Examples of groups which are not weakly amenable

Narutaka Ozawa

Abstract

We prove that weak amenability of a locally compact group imposes a strong condition on its amenable closed normal subgroups. This extends non-weak amenability results of Haagerup (1988) and Ozawa and Popa (2010). A von Neumann algebra analogue is also obtained.

1. Introduction

Let G be a group which is always assumed to be a locally compact topological group. The group G is said to be weakly amenable if the Fourier algebra $\mathcal{A} G$ of G has an approximate identity $\left(\varphi_{n}\right)$ which is uniformly bounded as Herz-Schur multipliers. (If one requires $\left(\varphi_{n}\right)$ to be bounded as elements in $\mathcal{A} G$, it becomes one of the equivalent definitions of amenability; see Section 2 for the precise definition.) Weak amenability is strictly weaker than amenability and passes to closed subgroups. It was proved by De Cannière and Haagerup [dCH], Cowling [Co], and Cowling and Haagerup [CH] that real simple Lie groups of real rank one are weakly amenable (see also [Oz]) and by Haagerup [Ha] that real simple Lie groups of real rank at least two are not weakly amenable. For the latter fact, Haagerup proves that $\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$ is not weakly amenable (see also [Do]). More recently, it was proved by Ozawa and Popa $[\mathrm{OP}]$ that the wreath product $\Lambda\langle\Gamma$ of a nontrivial group Λ by a nonamenable discrete group Γ is not "weakly amenable with constant 1." In this paper, we generalize these non-weak amenability results as follows.

THEOREM A

Let G be a weakly amenable group, and let N be an amenable closed normal subgroup of G. Then, there is a $(G \ltimes N)$-invariant state on $L^{\infty}(N)$, where the semidirect product $G \ltimes N$ acts on N by $(g, a) \cdot x=g a x g^{-1}$.

In particular, the wreath product by a nonamenable group is never weakly amenable. The theorem also gives a new proof of Haagerup's result that $\mathrm{SL}(2, \mathbb{Z}) \ltimes$

[^0]DOI 10.1215/21562261-1550985, © 2012 by Kyoto University
Received April 7, 2011. Revised August 8, 2011. Accepted August 22, 2011.
2010 Mathematics Subject Classification: Primary 43A22; Secondary 22D15, 46L10.
Author's work partially supported by Japan Society for the Promotion of Science and the Sumitomo Foundation.
\mathbb{Z}^{2} is not weakly amenable, without appealing to the lattice embedding into $\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$. We note for the sake of completeness that there is an even weaker variant of weak amenability called the approximation property (see [HK]), and $\operatorname{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$ has the approximation property, while $\operatorname{SL}(n \geq 3, \mathbb{R})$ does not (see [LdS]).

As [OP, Theorem 3.5], there is an analogous result for von Neumann algebras. We refer to [OP, Section 3] and Section 4 of this paper for the terminology used in the following theorem.

THEOREM B

Let M be a finite von Neumann algebra with the weak* completely bounded approximation property. Then, every amenable von Neumann subalgebra P is weakly compact in M.

It follows that a type II_{1} factor having the weak* completely bounded approximation property and property (T) (e.g., the group von Neumann algebra of a torsion-free lattice in $\operatorname{Sp}(1, n)$) is not isomorphic to a group-measure-space von Neumann algebra.

