such that E+ E', F+ F' € p(NA). On the other hand since E’, F’ € NA{ we have
F(X, £E+E’+F+F/) = F(X, £E+F)VE’+F/ and

Im(mE+Er,F+F/) = Im(mE’p)VE/VF/ = Im(mEﬁp)VE/jLF/.

Therefore, the surjectivity of mg  follows from that of mgy g/ pyp. O

A strategy to prove the surjectivity of the multiplication map was described in
[11] for wonderful symmetric varieties and in [4] for general wonderful varieties.
Such a strategy reduces the proof of the surjectivity of the multiplication maps
for all pairs of globally generated line bundles to a finite number of computations,
which arise in correspondence to the so-called fundamental low triples.

Recall from [4] that a triple (D, E, F) € (NA)? with F <5, D + E is called a
low triple if, for all D', B’ € NA such that D' <y D, E' <y E, and F <y D'+ F’,
it holds that D’ = D and E’ = E. The triple (D, E, F) is called a fundamental
triple if D, FE € A.

To determine the low triples, the notion of covering difference is useful. Let
E,F € NA with E <y F', and suppose that F is maximal in NA with this prop-
erty: then we say that F' covers E and we call F' — E a covering difference in
NA.

For all E =3 5 A kpD € ZA, define its positive part EY =37, ' kpD, its
negative part E- = E* — E, and its height ht(E) =3 ;. A kp. Note that y € NX
is a covering difference in NA if and only if v covers y~.

As noted in [4, Section 2.1, Remark], the covering differences in NA are
finitely many; therefore, there is always a bound for the height of the positive
part of a covering difference. In all the examples we know (including those we
will deal with in the present article) this bound can be taken to be 2.

Let (D, E,F) be a low triple, and suppose that mp g is surjective. Then it
is a straightforward consequence of the definition that s?*#~FVy C VpVg. On
the other hand we have the following.

LEMMA 2.5 ([4, LEMMA 2.3])

Let X be a wonderful variety, and let n be such that ht(y+) < n for every covering
difference . If sPTE=FVi C Vp Vg for all low triples (D, E, F) with ht(D+ E) <
n, then the multiplication maps mp g are surjective for all D, E € NA.
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To verify that sPT¥~FVy € VpVe we will make use of the following.

LEMMA 2.6 ([10, LEMMA 19])

Let D,E,F € NA be such that D <y, E+ F. Then s"tF=PVp C VgVr if and
only if the projection of hg ® hp € V(w}) @ V(wy) onto the isotypic component
of highest weight wy, is nonzero.

EXAMPLE 2.7

Let g =sp(2p + 2¢) and € = sp(2p) + sp(2q). If p > 4, consider the spherical

nilpotent K-orbit O defined by the signed partition (+3*, +12P~%) (or similarly

the one defined by (—3%, —12978) if ¢ > 4). Let X be the corresponding wonderful

K-variety. Then there are elements D, E' € NA such that mp g is not surjective.
Indeed, the spherical system of X is the following.

<5>O<<5 = . >,<(5
0 Q O rg‘Q

J

Label the spherical roots and the colors of X as

/ !
U]ZCYQ, 0‘22062, 0'3:@1, 0'42041, 05:a3;
— Dt — N — Nt — D
D\=D}, D;=D;, D3y=D}, Ds=Dj,
Ds=D;,  Dg=D,,.

Then the Cartan pairing of X is expressed as
o1=D1+ Dy — D3,
09=—D1+ Dy + D3 — Dy — Ds,
03=—Ds+ D3+ Dy — Ds,
04=—D3+ Dy + Ds,
05=—Dy+ D3 — Dy+ D5 — Dg.

Consider the triple (D3, D3, D1 + Do + Dg). Then 2D3 — Dy — Dy — Dg =
09 + 03 + 04 + 05, and the triple is easily shown to be low. On the other hand
if VD,4+Dyt+Ds C V3, then it would be V(2ws + wy + why) C V(wy + w3 + wh)®?,
which is not the case. Therefore, mp, p, is not surjective.

2.2. Basic cases

We show in this section that, in order to prove Theorem 2.1, we are reduced to the
study of three special families of wonderful varieties. By following Section 1.5.1
and by Lemma 2.3, the surjectivity of the multiplications on X is reduced to
that one on a wonderful Lq-variety Y, where L, is the Levi subgroup of K
corresponding to the set of simple roots in suppX. More precisely, Y is the
localization of X at the subset supp¥ C S, and the wonderful varieties arising
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in this way are described in Sections 1.5.2, 1.5.3, 1.5.4 (only cases 4.2 and 4.3),
1.5.6, 1.5.7, and 1.5.8.

Analyzing all the possible cases, we now show that to prove the surjectivity
of the multiplications for ¥ we are reduced to the following three families:

o a¥(2,2) +c(t), t >2,

S

e (fg T e H R
O ? o) ? Q O f
e ab¥(s,s), s>2
<J>> é>> & & g) <Cg 5 <O
o0 [pe 90 0%

In the cases of Section 1.5.2 the wonderful variety X is a flag variety. There-
fore, the surjectivity of the multiplication of globally generated line bundles holds
trivially, since the space of sections of a globally generated line bundle on a flag
variety is an irreducible K-module.

In the cases of Section 1.5.3 the wonderful variety Y is the wonderful com-
pactification of an adjoint symmetric variety, and the surjectivity of the multi-
plication of globally generated line bundles holds thanks to [11].

In cases 4.2 and 4.3 of Section 1.5.4 (up to switching the two factors of K)
the surjectivity of the multiplications of Y is reduced to that one of the wonderful
variety Z with spherical system a¥(2,2) + c(t) where ¢ > 2. More precisely, start
with Z and consider the set of colors {D} , D }. It is distinguished, and the
corresponding quotient is a parabolic induction of Y. Therefore, the surjectivity
of the multiplications of Y follows from that of Z thanks to Lemmas 2.2 and 2.3.

In the cases of Section 1.5.6(a) Y is the wonderful variety with spherical
system a¥(s,s) + b’(t), where s >0 and ¢ > 1, but if s =0, then it is just an
adjoint symmetric variety. In the cases of Section 1.5.6(b) Y is the wonderful
variety with spherical system ab’(s, s), where s > 2.

In the cases of Section 1.5.7(a) Y is the wonderful variety with spherical
system a¥(2,2) + c(t), where ¢t > 2, whereas in the cases of Section 1.5.7(b) Y is
the wonderful variety with spherical system ab”(2,2).
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In the cases of Section 1.5.8(a) Y is the wonderful variety with spherical
system a¥(s, s) + d(t), where s >0 and ¢t > 2. The surjectivity of the multiplica-
tions in this case can be reduced to that of a comodel wonderful variety, which
is known by [4, Theorem 5.2]. Let indeed Z be the comodel wonderful variety of
cotype Dy(s1¢). This is the wonderful variety with the following spherical system

for a group of semisimple type Asyi—1 X Dgiy.
%9
T8

Consider the wonderful subvariety of Z associated to ¥ \ {asy1,...,Qs1t—1}-
Then the set of colors {D_, DjE e DjE } is distinguished, and the cor-
responding quotient is a parabohc 1nduct10n of Y Therefore, the surjectivity of
the multiplications of Y follows from that of Z thanks to Lemmas 2.2 and 2.3.

Finally, in the cases of Section 1.5.8(b) Y is the comodel wonderful variety of
cotype Dy(s41), and the surjectivity of the multiplications for this variety follows
by [4, Theorem 5.2].

—]
O> O o> O
Q<

2.3. Projective normality of a¥(2,2) + c(¢)
Consider the wonderful variety X for a semisimple group G of type Ay x Ci11
with ¢ > 2 defined by the following spherical system.

5 <8 &0
©° © ¢

The spherical system associated to this Luna diagram is described in Sec-
tion 1.5.7. For convenience we number the five spherical roots as

® -t

t
_ o _ o o 20/ /
o1 = agz, 02 = Qly, o3 =aQjq, o4 =qy, 05 =y + O+ Oy g
i=3
There are six colors that we label as

Dy=D;, Dy=Df, Ds=Dg,
Dy=D}, Ds;=D;, Ds=Dy.
The weights of these colors are
Wp, = Wa, Wp, = Wy + wh, Wp, = w1 + wh,
wp, =wi + wi, wp, =W, Wp, = Wh.

Note that the G-stable divisor of X corresponding to o5 is a parabolic induc-
tion of a comodel wonderful variety of cotype As (see [4, Section 5]). Therefore,
we can restrict our study to the covering differences and the low triples of X
which contain os.
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LEMMA 2.8

Let v € NX be a covering difference in NA with o5 € suppy,y. Then either v =
05 =—Ds+ Dg or v=094 04+ 05 = —D1+ Dsy. Every other covering difference
v € NX verifies ht(yT) = 2.

Proof
Denote v = > a;0;. Then we have

(2) Y= (a1 — CLQ)Dl + (a1 + ag — ag)Dg + (—a1 + a9 + as — a4)D3
+ (—a2 + a3+ a4)D4 + (—a3 + a4 — a5)D5 + (—az + a5)D6.

Suppose that as # 0. If D5 € supp(y~), then v~ +05 € NA, and if Dg € supp(y™),
then v© — o5 € NA. Therefore, if «v # o5, then it must be Dj ¢ supp(y~) and
D¢ ¢ supp(y™); namely, a3 + a5 < ay and as < as. It follows that as > 0 and
aq > 0. Suppose that 0 # 09 + 04 + 05 = —D1 + Do. Then a1 + a4 < as + ag since
¥~ + 04 ¢ NA, and ay < a; since v~ + g2 + 04 + 05 ¢ NA. Therefore, we get
ai + (ag — az) < ag < aj, which is absurd since ay — a3 > a5 > 0.

As already noted, the G-stable divisor of X corresponding to o5 is a parabolic
induction of a comodel wonderful variety of cotype As. Therefore, the covering
differences v with o5 ¢ suppsy, v coincide with those studied in [4, Proposition 3.2],
and they all satisfy ht(y") = 2. O

LEMMA 2.9
Let (D,E,F) be a low fundamental triple, denote v=D + E — F, and suppose
that o5 € suppsy;y. Then we have the following possibilities:

(D2,D3,D1 + Dy + Ds), v =02 +05;
(D D3,D1+2D5) —0'2+03+05,'
(D2,D2,Dy4+ Ds), vy =01+ 02 + 05
(DQ,D3,2D5),7—01+O’2+0’3+0’5,‘
(D3,Dy4, D1 + Ds), v =02 + 03+ 04+ 05;
(D4,D4,Dn), y =09+ 03+ 204 + 05.

Proof

By Lemma 2.8, 05 = —D5 + Dg and o5 4+ 04 + 05 = —D1 + D> are the unique
covering differences v with ht(y*) = 1. Therefore, Dy, D3, Dy, D5 are minuscule
in NA.

Let (D,E,F) be a fundamental triple with supp(F) Nsupp(D + E) =@
denote y=D + E — F =) a;0;, and suppose a5 > 0. Note that if (D,E,F) is a
low triple, then Dg ¢ supp(y™). Suppose that indeed D = Dg. Then D5 <s D and
F <5, D5+ E. Therefore, if (D, E, F) is a low triple, then (2) implies 0 < a5 < as.

Suppose a4 = 0. Then for every covering difference o < 7 it holds that
ht(o*) = 2. Therefore, (D, E, F) is necessarily a low triple.

To classify such fundamental triples, suppose D ¢ supp(y'). Then
¢(Da,7v) < 0; hence, a3 + az < az and we get 2 < 2a5 < as + ag — a;. Since
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ht(y*) = 2, it follows that D = E = D3. Equivalently, we have the equality
¢(Ds,v) = —a1 + a2 + ag = 2, and the inequalities ¢(Daq,7vy) <0, ¢(D4,7y) <0
imply 2a; —az +2<az <a; —asz+ 2. It follows that a; =0 and ay = a3 =1,
and the inequality 0 < a5 < ag implies a5 = 1. Therefore, v = 04 + 03 + 05 and
F=D;+2Ds.

Similarly, suppose that a4 = 0 and D3 ¢ supp(v™). Then ¢(D3,v) < 0. Hence,
az + asz < ag, and we get 2 < 2as < aj + az — az. Since ht(yT) = 2, it follows
that D = E' = Ds. Equivalently, ¢(Ds,~) = a1 + az — a3 =2, and the inequalities
¢(D1,7) <0, ¢(D3,7y) <0imply as +as < a1 < ag. It follows that ag =0 and a; =
as =1, and the inequality 0 < a5 < ao implies a5 = 1. Therefore, v =01 + 02 + 035
and F'= Dy + Ds.

Suppose now that as =0 and v* = Dy + D3. Then the equalities ¢(Da,v) =
¢(D3,y) =1 imply ag —a; =as — 1 =1— ay, and it follows that a; = as and
as = 1. Therefore, the inequality 0 < a5 < as implies a5 = 1, and the inequality
¢(D1,v) <0 implies a1 < as. Therefore, either v =09+05 and F' = D1+ Dy + D3,
or y=01+ 02+ 03+ 05 and FF'=2Ds5.

Suppose finally that a4 > 0. Note that if (D, E, F) is a low triple, then D, ¢
supp(7T). Indeed, o3 + 04 + 05 <, and if, for example, D = Dy, then Dy <y D
and F <y, D1 + E. Therefore, ¢(D2,v) < 0; hence, 0 < a1 + a2 < as. It follows
that ¢(Dg4,v) = —as + as + ag > a1 + ay > 0; therefore, Dy € supp(y*). Since
ht(y*) = 2, in particular, it must be that a4 < 2.

Suppose that ay = 1. Then ¢(D3,7y) = —ay + as + az — a4 > 2as — ag > 0;
hence, v© = D3+ Dy. Therefore, ¢(Ds,7) = ¢(Dy4,v) = 1 and we get the equalities
as + a3 =aj + 2 and as = az. The inequality ¢(Ds,v) <0 then implies that a; +
as < ag; hence, a; =0, ag =az =1, and a5 =1 thanks to the inequality 0 < a5 <
as. Therefore, vy =09 + 03+ 04+ 05 and F = D; + D5, and (D,E,F) is a low
triple since D3, D4 are both minuscule.

Suppose that ag =2. Then ¢(Dy,v) = —as + a3 + a4 > a1 + a4 > 2, and since
ht(y*) = 2 it follows that v = 2D,4. Moreover, we get a; =0 and as = a3. By
the inequalities ¢(Ds,v) <0, ¢(D3,v) <0 we then get that a; + as < ag and
—a1 +az +as —aq <0. On the other hand ¢(Ds,7) = —a1 +as +as — aq > 2a2 —
ay = 2a9 —2 > 0. Therefore, ¢(D3,7) =0 and it follows that ag = 1. Thanks to the
inequality 0 < a5 < az, we have a5 =1 as well. Therefore, v =09 + 03 + 204 + 05
and F'= Dy, and (D, E, F) is a low triple since D, is minuscule. a

To prove the projective normality of X we now apply Lemma 2.6. This requires
some computations. We first need an explicit description of the invariants. Let
V = C? with standard basis given by e1,e2,es. Let W = C2", where n=1t+ 1.

We choose a basis ef,...,el,e,,...,¢/; and fix a symplectic form such that
w(e},ef) =0d; —; for i >0.

We set AZW ={a € W : (w,a) =0} and w* =" ef Ae’,. Let @1, 02, 03
be the basis of V* dual to ey, eq,e3. Note that the isomorphism from A2V to V*
sending e; A es to 3, e1 Aeg to —pa, and es A ez to ¢ is G-equivariant. We

set G = SL(V*) x Sp(W,w), so that we can take H as the stabilizer of the line
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spanned by the vector e =e; ® e’ , — ea® el — ez ® €. We denote by h; the vector
hp, € Vp5.. In coordinates the vectors h; are given as

Vh, =V @W and hy = e;

Vp, =W and hs =ef;

Vp, =V ONW and hs =e; @ (e) Ae'y) —ea @ (€] Aeh);
Vp, =V* @ AgW and

1
ho =03 & (b Ay = ~w") =02 & (e Aely) =1 @ (€ A eh);
o V5 =V*and hy = ;.

We can now prove the following result.

PROPOSITION 2.10
The multiplication mp. g is surjective for all D, E € NA.

Proof

By Lemma 2.8 every covering difference v € NY satisfies ht(yT) < 2. Therefore,
by Lemma 2.5 it is enough to check that sPHE-FV. c Vp - Vg for all low funda-
mental triples (D, E, F).

Suppose that o5 ¢ suppy(D + E — F), and let X’ be the G-stable divisor of
X corresponding to 5. Then X’ is a parabolic induction of a comodel wonderful
variety of cotype As; hence, the inclusion s?”Vp C Vp - Vg follows by Lemma 2.3
together with [4, Theorem 5.2].

By Lemma 2.6 we are reduced to proving that for all low triples (D;, D;, F')
listed in Lemma 2.9 the projection of h; ® h; onto the isotypic component of type
Vi in Vp, ® V5 is nonzero.

(D2, D3, Dy +D, +Ds). We have V5, . =sl(V) ®S2W, the equivariant
map

7 (VNW)2 (Ve NW) — sl(V)®S*W
given by

T((p®@and) @ (v@cAd))

- (@ Qv — ég@(v)ld) ® (w(a, e)bd — w(b, c)ad — w(a,d)bc + w(b, d)ac),
and
m(ha®hs) = (p3@e1) Dejel; — (p3@er) Dejes +(p1® €1+ P2 @ea) B (e))? # 0.
(D3, D3, Dy +2Ds5). We have VD, vap, = A2V ® S2W, the equivariant map
T (VO NW)® (Vo ANW) — A2V o S?W
given by
T(u®aAb)®(v@cAd))
= (uAv)® (w(a,c)bd — w(b, c)ad — w(a,d)be + w(b, d)ac),
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and
7(h3 @ hz) =2(e1 Aea) @ (€))* #0.
(D2, D2, Dy + Ds). We have V= N?V* ® S?W, the equivariant map
7 (VoNW)2 (Vo NW) — A2V* @ S*W
given by
T((p®anb) @ (Y ®cAd))
= (p A1) ® (w(a,c)bd — w(b, c)ad — w(a, d)be + w(b, d)ac)
and
m(ha @ ha) = 2((p3 A pa) @ ehel 5 + (03 A1) @ erey — (2 A1) @ (e1)?) #0.
(D2, D3,2D5). We have Vip, = S2W, the equivariant map
m: (VaNW)® (Ve NW) — W
given by
T((p®@and) @ (v@cAd))
= ¢(v) (w(a, c)bd — w(b, c)ad — w(a,d)bc + w(b, d)ac)
and
m(he ® h3) = —2(e})* #0.
(D3, Dy, D1 + Ds). We have V5 = A2V @ W, the equivariant map
T (VaNW)e(VeaW)—NVeW
given by
T(u®aAb)® (v®c))=(uAv)® (w(a,c)b—w(b,c)a)
and
m(hs ® hy) = —2(e1 Aez) @ e} #0.
(D4, Dy, D1). We have the equivariant map
7 (VeaWw)e (VeW)— NV
given by
T((u®a)® (v b)) =wla,b)(uAv)
and

7T(h4®h4)=—2(61/\€2)7éo. |

2.4. Projective normality of a¥(s, s) + b/(t)
Consider the wonderful variety X for a semisimple group G of type As; X Bgiy
with s, > 1 defined by the following spherical system.
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<g> &> 0

; 2
e TR,

W

5 <
?

The spherical data and the Cartan pairing associated to this Luna diagram are
described in Section 1.5.6. For convenience we number the spherical roots as

s+t
/ . /
02;—1 = O, 02; = Oy fOl"Zzl,...,S, 02541 = E 2C¥Z-.
1=s+1
There are 2s + 2 colors that we label as
D2i—1:D;,;a fOfiil,...,S, D25+1:D;/57
_ Nt L _
Dgi—Dai, fOI‘Z—l,...,S7 D23+2—Da;+1.
The weights of these colors are
= w; ! for i =2 = =uw'
WDy, =W; +w;_q Tore=2,...,s, Wwp, = w1, WDy, = Wy,

. / . o~
Wp,, =w; +w; fori=1,... s, WDaupo = W1,

where @, =wj; ift>1and &, =2w, , ift=1.

Note that X has the same Cartan matrix as that of the spherical nilpotent
orbit studied in [4, Section 7.3]. It follows that the covering differences and the
fundamental low triples are the same as those computed therein, since they only
depend on the Cartan matrix. In particular, every covering difference ~ satisfies
ht(y") =2, and every fundamental triple is low. In order to prove the projective
normality of X, in the following lemma we summarize some properties of its
fundamental triples.

LEMMA 2.11

Let (D,, Dy, F) be a fundamental triple, denote v = D, + D, — F, and suppose
that 02541 € supps, (). Then p,q are even integers and o1 ¢ supps.(7y). If more-
over oy € supps (), then p+q¢—3<2s+1 and F =Dy + Dyt q_3.

Proof
Take a sequence of coverings in NA

F:Fn+1<2Fn<§3”'<EF1:Dp+Dq.

Denote v; = F; — F;41. By [4, Propositions 3.2, 7.3] we have the following three
possibilities:

o vy =0p, +0pq2t--+og_1=Dp +Dy —Dp,_1— D1, for some inte-
gers p;, q; of different parity with 1 <p; < ¢; <2s+1,

® Yy =0p,_1+0p, +--+0q =Dy, +Dg, — Dy, _2— Dg, 42, for some integers
Di,q; of the same parity with 2 <p; <g; < 2s,

® i =O0p, + Op;+2 +oeet Oq;—2 + Q(Um + Oq;+2 +o 4+ 0'23) + 02541 = Dpi +
Dy, — Dp,—1 — Dy, 1, for some even integers p;,q; with 2 <p; <¢; < 2s.
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Since o541 € suppx(7y), there is at least one 7; of type 3. Let k be minimal
with v of type 3; because of the parity of pr and g, the previous description
implies that every ~; with j # k is of type 2. Moreover, it follows that p;11 = p; —2
and g;+1 = q; + 2 for all i #k and that p;, ¢; are even (resp., odd) for all i <k
(resp., i > k).

Therefore, p = p; and q = ¢q; are even integers and 2 <p < ¢ < 2s+2, and we
get the equalities p,11 =p—2n—1 and ¢,+1 = g+ 2n — 1. Suppose that k =n.
Then p,, and g, are even and 2 < p, <q, <25+ 2; hence, 1 <ppy1 < gnt1 <
2s + 1. Suppose instead k < n. Then p, and ¢, are odd and 2 < p, < g, <2s,
and again we get 1 <ppy1 < g1 <25+ 1.

To show the first claim, note that o1 € suppy;(7y) if and only if o1 € supps;(y5).
This is not the case if k =n. If k <n, then it also cannot happen, since then p,,
and g, would be odd. Similarly, o9 € suppy,(y) if and only if o5 € supps(v,) if
and only if p, 41 = 1. This means n = £ — 1, which implies ¢,41 =p+¢—3. O
To prove the projective normality of X we will apply Lemma 2.6. First we
describe the invariants. Let V = C**! with standard basis given by eq,...,eq1.
Let W = C?"*! where n = s +t. We choose a basis e/,...,e/,,eh, e ,,...,¢" 4

and fix a bilinear symmetric form such that (e}, e}) = d; —; for all 4,5 > 0. Set

G = SL(V*) x SO(W, ), so that we can take H as the stabilizer of the line

spanned by the vector e =e; ® ef, + Zf;l e; ®e€l_; o We have

Vi, =NVQNTW, Vi =NVoNW

fori=1,...,s+ 1. If we denote by h; the vector hp, € V5., then in coordinates
the vectors h; are given as
— !/ !
hoj_1 = > erAe, N Nej_, @€ g N Neh o,
2<1 < <Ji—1<s+1
— / / /
hai = Z erhej N Nej @€y po N Neg_j 1o A€y
2<j1<<ji—1<s+1
/ !
+ Z ejn N Nej, @eg_jyo N Neg_j 4o,

2<j1<-<ji<s+1

PROPOSITION 2.12
The multiplication mp_ g is surjective for all D, E € NA.