2. Preliminary on Herz-Schur multipliers

Let G be a group. We denote by λ the left regular representation of G on $L^{2}(G)$, by $C_{\lambda}^{*} G$ the reduced group C^{*}-algebra, and by $\mathcal{L} G$ the group von Neumann algebra of G. The Fourier algebra $\mathcal{A} G$ of G consists of all functions φ on G such that there are vectors $\xi, \eta \in L^{2}(G)$ satisfying $\varphi(x)=\langle\lambda(x) \xi, \eta\rangle$ for every $x \in G$. (In other words, $\mathcal{A} G=L^{2}(G) * L^{2}(G)$.) It is a Banach algebra with the norm $\|\varphi\|=\inf \{\|\xi\|\|\eta\|\}$, where the infimum is taken over all $\xi, \eta \in L^{2}(G)$ as above. The Fourier algebra $\mathcal{A} G$ is naturally identified with the predual of $\mathcal{L} G$ under the duality pairing $\langle\varphi, \lambda(f)\rangle=\int_{G} \varphi f$ for $\varphi \in \mathcal{A} G$ and $\lambda(f) \in \mathcal{L} G$. If H is a closed subgroup of G, then $\left.\varphi\right|_{H} \in \mathcal{A} H$ for every $\varphi \in \mathcal{A} G$. A continuous function φ on G is called a Herz-Schur multiplier if there are a Hilbert space \mathcal{H} and bounded continuous functions $\xi, \eta: G \rightarrow \mathcal{H}$ such that $\varphi\left(y^{-1} x\right)=\langle\xi(x), \eta(y)\rangle$ for every $x, y \in G$. The Herz-Schur norm of φ is defined by

$$
\|\varphi\|_{\mathrm{cb}}=\inf \left\{\|\xi\|_{\infty}\|\eta\|_{\infty}\right\}
$$

where the infimum is taken over all $\xi, \eta \in C(G, \mathcal{H})$ as above. The Banach space of Herz-Schur multipliers is denoted by $B_{2}(G)$. Clearly, one has a contractive embedding of $\mathcal{A} G$ into $B_{2}(G)$. The Herz-Schur norm $\|\varphi\|_{\text {cb }}$ coincides with the cb-norm of the corresponding multipliers on $\mathcal{L} G$ or on $C_{\lambda}^{*} G$:

$$
\|\varphi\|_{\mathrm{cb}}=\left\|m_{\varphi}: \mathcal{L} G \ni \lambda(f) \mapsto \lambda(\varphi f) \in \mathcal{L} G\right\|_{\mathrm{cb}}=\left\|\left.m_{\varphi}\right|_{C_{\lambda}^{*} G}\right\|_{\mathrm{cb}}
$$

Indeed, $\|\varphi\|_{\mathrm{cb}} \geq\left\|m_{\varphi}\right\|_{\mathrm{cb}}$ is easy to see: Given a factorization $\varphi\left(x^{-1} y\right)=\langle\xi(x)$, $\eta(y)\rangle$ with $\xi, \eta \in C(G, \mathcal{H})$, we define $V_{\xi}: L^{2}(G) \rightarrow L^{2}(G, \mathcal{H})$ by $\left(V_{\xi} f\right)(x)=$ $f(x) \xi\left(x^{-1}\right)$, and likewise for V_{η}. Then, $\lambda(\varphi f)=V_{\eta}^{*}\left(\lambda(f) \otimes 1_{\mathcal{H}}\right) V_{\xi}$ and $\left\|m_{\varphi}\right\|_{\mathrm{cb}} \leq$ $\|\xi\|_{\infty}\|\eta\|_{\infty}$. We will give a proof of the converse inequality in Lemma 1 , but we
sketch it here in the case of amenable groups. Let N be an amenable group, and let $\varphi \in B_{2}(N)$. Since the unit character τ_{0} is continuous on $C_{\lambda}^{*} N$, the linear functional $\omega_{\varphi}=\tau_{0} \circ m_{\varphi}$ is bounded on $C_{\lambda}^{*} N$ and satisfies $\left\|\omega_{\varphi}\right\| \leq\left\|m_{\varphi}\right\|_{\text {cb }}$. Let (π, \mathcal{H}) be the GNS representation for $\left|\omega_{\varphi}\right|$, and view π as a continuous unitary N-representation. Then, there are vectors $\xi, \eta \in \mathcal{H}$ such that $\|\xi\|\|\eta\|=\left\|\omega_{\varphi}\right\|$ and $\varphi(x)=\langle\pi(x) \xi, \eta\rangle$ for every $x \in N$. (Hence, $\left\|\omega_{\varphi}\right\|=\|\varphi\|_{\text {cb }}$.)

DEFINITION

Let G be a group. By an approximate identity on G, we mean a net $\left(\varphi_{n}\right)$ in $\mathcal{A} G$ which converges to 1 uniformly on compacta. It is completely bounded if

$$
\left\|\left(\varphi_{n}\right)\right\|_{\mathrm{cb}}:=\sup _{n}\left\|\varphi_{n}\right\|_{\mathrm{cb}}<+\infty .
$$

A group G is said to be weakly amenable if there is a completely bounded approximate identity on G. The Cowling-Haagerup constant $\Lambda_{\mathrm{cb}}(G)$ is defined to be

$$
\Lambda_{\mathrm{cb}}(G)=\inf \left\{\left\|\left(\varphi_{n}\right)\right\|_{\mathrm{cb}}:\left(\varphi_{n}\right) \text { a c.b.a.i. on } G\right\} .
$$

Note that the above infimum is attained (see [CH], [BO] for more information).
It is easy to see that if $H \leq G$ is a closed subgroup, then $\Lambda_{\mathrm{cb}}(H) \leq \Lambda_{\mathrm{cb}}(G)$. On this occasion, we record that the same inequality holds also for a "random" or "measure equivalence" subgroup in the sense of $[\mathrm{Mo}]$ and $[\mathrm{Sa}]$ (cf. [CZ]). For this, we consider only countable discrete groups Λ and Γ. Recall that Λ is an ME subgroup of Γ if there is a standard measure space Ω on which $\Lambda \times \Gamma$ acts by measure-preserving transformations in such a way that each of the of Λ - and Γ actions admits a fundamental domain and the measure of $\Omega_{\Gamma}:=\Omega / \Gamma$ is finite. The action $\Lambda \curvearrowright \Omega$ gives rise to a measure-preserving action $\Lambda \curvearrowright \Omega_{\Gamma}$ and a measurable cocycle $\alpha: \Lambda \times \Omega_{\Gamma} \rightarrow \Gamma$ such that the action $\Lambda \curvearrowright \Omega$ is isomorphic (up to null sets) to the twisted action $\Lambda \curvearrowright \Omega_{\Gamma} \times \Gamma$, given by $a(t, g)=(a t, \alpha(a, t) g)$ for $a \in \Lambda, t \in \Omega_{\Gamma}$, and $g \in \Gamma$. The map α satisfies the cocycle identity $\alpha(a b, t)=\alpha(a, b t) \alpha(b, t)$ for every $a, b \in \Lambda$ and almost every $t \in \Omega_{\Gamma}$. For $\varphi \in B_{2}(\Gamma)$, we denote the "induced" function on Λ by φ_{α} :

$$
\varphi_{\alpha}(a)=\int_{\Omega_{\Gamma}} \varphi(\alpha(a, t)) d t .
$$

Here, we normalized the measure so that $\left|\Omega_{\Gamma}\right|=1$. Since

$$
\varphi_{\alpha}\left(b^{-1} a\right)=\int_{\Omega_{\Gamma}} \varphi\left(\alpha\left(b, b^{-1} a t\right)^{-1} \alpha(a, t)\right) d t=\int_{\Omega_{\Gamma}} \varphi\left(\alpha\left(b, b^{-1} t\right)^{-1} \alpha\left(a, a^{-1} t\right)\right) d t,
$$

one has $\varphi_{\alpha} \in B_{2}(\Lambda)$ and $\left\|\varphi_{\alpha}\right\|_{\mathrm{cb}} \leq\|\varphi\|_{\mathrm{cb}}$. Suppose now that $\varphi \in \mathcal{A} \Gamma$. Then, φ_{α} is a coefficient of the unitary Λ-representation σ on $L^{2}(\Omega)$ induced by the measurepreserving action $\Lambda \curvearrowright \Omega$; that is, there are $\xi, \eta \in L^{2}(\Omega)$ such that $\varphi_{\alpha}(a)=$ $\langle\sigma(a) \xi, \eta\rangle$. Since Ω admits a Λ-fundamental domain, σ is a multiple of the regular representation and $\varphi_{\alpha} \in \mathcal{A} \Lambda$. By inducing an approximate identity on Γ, one sees that if Γ is weakly amenable, then so is Λ and $\Lambda_{\mathrm{cb}}(\Lambda) \leq \Lambda_{\mathrm{cb}}(\Gamma)$.