Proof
As already noted, [4, Propositions 3.2, 7.3] show that every covering difference
~v € NY satisfies ht(yT) = 2. It follows that every D € A is minimal in NA with
respect to <y; hence, every fundamental triple is low. Therefore, by Lemma 2.5
we have to check that sP+E=Vp C Vp - Vi for all fundamental triples (D, E, F).
Let (D, E, F) be such a triple, and denote y=D + E — F.

Suppose that o2541 ¢ supps;(7y), and let X’ be the G-stable divisor of X
corresponding to the spherical root oa541. Then X’ is a parabolic induction of
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a comodel wonderful variety of cotype Aggsy1 (see [4, Section 5]). Hence, the
inclusion s"Vp C Vp - Vg follows by Lemma 2.3 together with [4, Theorem 5.2].

Suppose that 9541 € supps(7y), and assume D = D, and E = D,. Then
o1 ¢ supps(y) by Lemma 2.11. We show that s7Vy C Vp - Vg, proceeding by
induction on s.

Suppose that o3 ¢ supps(y). Then supps(y) C {o3,...,02s+1}. Let X" be
the G-stable subvariety of X obtained by intersecting the G-stable divisors cor-
responding to o1 and to o3. If s > 1, then X" is a parabolic induction of the
wonderful variety of type a¥(s — 1,5 — 1) + b/(t). Therefore, the multiplication
of sections of globally generated line bundles on X" is always surjective by the
inductive hypothesis thanks to Lemma 2.3. If instead s =1, then X" is a para-
bolic induction of a rank 1 wonderful symmetric variety Y, which is homogeneous
under its automorphism group. Therefore, the multiplication of sections of glob-
ally generated line bundles on Y is always surjective, and the same holds for X"
by Lemma 2.3 again. In particular, since (D, E, F') is a low triple, it follows that
the inclusion s"Vgy C Vp - Vg.

Suppose now that o9 € suppy; (7). Then by Lemma 2.11 it follows that p = 2¢
and g = 2m are even integers, and F' = D1 + Doy 0 —3 with 204+2m —3 <254 1.
Hence, by Lemma 2.6 we need to find an equivariant map

p: (/\ZV & AZW) &NV @ N"W) — Vi, 1 ® AHM=2717

such that ¢(hgg ® hay, ) # 0. (The formula also makes sense when £+m—1=s+1,
by setting w41 = 0.) Note that V@A™V ~V,, 1, @ ATV, and we
denote by p; and p, the projection, respectively, onto the first factor and onto
the second factor. In particular, the map pa, up to a scalar factor, is just the
wedge product. We will construct a map

1/): (/\ZV X /\ZW) X (/\mV ® /\’mW) SN (V ® A€+m71V) ® /\£+m,2W

such that ¥(hay ® hoy) # 0 and (p2 ® Id) o ¥(hae ® hom) =0 so that the map
©=(p1 ®1d) o ¢ will have the desired properties.
Let 71 : AW @ AW — ANE™ =211 be defined by

(U A - Aug QUL A+ A Up)

:Z(—l)i"'jﬁ(ui,vj)ul/\--~/\7li/\-~-/\u@+1/\v1/\-~-/\ﬁj/\~--/\vm.
i

Let mo: AV @ NV — V @ A&+~ 1V be defined by

mo(ur A  Aug @V A A,

:Z(—l)iui®u1/\--~/\11i/\-~-/\w/\v1/\-~-/\vm.
i

Let m3: AV @ A™V — AT™V be defined by m3(z ® ) = x A y. Finally, set
1[):7'1'2@7'(1, so that (pg@Id)Od):ﬂ'g@’frl.
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Note that the value of o ® 71 (resp., 73 ® m1) on hoy ® hay, is the same as
that on

! / /
E 61/\ej1/\--~/\ejlfl®es_j£71+2/\---/\es_j1+2/\eo
2<j1< - <je—1<s+1

/ ! /
® Z 1L NCpy N Nekyy y @€, 42 N Ny 42 N g
2<k; < <kpy—1<s+1
The first is equal to

f+m—2
< /-1 )2(61@)61 Nei, /\"’/\616+7n72)®6;—i2+m,2+2/\"'/\e;_i1+2

(the sum being over 2 < i1 < -+ <igym—_2 < s+1). The second is equal to 0. O

2.5. Projective normality of ab¥(s, s)
Consider the wonderful variety X for a semisimple group G of type Ay x Bs with
s > 2 defined by the following spherical system.

L& &5
SR
The spherical data and the Cartan pairing associated to this Luna diagram are

described in Section 1.5.6. The spherical roots are simple roots. For convenience
we enumerate them as

<

5
o570

S
P

02i—1 = Oy, 0'21':0&; fOI‘iZl,...,S.
There are 2s + 1 colors that we label as

Dgifl :D(;i, DQiZD:i for izl,...,S, D25+1 =D_,.

as
The weights of these colors are
/ .
Wp, = W1, Wp,, =w; +w; fori=1,... s,

_ . !/ . 7
Wp,, , =w;+w;_; fori=2,...s, WDyy 1y = Wi

Note that the G-stable divisor of X corresponding to o is a parabolic induc-
tion of a comodel wonderful variety of cotype Ags (see [4, Section 5]). Therefore,
we can restrict our study to the covering differences and the low triples of X
which contain oo;.

LEMMA 2.13

Let v € NX be a covering difference in NA with oqs € suppy,y. Then either
v =025 = Das + Dasy1 — Das—1, or ¥ =025-1 + 025 = —Das_2 + 2Das, or v =
Zf:e 09; = Dop — Doy_1 for some 1 </ < s. Every other covering difference sat-
isfies ht(y1) = 2.
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Proof
Recall that the Cartan pairing is as follows (we also set D; =0 for all ¢ <0 and
all i >2s+2):

UiifDi_l +D¢+Di+1fDi+2 fOI‘i?é2872,

02s—2 = —Dag_3+ Dog_o+ Dag_1 — Dag — Dogi1.

Set v = Zfil a;0; = Zf:l_l ¢;D;. We have the following identities (we set a; =0

fori<0and i>2s+1):
C; = —Q;—2ta;—1 +a; — Qi1 fori<2s+1,
Cos+1 = —Q2s—2 — G2s—1 + Q2s.

By hypothesis, we have ass > 0.
Let k> 0 be minimal with cos_og > 0. Then cos_o; <0 for all 0 <14 < k, and
it follows that

A25—25 — A25—2j5+1 > A25—2j+2 — A25—2543

for all 1 <j <k, and ass_2; > ass >0 for all 0 < j <k.

If >0, set v = E?:O O95-2j = —Dos_ok—1 + Dogs_og. Then vy <y 7 and
v — 70 € NA; hence, v =~ since v is a covering difference.

We are left with the case k = 0. In particular, cos > 0. We claim that -~y
is necessarily equal to o9s or to o951 + 025. Assume that v # o9s and v #
02s—1 + 095. Since ass > 0 and 095 = —Das—1 + Dag + Dasyq, it follows that
cas+1 < 0; hence, ags—1 > 0. Since 09,1 = —Das_2 + Das_1 + Dag — Dagy1, it
must be that cos_1 <0, and since oos_1 + 095 = —Das_o + 2Ds, it must be that
c2s = 1. The latter implies

Q2s5—2 — Q25 =ag5—1 — 1 2> 0.

Hence, azs_o > 0. Note that cos o < 0. If indeed 252 > 0, then v — (0252 +
025) =T — (=Das_3+ Das_2) € NA; hence, v = —Das_3 + Das_2, contradicting
cos > 0.

Let j > 3 be such that ass_j41 — a2s—j4+3 >0, and suppose that azs_;41 >0
and cg5—;+1 <0 for all ¢ with 2 <14 <j. (Note that these conditions have just
been proved for j =3.) As cas—j42 <0, it follows that

(2s—j — (25— j42 = A2s—j41 — A25—j43 = 0.
Hence, ags—j; > 0. This implies cps—; < 0. If indeed co5—; > 0, set
j/2
Yo = Zo’zs—zi =—Dgs_j_1+Dos_; if jis even,
i=0

(J+1)/2
Yo = Z 02s—2i41 = —Dag—j—1 4+ Dos_j + Dos — Doagq  if j is odd.
i=1

Then vy <5, v and v — 49 € NA; hence, v = 7, contradicting ca; > 0 in the first
case and ags > 0 in the second case.
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By applying this argument recursively for j =3,...,s — 1, it follows that
a; >0forall1<i<2s,¢;<0foralll<i¢<2s—1,and a; —a3>0.In particular,
a1+ as —ag =co <0 and a; — ag > 0, which are in contradiction.

As already noted, the G-stable divisor of X corresponding to o5 is a par-
abolic induction of a comodel wonderful variety of cotype Ass. Therefore, the
covering differences v with ogs ¢ suppsy, v coincide with those studied in [4, Propo-
sition 3.2], and they all satisfy ht(y") = 2. O

LEMMA 2.14
Let (D,E,F) be a low fundamental triple, denote v =D + E — F, and suppose
that 095 € suppy.y. Then we have the following possibilities:

(D2m41,D2s, Dap—1 + Dagy1) for 1<m<s, v= Z?i2m 055

[ ]
o (Das, Dog, Das_3), v = 0252 + 0251 + 202
o (Das, Das, Das—2), ¥ = 0251 + 0as;
® (D, Dagy1,Das1), v = 02s-
Proof
Set D+ E —F = Z?il ;0 = Z?i‘{l ¢;D;, and set also D = Dys_,11 and F =
Dos_g+1. By hypothesis, we have azs > 0.

At least one of the two indices p and ¢ must be odd. Indeed, if both p and
q were even, then by taking a sequence

F:Fn<ZFn—1<Z"'<EF0:D+E

of coverings in NA, F;_; — F; would necessarily be a covering difference of a
comodel spherical system of cotype A (see [4, Proposition 3.2.(2)]); hence, o2, ¢
suppy,(D+ E — F).

We claim that at least one of the two indices p and ¢ must be equal to 1. Let
us prove the claim. Assume both p and ¢ are different from 1. We can assume
that ¢ is the minimal odd number between p and ¢. Since cos_9; < 0 for every
0<i<(g—1)/2, as in the above proof, it follows that ass_2; > ass > 0 for every
0<i<(g—1)/2. Set

(a-1)/2
Yo = Z 02s—2i = —Das—q + Das—q41
=0

and E' = Dag_q41 — 7. Then E' € NA and F <y D + E’ <y D + E; hence,
(D, E,F) is not a low triple. Therefore, we can assume g = 1.

Suppose that p =0. We have Dog + Dosy1 — 025 = Dag_1, but the latter is
minuscule; therefore, we get only (Dag, Dasy1,Das—1).

Suppose that p=1. We have —ags_o —ass_1 + ass <0 and —aos_o+ass_1 +
ass = 2; hence, ass—1 > 0. Now, we have 2Do — (025—1 + 025) = Das_2, but in
NA the latter covers only Das_3, with Dag_o — (025—2 4 025) = Das_3. Therefore,
if ags—2 =0 or ags =1, we get only (Das, Dags, Das—2). If ass—o >0 and ags > 1,
since Das_3 is minuscule, we get only (Dag, Dag, Dag—3).
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Suppose that p > 1. We have —ags_9 —ass_1 +aos <0 and —aos_o+ass_1 +
ass = 1; hence, ass_1 > 0 and, since
G252 — G2s = G251 — 1 >0,
also ags—o > 0. For every 1 < i < p, as ca5—;41 <0, we have
(25—i—1 — 02s5—i+1 = G25—; — A25—i+2-
Therefore, ass—j4+1 >0 forall 1 <j<p+1.
If p is odd, set
(p—1)/2
Yo = Z 02s—2i = —Dos_p+ Das_pi1
i=0

and D’ = Das_pi1 — Y. Then D' € NA and F <5; D' + E <5, D + E; hence,
(D, E,F) is not a low triple.
If p is even, we have

p+1
Das—pt1+ Das — 2025—i+1 =Dos_p_1+ Dag1,
i=1
but the latter is minuscule. We get (Das—pt1,D2s, Das—p—1 + Dast1)- O

To prove the projective normality of X we will apply Lemma 2.6. This requires
some computations, and we will need an explicit description of the invariants hg
and hgs.