3. Proof of Theorem A

LEMMA 1

Let N be an amenable closed normal subgroup of G, and let $\varphi \in B_{2}(G)$. Then, there are a Hilbert space \mathcal{H}, functions $\xi, \eta \in C(G, \mathcal{H})$, and a continuous unitary representation π of N on \mathcal{H} such that

- $\|\xi\|_{\infty}=\|\eta\|_{\infty}=\|\varphi\|_{\mathrm{cb}}^{1 / 2} ;$
- $\varphi\left(y^{-1} x\right)=\langle\xi(x), \eta(y)\rangle$ for every $x, y \in G$;
- $\pi(a) \xi(x)=\xi(a x)$ and $\pi(a) \eta(y)=\eta(a y)$ for every $a \in N$ and $x, y \in G$.

Proof

We follow Jolissaint's [Jo] simple proof of the inequality $\|\varphi\|_{\mathrm{cb}} \leq\left\|m_{\varphi}\right\|_{\mathrm{cb}}$. Since N is amenable, the quotient map $q: G \rightarrow G / N$ extends to a $*$-homomorphism $q: C_{\lambda}^{*} G \rightarrow C_{\lambda}^{*}(G / N)$ between the reduced group C^{*}-algebras. Since $q \circ m_{\varphi}$ is completely bounded on $C_{\lambda}^{*} G$, a Stinespring-type factorization theorem (see [BO, Theorem B.7]) yields a $*$-representation $\pi: C_{\lambda}^{*} G \rightarrow \mathbb{B}(\mathcal{H})$ and operators $V, W \in$ $\mathbb{B}\left(L^{2}(G / N), \mathcal{H}\right)$ such that $\|V\|=\|W\| \leq\left\|q \circ m_{\varphi}\right\|_{\mathrm{cb}}^{1 / 2}$ and $\left(q \circ m_{\varphi}\right)(X)=W^{*} \times$ $\pi(X) V$ for $X \in C_{\lambda}^{*} G$. We view π as a continuous unitary representation of G. Then, for a fixed unit vector $\zeta \in L^{2}(G / N)$, the maps $\xi(x)=\pi(x) V \lambda_{G / N}\left(q\left(x^{-1}\right)\right) \zeta$ and $\eta(y)=\pi(y) W \lambda_{G / N}\left(q\left(y^{-1}\right)\right) \zeta$ are continuous, $\|\xi\|_{\infty},\|\eta\|_{\infty} \leq\left\|m_{\varphi}\right\|_{\mathrm{cb}}^{1 / 2}$, and $\varphi\left(y^{-1} x\right)=\langle\xi(x), \eta(y)\rangle$ for every $x, y \in G$. Moreover, $\pi(a) \xi(x)=\xi(a x)$ for $a \in N$, because $\lambda_{G / N}(a)=1$.

We denote by φ^{g} the right translation of a function φ by $g \in G$; that is, $\varphi^{g}(x)=$ $\varphi\left(x g^{-1}\right)$.

LEMMA 2

Let N be an amenable group, let $\varphi \in B_{2}(N)$, and let $a \in N$. Then,

$$
\left\|\frac{1}{2}\left(\varphi+\varphi^{a}\right)\right\|_{\mathrm{cb}}^{2}+\left\|\frac{1}{2}\left(\varphi-\varphi^{a}\right)\right\|_{\mathrm{cb}}^{2} \leq\|\varphi\|_{\mathrm{cb}}^{2} .
$$

Proof
There are a continuous unitary representation π of N on a Hilbert space \mathcal{H} and vectors $\xi, \eta \in \mathcal{H}$ such that $\|\xi\|=\|\eta\|=\|\varphi\|_{\mathrm{cb}}^{1 / 2}$ and $\varphi(x)=\langle\pi(x) \xi, \eta\rangle$ for every $x \in N$. Since $\left(\varphi \pm \varphi^{a}\right)(x)=\left\langle\pi(x)\left(\xi \pm \pi\left(a^{-1}\right) \xi\right), \eta\right\rangle$, one has

$$
\left\|\varphi+\varphi^{a}\right\|_{\mathrm{cb}}^{2}+\left\|\varphi-\varphi^{a}\right\|_{\mathrm{cb}}^{2} \leq\left\|\xi+\pi\left(a^{-1}\right) \xi\right\|^{2}\|\eta\|^{2}+\left\|\xi-\pi\left(a^{-1}\right) \xi\right\|^{2}\|\eta\|^{2}=4\|\varphi\|_{\mathrm{cb}}^{2} .
$$

For $\varphi \in B_{2}(G)$, we define $\varphi^{*}(x):=\varphi\left(x^{-1}\right)$ and say that φ is self-adjoint if $\varphi^{*}=\varphi$. For any $\varphi \in B_{2}(G)$, the function $\left(\varphi+\varphi^{*}\right) / 2$ is self-adjoint and $\left\|\left(\varphi+\varphi^{*}\right) / 2\right\|_{\mathrm{cb}} \leq$ $\|\varphi\|_{\text {cb }}$. Thus every approximate identity can be made self-adjoint without increasing norm. We fix a closed subgroup N of G. A completely bounded approximate identity $\left(\varphi_{n}\right)$ on G is said to be N-optimal if all φ_{n} are self-adjoint,

$$
\begin{aligned}
& \left\|\left(\varphi_{n}\right)\right\|_{\mathrm{cb}}=\Lambda_{\mathrm{cb}}(G) \text { and } \\
& \left\|\left(\left.\varphi_{n}\right|_{N}\right)\right\|_{\mathrm{cb}}=\inf \left\{\left\|\left(\left.\psi_{n}\right|_{N}\right)\right\|_{\mathrm{cb}}:\left(\psi_{n}\right) \text { a c.b.a.i. such that }\left\|\left(\psi_{n}\right)\right\|_{\mathrm{cb}}=\Lambda_{\mathrm{cb}}(G)\right\} .
\end{aligned}
$$

Note that an N-optimal approximate identity exists (if G is weakly amenable).

PROPOSITION 3

Let G be a weakly amenable group, and let N be an amenable closed normal subgroup of G. Let $\left(\varphi_{n}\right)$ be an N-optimal approximate identity on G. Then, for every $g \in G$ and $a \in N$,

$$
\lim _{n}\left\|\left.\left(\varphi_{n}-\varphi_{n} \circ \operatorname{Ad}_{g}\right)\right|_{N}\right\|_{\mathrm{cb}}=0 \quad \text { and } \quad \lim _{n}\left\|\left.\left(\varphi_{n}-\varphi_{n}^{a}\right)\right|_{N}\right\|_{\mathrm{cb}}=0 .
$$

Proof
We apply Lemma 1 for each φ_{n} and find $\left(\pi_{n}, \mathcal{H}_{n}, \xi_{n}, \eta_{n}\right)$ satisfying the conditions stated there. In particular, $\|\xi\|_{\infty}=\|\eta\|_{\infty} \leq \Lambda_{\text {cb }}(G)^{1 / 2}$ and $\varphi_{n}\left(y^{-1} x\right)=$ $\left\langle\xi_{n}(x), \eta_{n}(y)\right\rangle$ for every $x, y \in G$. Let $g \in G$ be given, and consider $\psi_{n}=\left(\varphi_{n}+\right.$ $\left.\varphi_{n}^{g}\right) / 2$. Since $\left(\psi_{n}\right)$ is a completely bounded approximate identity, one must have $\liminf { }_{n}\left\|\psi_{n}\right\|_{\mathrm{cb}} \geq \Lambda_{\mathrm{cb}}(G)$. Meanwhile, since φ_{n} is self-adjoint,

$$
\psi_{n}\left(y^{-1} x\right)=\frac{1}{4}\left(\left\langle\xi_{n}(x)+\xi_{n}\left(x g^{-1}\right), \eta_{n}(y)\right\rangle+\left\langle\eta_{n}(x)+\eta_{n}\left(x g^{-1}\right), \xi_{n}(y)\right\rangle\right)
$$

and hence

$$
\begin{aligned}
\left\|\psi_{n}\right\|_{\mathrm{cb}} & \leq\left\|\frac{1}{\sqrt{2}}\left(\frac{\xi_{n}+\xi_{n}^{g}}{2}, \frac{\eta_{n}+\eta_{n}^{g}}{2}\right)\right\|_{L^{\infty}(G, \mathcal{H} \oplus \mathcal{H})}\left\|\frac{1}{\sqrt{2}}\left(\eta_{n}, \xi_{n}\right)\right\|_{L^{\infty}(G, \mathcal{H} \oplus \mathcal{H})} \\
& \leq \Lambda_{\mathrm{cb}}(G) .
\end{aligned}
$$