Fix V = C**! with standard basis ej,...,e541, and fix W = C?**! with
basis €,...,¢e%, ey, e’ _,,...,e 1 and with a symmetric bilinear form § such that
Blei,ej) =0;,—;. Set G = SL(V*) x Spin(W, ), so that we can take H as the
stabilizer of the line spanned by the vector e = e; ® ef, + Zfi; e ®e,_ ;o

We will need to use the spin module for the group Spin(WW). Let us recall
its construction. Let W =U & Cejy @ U*, where U is the span of €],... e, and
U* is the span of e’ _,... e’ | identified with the dual of U by the form 5. Let

S = AU*, and rename the basis of U* as ¢, =€’_,,,...,11 =e€’;. Define a map

ms: W®S — S by setting mg(el @ i, A+ Ay, ) equal to
k

D (1Y Bleg €l iy A Ay A Ay, i >0,

j=1
(=1)Fpi, A Ay, ifi=0,
Yo ANy, N Ny, 1D <.

Then 7g is G-equivariant, and its alternating square 7%: A’W ® S — S cor-
responds to the spin representation via the isomorphism A2W 22 so(W, 3). We
have

Vi, =V, Vi, =NVeWw, Vp =NV®S,  Vi.ip,., =V&S.
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The invariants, in coordinates, are

s+1
hs = Zel Ne;® €y o,
=2
s+1
h25262/\.“/\65+1®1+Z(_1)i_161/\"'/\éi/\"‘/\es+1®7p57i+2~
=2

PROPOSITION 2.15
The multiplication mp g is surjective for all D, E € NA.

Proof

By Lemma 2.13 every covering difference v € NX satisfies ht(y") < 2. There-
fore, by Lemma 2.5 it is enough to check that sPTE=FVn c Vp - Vi for all low
fundamental triples (D, E, F).

Suppose that o25 ¢ suppy, (D + E — F'), and let X’ be the G-stable divisor of
X corresponding to o5,. Then X’ is a parabolic induction of a comodel wonderful
variety of cotype Asg; hence, the inclusion s*Vp C Vp - Vg follows by Lemma 2.3
together with [4, Theorem 5.2].

We are left to check that sP+E=F Vi € Vp Vi for all low fundamental triples
(D,E, F) with og5 € suppy,(D + E — F). Consider first the triple (D3, Dag, D1 +
Dosy1). Then we have the projection 7: (A2V @ W) ® (AMPV ®S) =V ® S given
by

T((w Auz @w) ®@ (VO Y)) = ((u2 Av)ur — (ur Av)ug) @ ms(w ® ¥),

where AST1V = C via ey A-+- Aegyr 1, and we get (ha @ has) = s(eg ® 1) #0.

We now proceed by induction on s. Assume s = 2. Then we are left to check
the triples (D4, D47 Dl), (D4, D47 DQ), and (D4, D5, Dg)

(D4, Dy, Dy). We have the projection m: (A2V ® S) ® (A2°V ®@ S) — V given
by 7(u1 Aua @ @) @ (11 Ava @) =7 (@ @) (w1 Aug Avr)va — (u1 Aug Ava)vr),
with A3V = C given by the identification e; A e A e3 = 1. Note that S is self-
dual, and set 7': S® S — C given by ¢ ®1) — ¢ A1) followed by the identification
Yo A1 = 1. We get m(hy ® hy) = —2e1 #0.

(D4, Dy, D3) and (D4, Ds,D3). Since 01,02 ¢ supps(D + E — F), we can
consider the intersection X’ of the G-stable divisors of X corresponding to the
spherical roots o1,09. Then the sections in Vp, Vg, s?TF~FVi do not vanish
on X', so it is enough to prove that sP?+F=FV C m’p (Vb ® Vi), where m’
denotes the multiplication of sections on X’. Consider in G the Levi subgroup L
associated to the roots as, ), which has semisimple factor of type A; x Aq, and
consider the comodel L-variety Y of cotype As. The wonderful G-variety X’ is
obtained by parabolic induction from Y. Hence, our claim follows by Lemma 2.3.

Assume s > 2. Then we are left to check the triples (D11, Dos, Dom—1 +
Dagyq) with 1 <m <s, (Das, Das, Das—3), (Das, Dag, Dags_2), and (Dag, Dogy1,
Dys_1). Let (D, E, F) be such a triple. Then 01,02 ¢ supps,(D + E — F'), and we
can consider the intersection X’ of the G-stable divisors of X corresponding to
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the spherical roots o1, 09. Take the Levi subgroup L of G, associated to the roots
Qag,...,Qs,0h, ... ol of semisimple type As_1 x Bs_1, and consider the comodel
L-variety Y of type ab’(s — 1,5 — 1). The wonderful G-variety X’ is obtained
by parabolic induction from Y. Hence, our claim follows by Lemma 2.3 and the
induction hypothesis. (I

3. Normality and semigroups

Recall that we have fixed a maximal torus 7" in K and Borel subgroup B of K
containing 7. We use X (T) for the weight lattice of T.
Let us denote by I'(Z) the weight semigroup of a K-spherical variety Z,

I'(Z)={Ae X(T): Hom(C[Z],V(\)) #0}.

Let Ke be a spherical nilpotent orbit in p, and let 3 and A, respectively, be the
set of spherical roots and the set of colors of the wonderful compactification of
K /K. Let us denote by D, the element of NA such that p = VE,F . Provided that
the multiplication of sections of globally generated line bundles on the wonderful
compactification of K/K| is surjective, we have that Ke C p is normal if and
only if D, is minuscule in NA with respect to the partial order <s (see [4,
Section 7]). If moreover Ke is the normalization of Ke, then

[(Ke)= | J{wr: E€NA,E <y nD,};
neN

that is, F(I/(ve) =w(T'p, ), where I'p, is the subsemigroup of NA given by

I'p, = | J{E€NA:E<gnD,}.
neN

In the present section we will study the normality of Ke, and we will compute
the weight semigroups I'(Ke) by computing the corresponding semigroups I'p, .
In particular, we will prove the following theorem.

THEOREM 3.1
Let (g,8) be a classical symmetric pair of non-Hermitian type. Then Ke is not
normal if and only if (g,€) = (so(m +n),s0(m) +so(n)) and the signed partition
of Ke is (+3,+2" 1 +1m="=1Y) "withn > 1 odd, or (—3,+2™~ L, —17=™=1) with
m>1 odd.

In Appendix A these are cases 7.3 with r =p, 8.2 with r = ¢, and 8.3 with r = p.
The normality or nonnormality of Ke as well as the generators of the weight
semigroup F(If(ve) are given in Tables 2-10 in Appendix B.

In the tables we also provide the codimension of Ke ~ Ke in Ke. Note
that if Ke is normal and the codimension of Ke \ Ke in Ke is greater than 1,

then C[Ke] = C[Ke], so that the weight semigroup of Ke actually coincides with
I'(Ke).
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Note also that, in all cases where K e is not normal, the normalization Ke —
Ke is not even bijective (see [15] for a general procedure to compute the K-orbits
in Ke and in Ke).

REMARK 3.2

The normality of Ge is well known and may be deduced from [22] (see also [28],
when Ge is spherical under the action of G). In particular, if (g,¢) is a classical
symmetric pair of non-Hermitian type, then Ge is normal in all but the following
cases:

e g=s5p(2n) with n > 3 and the partition of Ge is (3%,1?"7%) (cases 4.2 and
4.3, with p+q > 3),

e g=s5p(2n) with n > 6 and the partition of Ge is (3%,12"712) (cases 4.6
and 4.7, with p+ ¢ > 6),

e g=s50(2n+ 1) and the partition of Ge is (3,2"71) (case 7.3, with r =p =
qg—1).

We now report the details of the computation of the semigroup I'p,. We omit
the cases where K/K| is a flag variety (cases 5.1 and 6.1 in Appendix A) or
a parabolic induction of a symmetric variety (cases 1.1, 2.1, 3.1, 4.1, 7.1, 8.1,
and 9.1, as well as cases 7.2, 7.3, 8.2, 8.3, 9.2, and 9.3 when r =0). In these
cases the combinatorics of spherical systems is easier. By [20], the normality of
Ke is already known in all these cases (see the discussion at the beginning of
Appendix B), and the corresponding weight semigroups I'(Ke) were obtained in
[2] by using different techniques.

3.1. Symplectic cases

Cases 4.2 (q>1) and 4.3 (p>1). Let us deal with the case 4.2 (¢ > 1); the other
one is similar. We have two spherical roots o1 = a1 + o} and o9 = o + 2(ab +
-+ +ay_y1) +ag and three colors Dy = Dy, , Dy = Dy, and D3 = D,,.

We have D, = Dy, which is minuscule in NA; therefore, Ke is normal. Fur-
thermore, Dy + D3 =2D1 — 01 and D3 = 2D, — 01 — 09; therefore, Dy, Dy +
D3, D3 € FDl .

Let us set 0 =Y a;0; € NX and nDy —o =) ¢;D; € NA. We have

nDy —o=(n—2a1)D; + (a1 — az)D2 + a1 D3,
and therefore, c3 — cg = as. It follows that
I'p, = (D1, Dy + D3, D3)n.
Cases 4.4 (¢ >2) and 4.5 (p > 2). Let us deal with case 4.4 (¢ > 2); the other

one is similar. Let us keep the notation of Sections 1.5.7 and 2.3. Therefore,
Dy :D(;27 Dy = Dg;, D3 :D(;N Dy = Dg;l, Dy :D;,17 Dg = Daga and D7 =
D,,.

Then we have Dy, = Dy, which is minuscule in NA; therefore, Ke is normal.
Moreover, Dy =2Dy — 03 — 04, D1 = Dy — 09 — 04 — 05; therefore, D1, Do, Dy €
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FD4. Moreover, D3+ D7 =D+ Dy —01, Ds+D7=Ds+ Dy—01—09— 03— 04,
D¢+ D7y =Dy + Dy — 01 — 09 — 03 — 04 — 05; therefore, D3 + D7, D5+ D7, Dg +
D7 eT'p, as well.

Let us set 0 =3 a;0; €NX and nDy — o =) ¢;D; € NA. We have

nDy — o= (—a1 +a2)D1 + (—a1 —ag + a3)Ds + (a1 — a2 — a3 + a4)Ds
+ (n+ag — a3 —as)Dy + (a3 — ag + as)Ds + (a2 — a5)Dg + a1 D7,
and therefore, c3 + c5 4+ cg = c7. It follows that
I'p, =(D1,D2,D4,D3+ D7, D5 + D7, D + D7)n.

Cases 4.4 (q=2) and 4.5 (p =2). Let us deal with case 4.4 (¢ = 2); the other
one is similar. Label the spherical roots o1 = as, 09 = o, 03 = a1, 04 = o,
and label the colors Dy = D_,, Do =D/ , Ds=D_ , Dy =D , D5 = D;,l,
Dg = D, -

Then we have D, = Dy, which is minuscule in NA; therefore, Ke is normal.
MOI"COVCI‘, Do =2Dy—03—04, D1 =Dy — 09 —0y4; thCI‘CfOI‘C7 D1,Ds, Dy € FD4.
Slmllarly D3+D6 :Dl +D2 — 01 and D5+D6:D2+D470'1 — 09 — 03 — 04;
therefore, D3 + D¢, D5 + Dg € I'p, as well.

Let us set 0 =Y a;0; € NY and nDy — o0 =) ¢;D; € NA. We have

nDy—o=(—a1 +a2)D1+ (—a1 —as +az)Ds + (a1 —az — a3 + aq) D3
+ (n+az — a3 — ag) Dy + (az + a3 — ag) D5 + ay D,
and therefore, c3 + c5 = cg. It follows that
I'p, =(D1,D3,Dy, D3 + Dg, D5 + Dg ).

Cases 4.6 and 4.7. Let us deal with case 4.6; the other one is similar.
In this case D, is minuscule in NA. By following Example 2.7, this does not
imply that the ring €@, oy
Vp, =T(X,Lp, ); indeed, the multiplication of sections of globally generated line
bundles on X is not necessarily surjective. However, using our methods we are
still able to compute the normality and the weight semigroups of Ke.

Enumerate the spherical roots and the colors of X as in Example 2.7. Then
D, = Dy, and by definition

I'(X,Lnp,) is generated by its degree 1 component

I(Ke)= | J{wr:E€NA, Vg C Vg, }.
neN

LEMMA 3.3

The following inclusions hold:

(1) Vp, C VB, (where Dy =2Dy — 03 — 03 — 204),

(2)
(3) Vp, CVp,Vp, (where D3 =Dy + Dy —01),

(4) Vp, CVp,Vp, (where Dy =Dy + Dy — 01 — 03),
(5)
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Proof
Consider the G-stable divisor X’ C X corresponding to os: it is a parabolic
induction of a wonderful variety of type ab¥(2,2). By Proposition 2.15 together
with Lemma 2.3 it follows that the multiplication of sections is surjective for all
pairs of globally generated line bundles on X’. Denote by p’ : Pic(X) — Pic(X”)
the restriction of line bundles, and for D € NA set D' = p/(D). By Lemma 2.14,
(D}, D}, Dy) and (D), D), D}) are low triples for X', and since D < D} + D)
and Dj < D] + D), are coverings in Pic(X’), it follows that (D7, D), D) and
(D}, D}, DY) are low triples for X’ as well. On the other hand, for all D € NA
the G-modules Vp and Vp are canonically identified, and since the restriction
I'(X,Lp) — I(X', Lp) is surjective, we get the inclusions (1), (2), (3), and (4).
We are left with the inclusion (5). Consider the distinguished subset of colors
Ao ={D3, D3, Dy, D5}, and denote by Y the quotient of X by Ag. Then Y is a
rank 1 wonderful variety with spherical root 207 4+ o3 + 05 whose set of colors is
identified with {D,D¢}. By Lemma 2.2 we have that I'(X, £,,p,) =T(Y, L,,p, )
for all n € N. Since Dg < 2D, is a covering in Pic(Y), the triple (Dy, D1, Dg) is
low in Pic(Y"). On the other hand Y is a parabolic induction of a rank 1 symmetric
variety, and for such a variety, the multiplication of sections of globally generated
line bundles is known to be always surjective. By Lemma 2.3 the same holds for Y,
and since it corresponds to a low triple we get the inclusion Vp, C VI2>1' O

PROPOSITION 3.4
We have that Ke is normal, and T'(Ke) is generated by the weights

/ / / !
W2, W4, w1 +("-)17(-*12<i>(-‘)2a("-)l +w3+w27w3+w1'

Proof

Clearly, I'(Ke) C w(NA). On the other hand by the previous lemma we have that
w(D) eT(Ke) for all D € A; therefore, I'(Ke) = w(NA) and the description of
the generators follows by the description of the map w.

Note that the weights w(Dy),...,w(Ds) are linearly independent. Therefore,
['(Ke) is a saturated semigroup of weights. (That is, if 'z C X (T) is the sublattice
generated by I'(Ke) and if g+ C X(T) ®Q is the cone generated by I'(Ke), then
I'(Ke) =Tz NTg+.) It follows that Ke is normal. O

3.2. Orthogonal cases

3.2.1. Tail cases

Cases without Roman numerals. Let us deal with case 7.2 (r < ¢ — 1). Cases
7.3 (r <min{p,q —1}), 8.2 (r < q), 8.3 (r<p), 9.2 (r <min{p — 1,q — 1}), and
9.3 (r <min{p — 1,q — 1}) are similar. Suppose that r > 0; otherwise, we have
a symmetric case. Let us keep the notation of Section 1.5.8. Therefore, for all
i=1,...,7, Dy;_1 =D, and Dy; = D;’;i; furthermore, Da,1 = D;;,’ Doy =

(621
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D0/T+17 and Dy, 43 = D, _,. To have a uniform notation, we denote

~ D27"+3 if’l"<p7].,
Daorys3 = ,
2Dg,43 ifr=p—1.

We have D, = D, which is minuscule in NA; therefore, Ke is normal.
Set D1 =D1, Dy =Dy, and for all k=3,...,2r +2,

Dy =Do+ Dy_g— (01 + -+ 0p_2).
Note that
- (D, if k< 2r
D = -
Dy + Dgpys iftk=2r+1,2r+2.

PROPOSITION 3.5
The semigroup I'p, is generated by Do; and Do;_1 + Dzj_l foralli,j=1,...
r+1.

Proof
Since Dy € I'p,, by induction on the even indices, it follows that Dy €T D, for
all i <r + 1. On the other hand,
o
Dy =D>— (U2+04+"'+02r—2+02r+%)~
Therefore, for the odd indices, we get Doi1 + l~)2j_1 €l'p, forall i,j <r+1.
Let o € NX, and suppose that nDy — o € NA. Let 0 =Y a;0; and nDy —
o=>¢;D;. Note that if r =p — 1, then cg,43 is even. Therefore, nDy — o €
(D1,...,Dopy9, Dory3)y, and we write

nDy — g =by Dy + -+ +bayy9Dapio 4 bayi3Doyy3.

Expressing the coefficients b1, ..., bo,13 with respect to a1,...,as,4+1 we get
that S/ bo; 1 = 2as,+1 and ba, i1 + bay 2 = bayy 3. The claim follows. O

Cases with Roman numerals. Let us deal with case 9.2 (r=p—-1<¢—1), (I).
Case (II) and cases 7.3 (r=¢—1<p) and 9.3 (r=¢—1<p—1) are similar.
First, let us suppose r > 1. Let us keep the notation of Section 1.5.8. Therefore, for
alli=1,...,r, Dyj_1 = D, and Dy; = D ; furthermore, Dy, 1 = D;,T, Dyyio=

D0/T+17 and Dayq 3 = D,,. We have D, = Dy, which is minuscule in NA; therefore,

Ke is normal.
Set D1 = Dy and Dy = D5, and define inductively, for all k=3,...,2r 4+ 2,

Dy =Dy +Dj_g— (01 + -+ 0p_2).
Note that
Dy, if k<2r—2,
Dy={ Dy+Doyry ifk=2r—1,2r
Dy +2Dgpis if k=2r+1,2r+2.
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PROPOSITION 3.6
The semigroup I'p, s generated by Dgi and Dgi,l + ng,l foralli,j=1,...,
r+1.

Proof
Since Dy € I'p,, for the even indices, it follows that Do, € I'p, for all i <r+1.
On the other hand

o2
Dy =D, - (0-2+0'4+"'+0_27’72+0—27‘+ : +1)'

2
Therefore, for the odd indices, we get Doi_1 + bgj,l €l'p, foralli,j <r+1.
Let 0 € NX, and suppose that nDy —o € NA. Denote 0 =) a;0; and nDs —

o =Y ¢;D;. Expressing the coefficients ¢y, . .., co,43 with respect to aq, ..., ag,41
we get that Z::ll C2i—1 = 2a9,41 and cop—1 + cop + 2¢2r41 + 2¢2p42 = cor43. The
claim follows. O

We are left with the case r =1, the case r = 0 being symmetric. Here we have
Dy = Dy + D5, which is minuscule in NA; therefore, Ke is normal. Proceeding
as above we get the same semigroup

T'p,+ps = (D24 Ds,D4+2D5,2D1 + 2D5, D1 + D3 + 3D5,2D3 + 4D5)y.

3.2.2. Collapsed tails of type B
Cases without Roman numerals. Let us deal with case 8.2 (r = q). Cases 7.3 (r =
p<q—1) and 83 (r =p) are similar. Let us keep the notation of Sections 1.5.6
and 2.5. Therefore, Dy; 1 = D, and Dy; = D,‘L foralli=1,...,r, Dopy1 = D;:Z7
and D27>+2 = D(!r+1 .

We have D, = D,. Note that D; is not minuscule; indeed, D; = Dy —
Z;Zl 09;. Therefore, Ke is not normal.

To have a uniform notation set

~ Doryo  ifr<p-—1,
Dayyo = ,
2Dgpyo ifr=p—1.

Set Dl = D; and Dg = D5, and define inductively for all 1 =3,...,2r +1
Di:D2+Di_2 — (0'1 +"'+Ui—2)-

Note that
D; if i <2r—1,
Di= { Do, + Doyiq if i =2r,
2Dgy 41 + Dopyo ifi=2r+1.
PROPOSITION 3.7

The semigroup I'p, is generated by Dy,.. .,D2T+1.
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Proof

Let 0 € NX, and suppose that nDs; — o € NA. Denote o = a;0; and nDy —
o=>¢;D;. Note that if r =p — 1, then cg,43 is even. Therefore, nDy — o €
<D1, ey D2T+2, .D27n+3>N7 and we write

nDy —o=0D1+ -+ bori2Dori2+ b2r+3D2r+3-

By expressing the spherical roots in terms of colors it follows that bg, 11 = ba, +
2bgy42. The claim follows. O

Case with Roman numerals. We deal here with case 7.3 (r=p=g¢—1), (I); case
(IT) is similar. The notation will be slightly different than before: let us enumerate
the spherical roots ¥ ={01,...,09,} as

0'21'_12042, 02 = O for alli:l,...,r.

Accordingly, we enumerate the colors as Dy;_1 = D;Q and Doy; = ng for all
t=1,...,7, D2T+1 = D(;p, and D2T+2 = Da;-

We have D, = D,y. Note that D, is not minuscule; indeed, Dy = Dy —
>i_ 02i. Therefore, Ke is not normal.

Set Dy =D, and 132 = D5, and define inductively for all t=3,...,2r +1
Di=Dy+D; 5~ (014 +0i_3).

Note that
D; ifi<2r—2,
D, — Doy_1 4 Daryo ifi=2r—1,
Do+ Dopy1 + Dopyo  if i =2,
92Dy i1 + 2D 40 ifi=2r+1.
PROPOSITION 3.8

The semigroup I'p, is generated by bl, - ,D2r+1.

Proof

Let 0 € NX, and suppose that nDy — o € NA. Let 0 =) a;0; and nDy — o =
>~ ¢; D;. By expressing the spherical roots in terms of colors it follows that co, 41 —
Cor =2ag,_1 and cap—1 + Cop41 = Cory2. The claim follows. |

3.2.3. Collapsed tails of type D

Cases without Roman numerals. Let us deal with case 7.2 (r = ¢ — 1). Cases
92 (r=q—1<p—1)and 9.3 (r=p—1<q¢—1) are similar. Let us keep the
and Doy; =
To have a

notation of Section 1.5.8. Therefore, for all i =1,...,7, Do; 1 = D,
D} ; furthermore, Do, y1 =D, , Doyyo= D_'+ ,and Dy, 3=D
v r 41

(03
uniform notation, we denote

~ D2r+3 if7"<p7].,
Dayi3= ]
2Dg.43 ifr=p-—1.

Ay
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We have D, = D, which is minuscule in NA; therefore, Ke is normal.
Set D1 = D1, Dy =Dy, and for all k=3,...,2r + 2,
Dy, =D+ Dy—g— (01 + -+ 0p2).
Note that
~ Dk if k < 2?”,
Dy = -
Dy + Dopyo+ Dopys if k=2r+1,2r+2.

Furthermore, set

DIQT+2 =Dy + Dop — (01 + -+ 02r—1 + 02p41) =2D2p 41 + D2r+3'

PROPOSITION 3.9
The semigroup I'p, is generated by ﬁgi, Doi_1 + ng,l foralli,j=1,...,r+1
with i +3j <2r+1, and D}, .

Proof
Since Dy € I'p,, for the even indices, it follows that [)gi el'p, forall e <r-+1,
and Dy, , € I'p, as well. On the other hand,
O2r + 02r41 )

— )
Therefore, for the odd indices, we get Dgi_l + ng_l el'p, forall 4,5 <r+1.

Let 0 € NX and suppose that nDy — o € NA. Denote 0 =Y a;0; and nDs —
o =>.¢;D;. Note that if r =p — 1, then co,13 is even. Therefore, nDy — o €
<D1, N ,D2T+2, D2r+3>N» and we write

D1:D2_<U2+G4+"'+02r—2+

nDy —a=by Dy + -+ bayy9Dapio 4 bay3Doyy3.