It follows that

$$
\lim _{n}\left\|\frac{1}{\sqrt{2}}\left(\frac{\xi_{n}+\xi_{n}^{g}}{2}, \frac{\eta_{n}+\eta_{n}^{g}}{2}\right)\right\|_{L^{\infty}(G, \mathcal{H} \oplus \mathcal{H})}=\Lambda_{\mathrm{cb}}(G)^{1 / 2}
$$

which means that there is a net $z_{n} \in G$ such that

$$
\lim _{n}\left\|\frac{\xi_{n}\left(z_{n}\right)+\xi_{n}\left(z_{n} g^{-1}\right)}{2}\right\|=\Lambda_{\mathrm{cb}}(G)^{1 / 2}
$$

and

$$
\lim _{n}\left\|\frac{\eta_{n}\left(z_{n}\right)+\eta_{n}\left(z_{n} g^{-1}\right)}{2}\right\|=\Lambda_{\mathrm{cb}}(G)^{1 / 2} .
$$

By the parallelogram identity, this implies that

$$
\lim _{n}\left\|\xi_{n}\left(z_{n}\right)-\xi_{n}\left(z_{n} g^{-1}\right)\right\|=0 \quad \text { and } \quad \lim _{n}\left\|\eta_{n}\left(z_{n}\right)-\eta_{n}\left(z_{n} g^{-1}\right)\right\|=0
$$

The unitary N-representation $\pi_{n}^{\prime}=\pi_{n} \circ \operatorname{Ad}_{z_{n}}$ satisfies $\pi_{n}^{\prime}(a) \xi_{n}(x)=\xi_{n}\left(z_{n} a z_{n}^{-1} x\right)$,

$$
\varphi_{n}(a)=\left\langle\pi_{n}^{\prime}(a) \xi_{n}\left(z_{n}\right), \eta_{n}\left(z_{n}\right)\right\rangle
$$

and

$$
\left(\varphi_{n} \circ \operatorname{Ad}_{g}\right)(a)=\left\langle\pi_{n}^{\prime}(a) \xi_{n}\left(z_{n} g^{-1}\right), \eta_{n}\left(z_{n} g^{-1}\right)\right\rangle
$$

for $a \in N$. It follows that $\left\|\left.\left(\varphi_{n}-\varphi_{n} \circ \operatorname{Ad}_{g}\right)\right|_{N}\right\|_{\mathrm{cb}} \rightarrow 0$. That $\left\|\left.\left(\varphi_{n}-\varphi_{n}^{a}\right)\right|_{N}\right\|_{\mathrm{cb}} \rightarrow 0$ follows from N-optimality of $\left(\varphi_{n}\right)$ and Lemma 2.