Expressing the coefficients by, ..., bs,3 with respect to ay,...,as,4+1 we get that
Z:i—ll bo;i—1 =2a9,+1 and ba,11 + bayry2 = 2bg,43. The claim follows. ([l

Cases with Roman numerals. Let us deal with case 9.2 (r=p—1=¢—1), (I). Case
(IT) and case 9.3 (r=¢—1=p— 1) are similar. First, let us suppose r > 1. Let
us keep the notation of Section 1.5.8. Therefore, for all i =1,...,7, Da;_1 =D,
and Do; = D ; furthermore, D, 1 = DZ o Dayyo =D, , and Dy 3= D, .

7y
e} O(q

We have D, = D, which is minuscule in NA; therefore, Ke is normal.
Set Dy = Dy and Dy = D5, and define inductively, for all k=3,...,2r + 2,

Dy, =Dy + Dj_p — (01 4+ + 0p—2).
Note that
Dy, if k<2r—2,
Dy, = Dy, + Doy 3 if k=2r—1,2r,
Dy + Doy +2Doss if k=2r+1,2r +2.
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Furthermore, set

D§r+2 =Dy + Doy — (01 + -+ 02p_1 + 0911) = 2Dy 1 + 2Dgy 1 3.

PROPOSITION 3.10
The semigroup I'p, is generated by Dgi, Doi_q + ng,l foralli,j=1,...,7r+1
with i+ 3 <2r+1, and Dy, .

Proof
Since Dy € I'p,, for the even indices, it follows that Dgi e€l'p, forall e« <r-+1,
and Dj,  , € I'p, as well. On the other hand
O2r + 02r41 )
— )
Therefore, for the odd indices, we get Doi_1+ bgj,l €l'p, forall i,j <r+1.
Let o € NX, and suppose that nDy — o € NA. Let 0 =Y a;0; and nDy — o =

D1:D2*(02+04+"'+02r—2+

> ¢;D;. Expressing the coefficients ¢y, ..., cory3 with respect to ay,...,a9,11 we
+1 .

get that 22:1 C2i—1 = 2a2,41 and cop—1 + Cop + Cop41 + Corq2 = C2py3. The claim

follows. O

We are left with the case r =1, the case r =0 being symmetric. Here we have
Dy = D> + D5, which is minuscule in NA; therefore, Ke is normal. Proceeding
as above we get the same semigroup; that is, I'p, 4+ p, is generated by Dy + Ds,
2D4+2Ds5, 2D3+ 2Ds, 2D+ 2D5, D1 + D3+ Dy + 3Ds5.

Appendix A: List of spherical nilpotent K -orbits in p in the classical
non-Hermitian cases

Here we report the list of the spherical nilpotent K-orbits in p for all symmetric
pairs (g, %) of classical non-Hermitian type. Every K-orbit in p is labeled with
the signed partition of the corresponding real nilpotent orbit, via the Kostant—
Sekiguchi—Dokovié¢ bijection. For every orbit we provide a representative e and a
normal triple containing it {h,e, f}.

For all i € Z, let €(i) be the adh-eigenspace in € of eigenvalue i. We denote
by @ the parabolic subgroup of K whose Lie algebra is equal to

LieQ =P ().
i>0

In each case we describe the centralizer of h, which we denote by K}, or by L,
which is a Levi subgroup of Q). We denote by Q" the unipotent radical of Q. Then
we describe the centralizer of e, which we denote by K.. A Levi subgroup of K,
is always given by L., the centralizer of e in L. The unipotent radical of K,
is either equal to Q" or equal to a cosimple L.-submodule of Q". In the latter
case, there always exist some simple L.-submodules in €(1), say, Wy,..., Wy,
which we determine, with the following properties. They are isomorphic as L-
modules but lie in pairwise distinct isotypical L-components. By denoting by V
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the L.-complement of Wy @ ---@® Wy in Lie@Q", as an L.-module,
LieK})=WeaV,

where W is a cosimple L.-submodule of Wy & - - - @ W, which projects nontrivially
on every summand Wy,..., Wy. Actually, the integer d + 1, the number of the
above simple L.-modules Wy,..., Wy, will only be equal to 2 or 3.

REMARK A.1

As already mentioned, the list of spherical nilpotent K-orbits in p is in [19], and
all the data in our list, such as a representative and its centralizer, can be directly
computed using the information contained therein, with one exception. There is
one missing case in [19], corresponding to the signed partition (+3% +12"~8)
for the symmetric pair (sp(2n + 4),sp(2n) + sp(4)) with n >4 (cases 4.6 and
4.7 in Appendix A). The lack comes from a small mistake in [19, Lemma 7.2];
we have checked that there is no further missing case arising from that lemma.
The smallest case of this family, which is for n =4, was already present in [27,
Example 5.8].

A.1 sl(2n)/sp(2n)

We set K =Sp(2n), n>2, p=V(wsz). Let us fix a basis eq,...,en,€_p,...,e_1 of
C?", a skew-symmetric bilinear form w such that w(e;,e5) =09; _; for 1 <i<n,
and K = Sp(C?",w). Then w can be seen as a linear form on A’C?", w(e; Ae;) =
w(e;,e;), and

p =kerw C A2C*",

A1 (20,172 r>1

We take
r e, if1<i<2r,
e=Y eiNey_it1,  hle) =4 —e; if —2r<i< -1,
=1 0 otherwise,

s
f= E €_orti—1N\e_j.
=1

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K, &
GL(2r) x Sp(2n — 4r). The centralizer of e is K, = L.Q", where L. 2 Sp(2r) x
Sp(2n — 4r).

A2 sl(2n+1)/so(2n+1)

We set K =S0(2n+1),n>2, p=V(2wy). If n=1, then p =V (4w). Let us
fix a basis e1,...,€n,€0,6—n,...,e—1 of C?"*1 a symmetric bilinear form 3 such
that B(e;,e;) =d;,—; for all i, j, and K = SO(C?**!, 3). Then § can be seen as a
linear form on S?C?"*1, B(e;e;) = B(e;, e;), and

p =ker 8 C S2C* 1,
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A.2.1 (27, 12n72r4) >
We take

- e; if1<i<r, -
e= Zeie,«_iﬁ, hie;) =4 —e; if —r <i< -1, f= Ze_r+i_1e_i.
=1 0 otherwise, =1

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K} =
GL(r) x SO(2n — 2r + 1). The centralizer of e is K, = L.Q", where L. = O(r) x
SO(2n —2r +1).

A3 sl(2n)/so(2n)

We set K =S0(2n), n>3, p=V(2wy). If n =2, then p =V (2w + 2w’). Let us
fix a basis e1,...,en,e_n,...,e_1 of C2", a symmetric bilinear form § such that
B(ei,e;) =6;—; for all 4,5, and K =SO(C?",8). Then S can be seen as a linear
form on S2C?", B(e;e;) = B(e;,e;), and

p =ker 8 C S?C*".

Let us denote by 7 the linear endomorphism of C2" switching e,, and e_,, and
fixing all the other basis vectors. The conjugation by 7 is an involutive internal
automorphism of g, leaving € and p stable, and inducing the nontrivial involution
of the Dynkin diagram of &.

A.3.1 (27,1272 > 1
If r < n, we take

r €; ifl1<i<r, ”
€= Z€i€T,i+1, h(ez) =94 —€; if —r < ) < —1, f = Ze,rﬂ;le,i.
=1 0 otherwise, =1

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = Kj &
GL(r) x SO(2n — 2r). The centralizer of e is K, = L.Q", where L. = O(r) x
SO(2n — 2r).

If r = n, then there exist two orbits labeled I and II. Case (I) can be described
as above by specializing r equal to n. Case (II) can be obtained from case (I) by
conjugating by 7.

A4 sp(2p+2q)/sp(2p) + sp(2q)
We set K = Sp(2p) X Sp(2q), p,q>1, p=V (w1 +w}). Let us fix a basis ey, ...,

€p,€—p,...,e_1 of C?? and a skew-symmetric bilinear form w such that w(e;, ej)=
d;,—j for 1 <i <p. Similarly, let us fix a basis ef,...,ep, e’ ... e’ of C?7 and

a skew-symmetric bilinear form w’ such that w’(el, e}) =0;,—; for 1 <i<gq. Then
K =Sp(C?,w) x Sp(C??,w’) and

p=C>*®C*.
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A1 (4227, 4120720 120720 >
We take

r r
/ /
€= § e ® erfiJrlv f = - E €_r4i—1 & €_;»
=1 i=1

€; if1<i<r, el if1<i<r,
hei) = —e; if —r<i<—1,  h(ef)=q—¢; if —r<i<-1,
0 otherwise, 0 otherwise.

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K}, &
GL(r) x Sp(2p — 2r) x GL(r) x Sp(2¢ — 2r). The centralizer of e is K. = L.Q",
where L. 2 GL(r) x Sp(2p — 2r) x Sp(2¢ — 2r), and the GL(r) factor of L. is
embedded skew-diagonally, A (A, A~1), into the GL(r) x GL(r) factor of L.

A4.2 (+3%+1%p74, —12472)

We take
e=e1®e ;| —ea®el, f=2e 2®e | +2 1®e€],
2e; if1<i<2,
hie;) = ¢ —2¢; if —2<i<—1, h(e}) =0 Vi.

0 otherwise,

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K}, =
GL(2) x Sp(2p — 4) x Sp(2q). The centralizer of e is K. = L.Q", where L, =
SL(2) x Sp(2p — 4) x Sp(2¢ — 2), and the SL(2) x Sp(2q — 2) factor of L. is
embedded as

(A4, B)— (4, A, B)

into SL(2) x Sp(2) x Sp(2¢q — 2), where the SL(2) factor is included in the GL(2)
factor of L and the Sp(2) x Sp(2¢ — 2) factor is included in the Sp(2q) factor
of L.

A48 (3%, 4+1%P72 —12971)
This case can be obtained from case 4.2 by switching the roles of p and q.

Af4 (32,422, 41276 —120—4)
We take
6:61®6L2—62®el2—63®6/17

f=e3®e | +2 2®¢e 4+2e 1®eh,
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%; if1<i<?2,

€; if i =3, el ifi=1,
h(e;) =< —e; ifi= -3, h(e;) =} —e} ifi=—1,

—2e; if —2<i<—1, 0 otherwise.

0 otherwise,

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K =
GL(2) x GL(1) x Sp(2p — 6) x GL(1) x Sp(2q — 2). The centralizer of e is K., =
L K}, where L, 22 SL(2) x GL(1) x Sp(2p—3) x Sp(2¢g —4), the SL(2) x Sp(2¢—4)
factor of L. is embedded as

(A,B)— (A, A, B)

into SL(2) x Sp(2) x Sp(2¢q — 4), where the SL(2) factor is included in the GL(2)
factor of L and the Sp(2) x Sp(2¢q — 4) factor is included in the Sp(2¢q — 2) factor
of L, and the GL(1) factor of L. is embedded skew-diagonally

2z (2,271)

into the GL(1) x GL(1) factor of L. The quotient Lie@"/Lie K is a simple
L.-module of dimension 2 as follows. In (1) there are exactly two simple L,-
submodules, Wy, W1, of highest weight w; with respect to the SL(2) factor, iso-
morphic as L.-modules but lying in two distinct isotypical L-components. Let
V be the L.-complement of Wy @ Wi in Lie@Q". As an L.-module, Lie K} is
the direct sum of V' and a simple L.-submodule of Wy @& W; which projects
nontrivially on both summands Wy and Wj.

A.4.5 (—3%,422, +12p—4 _124-6)
This case can be obtained from case 4.4 by switching the roles of p and g.

A6 (+3%,+12P78) =2
We take
e=e1®e | tea®e 5 —e3Rey,—es Q€]

f=2(e_a®e | +e3®e y+e s®ey+e_1Re)),

2e; if 1 <4i<4,
h(e;) =< —2¢; if —4<i<—1, h(e}) =0 Vi.
0 otherwise,

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K} =
GL(4) x Sp(2p—8) x Sp(4). The centralizer of e is K, = L.Q", where L, 2 Sp(4) x
Sp(2p — 8), and the Sp(4) factor of L, is embedded diagonally, A — (A, A), into
the GL(4) x Sp(4) factor of L.

A 4.7 (=34 —12078) p=2
This case can be obtained from case 4.6 by switching the roles of p and gq.
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A5 so(2n+1)/s0(2n)
We set K =S0(2n), n>3, p=V(wy). If n=2, then p =V (w+w’). Let us fix

a basis e1,...,€n,6_n,...,e_1 of C?>", a symmetric bilinear form B such that
B(ei,ej) =d; —; for all 4,7, and K =SO(C?*",3). Then
p —_ (C2n.

A5.1 (+3,+1%2772)

We take
2%; ifi=1,
e=ej, hiei)) =4 —2¢; ifi=—1, f=—-2e_;.
0 otherwise,

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = K &
GL(1) x SO(2n — 2). The centralizer of e is K, = L.Q", where L, = SO(2n — 2).

A6 so(2n+2)/so(2n+1)
We set K =S0(2n+1),n>2, p=V(wy). if n=1, then p=V(2w). Let us fix a

basis €1,...,€n,€0,€—n,...,e—1 of C>"T1 a symmetric bilinear form 3 such that
Blei,e;) = 6; —; for all i,j, and K =SO(C?*"*! 3). Then
p _ (C2n+l.

A.6.1 (+3,+12771)

We take
%; ifi=1,
e=eq, hie;) =14 —2¢; ifi=—1, f=—2e_1.
0 otherwise,

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K, &
GL(1) x SO(2n —1). The centralizer of e is K, = L.Q", where L, = SO(2n — 1).

A7 so(2p+2q+1)/s0(2p+1) +s0(2q)

Weset K =SO(2p+1)xS0(29),p>2,¢>3,p=V(w1+w)). fp=1and ¢ >3,
then p =V (2w+4w)). lfp>2and ¢ =2, then p=V(w; +w' +w”). Iffp=1and ¢ =
2, then p =V (2w +w’ +w"). Let us fix a basis e1,...,ep,€0,€_p,...,e_1 of C?PT!
and a symmetric bilinear form J such that §(e;,e;) = 9; —; for all 7, j. Similarly,
let us fix a basis ej,...,ep,e’ ..., of C?7 and a symmetric bilinear form 8’
such that 3 (e}, e/;) = &; _; for all i,j. Then K =SO(C?**!, ) x SO(C%, 8’) and

R
p= (C2p+1 ® (C2q.

Let us denote by 7 the linear endomorphism of C?*2¢+! switching efI and
e’ o and fixing all the other basis vectors. The conjugation by 7 is an involutive
internal automorphism of g, leaving ¢ and p stable, and inducing the nontrivial

involution of the Dynkin diagram of €.
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AL (227, 1204172 120727 e >
If r < q, we take

T T
/ /
€= E € Qe i1, f=- E Crti—1 €y,
=1 i=1

€; if1<i<r, el if1<i<r,
hie;) = ¢ —e; if —r <i< -1, h(ej) =< —e! if —r<i< -1,
0 otherwise, 0 otherwise.

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K, =
GL(r) xSO(2p—2r+1) x GL(r) x SO(2¢ — 2r). The centralizer of e is K. = L.Q",
where L. 2 GL(r) x SO(2p — 2r + 1) x SO(2¢ — 2r), and the GL(r) factor of L.
is embedded skew-diagonally, A+ (A, A7), into the GL(r) x GL(r) factor of L.

If r = g, then there exist two orbits labeled I and II. Case (I) can be described
as above by specializing r equal to g. Case (II) can be obtained from case (I) by
conjugating by 7.

A.7.2 (-f—?)7 —|—22T’ +12P*172r, _12q71,27~)
If r < q—2, we take

r
— / / /
e=e® (eq + e—q) + § €it1 ® Cr—it1s
1=1

f==(Yerria@el,) —e@(ch+e,),

i=1
2e; ifi=1,
e; if2<i<r+1, el if1<i<r,
hie;) =4 —e; if —r—1<i<-2, h(ej) =< —e! if —r<i< -1,
—2e; ifi=-1, 0 otherwise.
0 otherwise,

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = K &
GL(1) x GL(r) x SO(2p — 2r — 1) x GL(r) x SO(2¢g — 2r). The centralizer of e is
K.=L K", where L, 2 GL(r) x SO(2p —2r — 1) x S(O(1) x O(2¢ — 2r — 1)), the
S(O(1) x O(2p — 2r — 1)) factor of L. is embedded as

(z,A) (2,2, A)

into GL(1) x S(O(1) x O(2¢ — 2r — 1)), where the S(O(1) x O(2¢ — 2r — 1)) factor
is included in the SO(2¢q — 2r) factor of L, and the GL(r) factor of L, is embedded
skew-diagonally

B~ (B,B™Y)
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into the GL(r) x GL(r) factor of L. The quotient Lie@"/Lie K} is a simple
L.-module of dimension r as follows. In £(1) there are exactly two simple L,-
submodules, Wy, W7, of highest weight w,_; with respect to the GL(r) factor,
isomorphic as L.-modules but lying in two distinct isotypical L-components. Let
V be the L.-complement of Wy @ W, in Lie@Q". As an L.-module, Lie K} is
the direct sum of V' and a simple L.-submodule of Wy & W; which projects
nontrivially on both summands Wy and Wj.

If r=q— 1, then the normal triple h,e, f, the parabolic subgroup Q = LQ",
and L. have the same description, with K, = L. K2. The quotient Lie @/ Lie K}
remains a simple L.-module of dimension ¢ — 1, but here in (1) there are exactly
three simple L.-submodules, Wy, W1, W, of highest weight wy_o with respect
to the GL(¢q — 1) factor, isomorphic as L.-modules but lying in three distinct
isotypical L-components. Let V' be the L.-complement of Wy & W7 & Wy in
Lie@Q". As an L.-module, Lie K} is the direct sum of V' and a cosimple L.-
submodule of Wy @ W7 @& W5 which projects nontrivially on every summand Wy,
Wl, and WQ.

A.7.3 (=3,422%7 412p—2r _12a-2-2r)
If r <gq-—2, we take

e= (Z e ® e;,m) teo@el,  f=-2e0®e =Y e i@, g,

i=1 i=1
2e; ifi=1,
€; if1<i<r, el if2<i<r+1,
hie;)) =< —e; if —r<i<—1, h(e}) —ei if—r—1<i< -2,
0 otherwise, -2} ifi=-1,
0 otherwise.

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K, &
GL(r) x SO(2p—2r +1) x GL(1) x GL(r) x SO(2g — 2r — 2). The centralizer of e
is K. = L. K, where L, 2 GL(r) x S(O(1) x O(2p — 2r)) x SO(2¢ — 2r — 2), the
S(O(1) x O(2p — 2r)) factor of L, is embedded as

(z,A)— (2,4, 2)

into S(O(1) x O(2p — 2r)) x GL(1), where the S(O(1) x O(2p — 2r)) factor is
included in the SO(2p — 2r + 1) factor of L, and the GL(r) factor of L. is embed-
ded skew-diagonally

B~ (B,B™Y)

into the GL(r) x GL(r) factor of L. The quotient Lie@"/Lie K is a simple
L.-module of dimension r as follows. In €(1) there are exactly two simple L,-
submodules, Wy, W7, of highest weight w; with respect to the GL(r) factor,
isomorphic as L.-modules but lying in two distinct isotypical L-components. Let
V' be the L.-complement of Wy @ Wi in Lie@". As an L.-module, Lie K is
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the direct sum of V' and a simple L.-submodule of Wy @ W3 which projects
nontrivially on both summands Wy and Wj.

If r =¢q — 1, then there exist two orbits labeled I and II. Case (I) can be
described as above by specializing r equal to ¢ — 1. Case (II) can be obtained
from case (I) by conjugating by 7.

A8 s0(2p+2q+2)/s0(2p+ 1) +50(2¢ + 1)
We set K =S0(2p+1)xSO0(2¢+1),p,q>2,p=V (w1 +w}). Ifp=1and ¢ > 2,
then p=V(2w+w)). lf p>2and ¢=1, then p=V(w; +2w'). If p=g=1, then
p=V(Q2w+ 2.

Let us fix a basis e1,...,€p,€0,€_p,...,e_1 of C*’T! and a symmetric bilin-
ear form 8 such that [B(e;,e;) =6; —; for all ¢,j. Similarly, let us fix a basis
€1+ €qs€05 € gyerr €y oOf C?9*! and a symmetric bilinear form /' such that

pB' (e}, €;) = 6;,—; for all 4, 5. Then K =SO(C?**!, 8) x SO(C**!, 5') and
p= (C2p+1 ® CQq—&-l'

A.8.1 (_’_227-’_’_121)—&-1—27'7_12q+1_27.)} r Z 1

We take
T T
ezzei@’@;—i-ﬂa [= *Ze—rﬂ—l ®6/—ia
i=1 i=1
e; if1<i<r, el if1<i<r,
hie;) =% —¢; if —r<i<—1, h(ej) =< —e! if —r<i< -1,
0 otherwise, 0 otherwise.

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = K &
GL(r) x SO(2p —2r+1) x GL(r) x SO(2¢ — 2r + 1). The centralizer of e is K, =
L.Q", where L, = GL(r) x SO(2p — 2r + 1) x SO(2q — 2r 4+ 1), and the GL(r)
factor of L, is embedded skew-diagonally, A~ (A, A~1), into the GL(r) x GL(r)
factor of L.

A.8.2 (+3,+2% 41%~172 _12a-2r)

We take
r r
e=e1®ep+ ) e ®@e iy, f=- (Z eoryi—2® 6'_i) —2e_1 ®ep,
i=1 i=1
2e¢; ifi=1,
€; if2<i<r+1, el if1<i<r,
hie;) =4 —e; if —r—1<i< -2, h(ej) =< —e} if —r<i<-—1,
—2e; ifi=-1, 0 otherwise.
0 otherwise,

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = K =
GL(1) x GL(r) x SO(2p — 2r — 1) x GL(r) x SO(2¢ — 2r 4+ 1). The centralizer of e
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is K. = L. K, where L. 2 GL(r) x SO(2p — 2r — 1) x S(O(1) x O(2¢q — 2r)), the
S(O(1) x O(2¢q — 2r)) factor of L, is embedded as

(2,4) = (2,2, 4)

into GL(1) x S(O(1) x O(2g — 2r)), where the S(O(1) x O(2¢ — 2r)) factor is
included in the SO(2¢q — 2r 4 1) factor of L, and the GL(r) factor of L. is embed-
ded skew-diagonally

B~ (B,B™Y)

into the GL(r) x GL(r) factor of L. The quotient Lie@"/Lie K' is a simple
L.-module of dimension r as follows. In (1) there are exactly two simple L,-
submodules, Wy, W7, of highest weight w,_; with respect to the GL(r) factor,
isomorphic as L.-modules but lying in two distinct isotypical L-components. Let
V be the L.-complement of Wy & Wi in Lie@Q". As an L.-module, Lie K} is
the direct sum of V' and a simple L.-submodule of Wy & Wy which projects
nontrivially on both summands Wy and Wj.

A.8.3 (—3,—|—22’"’_|_12P*2T’_12q7172r)
This case can be obtained from case 8.2 by switching the roles of p and q.

A9 s0(2p+2q)/s0(2p) + s0(2q)

We set K =SO(2p) x SO(29), p,q >3, p=V (w1 +w}). If p=2 and ¢ > 3, then
p=V(w+w +uw). i p>3and ¢=2, then p=V(w; + ' +w"). If p=2 and
g=2, then p=V(w+w +w’ +w"). Let us fix a basis e1,...,ep,e_p,...,e_1
of C?% and a symmetric bilinear form (3 such that B(e;,e;) =4, _; for all i, ;.
Similarly, let us fix a basis €], ..., ep, e’ ... e’ of C?? and a symmetric bilinear

form /8’ such that (e}, e;) = d; _; for all 4, 5. Then K = SO(C?F, 8) x SO(C?2,3")

(g}
and

p=C2 g C.

Let us denote by 7 the linear endomorphism of C?’2¢ switching e, and
e_p, and fixing all the other basis vectors. Similarly, let us denote by 7’ the
", and fixing all the other
basis vectors. The conjugation by 7 (and by 7/, resp.) is an involutive external
automorphism of g, leaving ¢ and p stable, and inducing the nontrivial involution

of the first (the second, resp.) connected component of the Dynkin diagram of €.

linear endomorphism of C?P+2¢ switching ey and e

A9.1 (4227, 412720 120727) >
If r<pand r < q, we take

T ™
/ /
€= g € Qer_it1, f=- E €rti-1 €y,
i=1 i=1
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€; if1<i<r, el if1<i<r,
hie;) = ¢ —e; if —r <i< -1, h(ej) =4 —e} if —r <i< -1,
0 otherwise, 0 otherwise.