Proof of Theorem A

Let $\left(\varphi_{n}\right)$ be an N-optimal approximate identity on G, and consider linear functionals $\omega_{n}=\tau_{0} \circ m_{\varphi_{n}}$ on $C_{\lambda}^{*} N$, where τ_{0} is the unit character on N (see Section 2). Since $\varphi_{n} \in \mathcal{A} G$, the linear functionals ω_{n} extend to ultraweakly continuous linear functionals on the group von Neumann algebra $\mathcal{L} N$. Indeed, they are nothing but $\left.\varphi_{n}\right|_{N} \in \mathcal{A} N=(\mathcal{L} N)_{*}$. One has $\left\|\omega_{n}\right\| \leq \Lambda_{\mathrm{cb}}(G), \omega_{n}\left(1_{\mathcal{L} N}\right)=\varphi_{n}\left(1_{N}\right)$, and, by Proposition $3,\left\|\omega_{n}-\omega_{n} \circ \operatorname{Ad}_{g}\right\| \rightarrow 0$ and $\left\|\omega_{n}-\omega_{n}^{a}\right\| \rightarrow 0$ for every $g \in G$ and $a \in N$. We consider $\zeta_{n}:=\left|\omega_{n}\right|^{1 / 2} \in L^{2}(N)$ and $\zeta_{n}^{\prime}:=\omega_{n}\left|\omega_{n}\right|^{-1 / 2} \in L^{2}(N)$ so that $\omega_{n}(X)=\left\langle X \zeta_{n}, \zeta_{n}^{\prime}\right\rangle$ for $X \in \mathcal{L} N$. Here the absolute value and the square root are taken in the sense of the standard representation $\mathcal{L} N \subset \mathbb{B}\left(L^{2}(N)\right)$. (In the case where N is abelian, the Fourier transform $L^{2}(N) \cong L^{2}(\widehat{N})$ implements $\mathcal{L} N \cong L^{\infty}(\widehat{N})$ and $(\mathcal{L} N)_{*} \cong L^{1}(\widehat{N})$, and the absolute value and square root are computed as ordinary functions on the Pontrjagin dual \widehat{N}.) We note that $\varphi_{n}(1) \leq\left\|\zeta_{n}\right\|_{2}^{2} \leq \Lambda_{\mathrm{cb}}(G)$. By continuity of the absolute value (see Proposition [Ta, III.4.10]) and the Powers-Størmer inequality, one has $\left\|\zeta_{n}-\operatorname{Ad}_{g} \zeta_{n}\right\|_{2} \rightarrow 0$ for every $g \in G$. Moreover, since

$$
\left\|\zeta_{n}\right\|_{2}\left\|\zeta_{n}^{\prime}\right\|_{2}-\left\|\frac{\zeta_{n}+\lambda\left(a^{-1}\right) \zeta_{n}}{2}\right\|_{2}\left\|\zeta_{n}^{\prime}\right\|_{2} \leq\left\|\omega_{n}\right\|-\left\|\frac{\omega_{n}+\omega_{n}^{a}}{2}\right\| \rightarrow 0
$$

one has $\left\|\zeta_{n}-\lambda\left(a^{-1}\right) \zeta_{n}\right\|_{2} \rightarrow 0$ for every $a \in N$. Thus, any limit point of $\left(\zeta_{n}^{2}\right)$ in $L^{\infty}(N)^{*}$ is a nonzero positive $(G \ltimes N)$-invariant linear functional on $L^{\infty}(N)$.

COROLLARY 4

Let Γ and Λ be discrete groups with Λ nontrivial and Γ nonamenable. Then the wreath product $\Lambda\left\langle\Gamma\right.$ is not weakly amenable. Also, the group $\mathrm{SL}(2, \mathbb{Z}) \ltimes \mathbb{Z}^{2}$ is not weakly amenable.

Proof

The proof is the same as that of [OP, Corollary 2.12]. We note that the stabilizer of a nonneutral element in \mathbb{Z}^{2} is an abelian (amenable) subgroup of $\operatorname{SL}(2, \mathbb{Z})$.

4. Proof of Theorem B

We first fix notation. Throughout this section, M is a finite von Neumann algebra with a distinguished faithful normal tracial state τ, and P is an amenable von Neumann subalgebra of M. The normalizer $\mathcal{N}(P)$ of P in M is

$$
\mathcal{N}(P)=\left\{u \in \mathcal{U}(M): \operatorname{Ad}_{u}(P)=P\right\}
$$

where $\mathcal{U}(M)$ is the group of the unitary elements of M and $\operatorname{Ad}_{u}(x)=u x u^{*}$. The GNS Hilbert space with respect to the trace τ is denoted by $L^{2}(M)$, and the vector in $L^{2}(M)$ associated with $x \in M$ is denoted by \hat{x}, that is, $\langle\hat{x}, \hat{y}\rangle=\tau\left(y^{*} x\right)$,
for $x, y \in M$. The complex conjugate $\bar{M}=\{\bar{a}: a \in M\}$ of M acts on $L^{2}(M)$ from the right. Thus there is a $*$-representation ς of the algebraic tensor product $M \otimes \bar{M}$ on $L^{2}(M)$ defined by $\varsigma(a \otimes \bar{b}) \hat{x}=\widehat{a x b^{*}}$ for $a, b, x \in M$. We also use the bimodule notation $a \hat{x} b^{*}$ for $\varsigma(a \otimes \bar{b}) \hat{x}$. Since P is amenable, the $*$-homomorphism $\left.\varsigma\right|_{M \otimes \bar{P}}$ is continuous with respect to the minimal tensor norm.