Let Q = LQ" be the corresponding parabolic subgroup of K, so that L = Kj &
GL(r) x SO(2p — 2r) x GL(r) x SO(2q — 2r). The centralizer of e is K. = L.Q",
where L, = GL(r) x SO(2p — 2r) x SO(2¢ — 2r), and the GL(r) factor of L. is
embedded skew-diagonally, A+ (A, A~1), into the GL(r) x GL(r) factor of L.

If r =p and r < ¢, then there exist two orbits labeled I and II. Case (I) can
be described as above by specializing r equal to p. Case (II) can be obtained
from case (I) by conjugating by 7.

If r < p and r = ¢, then there exist two orbits labeled I and II. Case (I) can
be described as above by specializing r equal to ¢q. Case (II) can be obtained
from case (I) by conjugating by 7’.

If r = p = q, then there exist four orbits with a double label T or II. Case (I,
I) can be described as above by specializing r equal to p = ¢q. Case (I, IT) can be
obtained from case (I, I) by conjugating by 7’. Case (II, I) can be obtained from
case (I, I) by conjugating by 7. Case (I, II) can be obtained from case (I, I) by
conjugating by 7 and 7'.

A.9.2 (43,4220 412—2-2r _12q—1-2r)
Ifr<p-2andr<gq-—2, we take

r
— / / /
e=e1Q (eq + e—q) + E €it1 & €r_it1>
=1

f==(Derriae,) —ea@le+el,),
=1

%; ifi=1,

€; if2<i<r+1, e} if1<i<r,
hie;)) =< —e; if—r—1<i< =2, h(ej) =< —e! if —r<i< -1,

—2e; ifi=-1, 0 otherwise.

0 otherwise,

Let @ = LQ" be the corresponding parabolic subgroup of K, so that L = K, &
GL(1) x GL(r) x SO(2p — 2r — 2) x GL(r) x SO(2¢q — 2r). The centralizer of e is
K.=L.K?, where L. 2 GL(r) x SO(2p —2r —2) x S(O(1) x O(2q — 2r — 1)), the
S(O(1) x O(2p — 2r — 1)) factor of L. is embedded as

(z,A) = (2,2, A)

into GL(1) x S(O(1) x O(2¢ — 2r — 1)), where the S(O(1) x O(2¢ — 2r — 1)) factor
is included in the SO(2¢q — 2r) factor of L, and the GL(r) factor of L. is embedded
skew-diagonally

Bw (B,B™Y)
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into the GL(r) x GL(r) factor of L. The quotient Lie@"/Lie K} is a simple
L.-module of dimension r as follows. In £(1) there are exactly two simple L,-
submodules, Wy, W7, of highest weight w,_; with respect to the GL(r) factor,
isomorphic as L.-modules but lying in two distinct isotypical L-components. Let
V be the L.-complement of Wy @ W, in Lie@Q". As an L.-module, Lie K} is
the direct sum of V' and a simple L.-submodule of Wy & W; which projects
nontrivially on both summands Wy and Wj.

If r<p-—2and r=qg—1, then the normal triple h,e, f, the parabolic sub-
group @ = LQ", and L. have the same description, with K. = L. K}. The quo-
tient Lie@"/Lie K2 remains a simple L.-module of dimension ¢ — 1, but here
in £(1) there are exactly three simple L.-submodules, Wy, W7, W, of highest
weight wq_o with respect to the GL(¢ — 1) factor, isomorphic as L.-modules but
lying in three distinct isotypical L-components. Let V' be the L.-complement of
Wo® W1 @ Ws in Lie@Q". As an L.-module, Lie K' is the direct sum of V and
a cosimple L.-submodule of Wy @ W7 & W5 which projects nontrivially on every
summand Wy, W7, and Ws.

If » =p — 1, then there exist two orbits labeled I and II. Case (I) can be
described as above by specializing r equal to p — 1. Case (II) can be obtained
from case (I) by conjugating by 7.

A.9.3 (—37 —|—22T’ +12P—1—2r, _12(1—2—27")
This case can be obtained from case 9.2 by switching the roles of p and gq.

Appendix B: Tables of spherical nilpotent /-orbits in p in the classical
non-Hermitian cases

Let e € Ny, and let {h,e, f} be a normal triple containing it. The action of the
semisimple element h on g induces a Z-grading g = @, ., 8(i), where we denote
g(i) ={x € g: [h,z] =iz}. This defines the height of e (which actually depends
only on Ge), defined as ht(e) = max{i: g(i) # 0}. By [27, Theorem 2.6], the orbit
Ge is spherical if and only if ht(e) < 3.

Similarly, one may consider the action of h on p, and the corresponding
Z-grading p = @, p(i), where p(i) = p N g(i). This defines the p-height of e
(which actually depends only on Ke), defined as hty,(e) = max{i: p(i) # 0}. By
[27, Theorems 5.1, 5.6], the orbit Ke is spherical if ht(e) < 3, whereas if Ke
is spherical, then ht(e) <4 and ht,(e) < 3. Similarly to the adjoint case, Ke
is normal if ht,(e) =2, in which case Hesselink’s [16] proof of the normality of
the closure of a nilpotent adjoint G-orbit of height 2 essentially applies (see [20,
Proposition 2.1]).

In Tables 2-10, for every spherical orbit Ke C N,, we report its signed parti-
tion (column 2), the Kostant-Dynkin diagram and the height of Ge (columns 3,
4), the Kostant—Dynkin diagram and the p-height of Ke (columns 5 and 6), the
normality of Ke (column 7), the codimension of Ke \ Ke in Ke (column 8), and

the weight semigroup of Ke (column 9).
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In the orthogonal cases, the generators of the weight semigroups given in
the tables are expressed in terms of the following variation of the fundamental
weights of an irreducible root system R

2w; ifi=nand R=B,,
Wi =1 Wp_1+tw, ifi=n—1,nand R=D,,
w; otherwise,

and we set wg =0.

In all cases with a Roman numeral, (I) or (II), one K-orbit is obtained from
the other one by applying an involutive automorphism of a factor of K of type D.
In some of these cases, the generators of F(I/(:/e) are given just for the K-orbit
labeled with (I); the generators for the other one are obtained by switching wy_1
and wy, (resp., wy_; and wy) if the first (resp., the second) component is the one
involved by the above-mentioned automorphism. Which component is involved
by the automorphism is clear from the Kostant—Dynkin diagrams of the two
orbits.

In Tables 11-19, for every spherical nilpotent orbit Ke in p, we report the
Luna diagram and the set of spherical roots of the spherical system of K|[e]. For
every family of K-orbits, we draw the Luna diagram for values of the parameters
n,p,q big enough with respect to r. When r becomes close to n, p, or ¢, the
diagram may change. Let us explain how it changes.

Whenever K has a factor of type Dy, where the diagram ends with

i

(the corresponding simple root o, moving a color of type b, with asy1,...,q¢
belonging to SP) as in case 3.1, the given diagram is for s <t —1. If s=¢—1,
then both the simple roots a;_1 and a; move colors of type b. If s =1t, with
Roman numeral (I), then a1 € supp ¥ and a; moves a color of type b. If s =t¢,
with Roman numeral (II), then «; € supp X and a;_; moves a color of type b.
For example, the diagram of case 3.1 becomes as follows.

r=n-—1
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r=n (1)

Whenever K has a factor of type Dy, where the diagram ends with a tail

—

(the corresponding simple root o, moving a color of type b, with asy1,...,q
belonging to SP and 2(as+ -+ at—2) + az—1 + o belonging to X) as in case 7.2,
the given diagram is for s <t —1. If s=t¢ — 1, then the simple roots a;_1 and ay
move the same color of type b (as—_1 + ay is a spherical root). For example, the
diagram of case 7.2 for r = ¢ — 2 becomes as follows.

é>>é>>___é g)
R e ?

<Q
@)

<

5
o

Whenever K has a factor of type B, where the diagram ends with a tail

(the corresponding simple root o, moving a color of type b, with asy1,...,q¢
belonging to SP and 2(as + -+ + «;) belonging to ) as in case 7.3, the given
diagram is for s < t. If s =t, then the simple root a; moves a color of type 2a
(20 is a spherical root). For example, the diagram of the case 7.3 for r=p —1
becomes as follows.

é><é> <O g>> é)> O <
?9 . 0 0 oc}p _ 9




Table 2. G=Asp_1, K=C,, (n>2)

Signed partition

Diagram of Ge

ht(e)

Diagram of Ke

ht, (€)|K decodim(Ke \ Ke)

Generators of I' ([?/e)

1'1(27"7 ]-n72r)7 r 2 1

(0...010...010...0) if 2r <m
—— ——

(0...010...0)if 2r<n
2r—1 2r—1 9 ;:‘1’ 9
(Q..020...0)  if2r=n (0...02) if2r=n
n—1

+| 4n—-2r+1)

w2,Wq,...,W2r

Table 3. G=As,, K=B, (n>1)

Signed partition

Diagram of Ge

ht(e)Diagram of Keht,(e)Kelcodim(Ke \ Ke)

Generators of T’ (l?/e)

2.1)(2", 122 ) r > 1

r—1

(0...010...010...0)| 2
—— N——

r—1

(0...010...0)[ 2 [+]| 2(n—r+1)
N~
r—1

2w1,...

, 200y

Table 4. G =Asn_1, K =D, (n>2)

Signed partition

Diagram of Ge

ht(e)

Diagram of Ke

ht, (e)|K ]

codim(Ke \ Ke)

Generators of T’ (ﬂ)

(0...010...0)if r<n—1
N——

1

3 (27,12"72") r >1)(0...010...010...0)| 2 | 2 |+| 2(n—r)+1 2001, . .., 200,

ren 2 N (0...011) ifr=n—1

3.1 (2™ (I) (0...002) (I) 2w1,...,200—1,4wn
0...020...0 2 2 1

r=n| (1) or (IT) Q.9 ) (IT) (0...020) + (I1) 21, ..., 21, o1
n—1

siied >13dWWIAS Ul s3gJ0 Juodiiu [esuayds

€LL
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Table 6. G=B,,, K =D, (n>2)

Signed partition|

Diagram of Geht(e)

Diagram of Ke

ht, (e)Ke

codim(Ke \ Ke)

Generators of F(I?e)

5.1

(3, +1°"7%)

(2,0,...,0)

(10...0) if n.>2
(11) ifn=2

2

2n—1

w1 ifn>2
wHwifn=2

Table 7. G = Dn+1, K= Bn (n Z 1)

Signed partitionDiagram of Ge

ht(e)Diagram of Keht,(e)

Kelcodim(Ke \ Ke)

Generators of F(I/(Ve)

6.1 (+3,4+12"7h)

(2,0,...,0)

(10...0)

2

+

2n

wpifn>1
2wifn=1

siied >13dWWIAS Ul s3gJ0 Juodiiu [esuayds
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Table 11. G:Aznfl, K= C-,L (n Z 2)

Signed partition

Diagram of P(Ke)

Spherical roots

1.1

o2i—1 + 202; + 2441

(27, 1"727)) > 1| —®

®

S

(i=1,...,r—1)

Table 12. G =As,, K=B,, (n>1)

Signed partition

Diagram of P(Ke)

Spherical roots

2.1|(27, 1272 > 1 B

-- = 2&1,...,2617«71

Table 13. G:AQn_l, K= Dn (TLZ 2)

Signed partition

Diagram of P(Ke)

Spherical roots

(27'7 1271727')7 P Z 1

B or (1) if r = n

@)

201, ..., 2001 ifr<n
20[17...720[”,1 ifr=n (I)
2001, ...y 20m—2, 20, if r=mn (1)

08,
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Table 15. G=B,, K =D, (n>2)

Signed partition

Diagram of P(Ke)

Spherical roots

5.1 (+3, +12"72) o——-- < none
Table 16. G=Dy, 41, K=B, (n>1)
Signed partition Diagram of P(Ke) Spherical roots
6.1 (+3,4+12"71) ® --- > none
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