DEFINITION

A von Neumann algebra M is said to have the weak* completely bounded approximation property, or $\mathrm{W}^{*} \mathrm{CBAP}$ in short, if there is a net of ultraweakly continuous finite-rank maps $\left(\varphi_{n}\right)$ on M such that $\varphi_{n} \rightarrow \mathrm{id}_{M}$ in the point-ultraweak topology and $\sup \left\|\varphi_{n}\right\|_{\mathrm{cb}}<+\infty$.

Recall that a finite von Neumann algebra P is amenable (i.e., hyperfinite, injective, AFD, etc.) if the trace τ on P extends to a P-central state ω on $\mathbb{B}\left(L^{2}(P)\right)$. Here, a state ω is said to be P-central if $\omega \circ \operatorname{Ad}_{u}=\omega$ for every $u \in \mathcal{U}(P)$ or, equivalently, $\omega(a x)=\omega(x a)$ for every $a \in P$ and $x \in \mathbb{B}\left(L^{2}(P)\right)$.

DEFINITION

Let P be a finite von Neumann algebra, and let \mathcal{G} be a group acting on P by trace-preserving $*$-automorphisms. We denote by σ the corresponding unitary representation of \mathcal{G} on $L^{2}(P)$. The action $\mathcal{G} \curvearrowright P$ is said to be weakly compact if there is a state ω on $\mathbb{B}\left(L^{2}(P)\right)$ such that $\left.\omega\right|_{P}=\tau$ and $\omega \circ \operatorname{Ad}_{u}=\omega$ for every $u \in \sigma(\mathcal{G}) \cup \mathcal{U}(P)$. (This forces P to be amenable.) A von Neumann subalgebra P of a finite von Neumann algebra M is said to be weakly compact in M if the conjugate action by the normalizer $\mathcal{N}(P)$ is weakly compact (see [OP] for more information).

If M admits a crossed product decomposition $M=P \rtimes \Lambda$ such that the "core" P is nonatomic and weakly compact in M, then M does not have property (T). Indeed, the hypothesis implies that $\mathcal{L} \Lambda$ is coamenable in M (see [OP, Proposition 3.2]); that is, the $M-M$ module $L^{2}\left\langle M, e_{\mathcal{L} \Lambda}\right\rangle$ contains an approximately central vector (see [OP, Theorem 2.1]). But since $L^{2}\left\langle M, e_{\mathcal{L} \Lambda}\right\rangle \cong \bigoplus_{t \in \Lambda} L^{2}(P) \otimes L^{2}(P)$ as a $P-P$ module, it does not contain a nonzero central vector. This proves that M does not have property (T).

LEMMA 5

Every P-central state ω on $\mathbb{B}\left(L^{2}(P)\right)$ decomposes uniquely as a sum $\omega=\omega_{\mathrm{n}}+\omega_{\mathrm{s}}$ of P-central positive linear functionals such that $\left.\omega_{\mathrm{n}}\right|_{P}$ is normal and $\left.\omega_{\mathrm{s}}\right|_{P}$ is singular. A trace-preserving action $\mathcal{G} \curvearrowright P$ is weakly compact if there is a positive linear functional ω on $\mathbb{B}\left(L^{2}(P)\right)$ such that

- $\omega(p)>0$ for every nonzero central projection p in P,
- $\omega \circ \operatorname{Ad}_{u}=\omega$ for every $u \in \sigma(\mathcal{G}) \cup \mathcal{U}(P)$.

Proof

We denote by Z the center of P. Recall that every tracial state τ^{\prime} on P satisfies $\tau^{\prime}=\left.\tau^{\prime}\right|_{Z} \circ E_{Z}$, where $E_{Z}: P \rightarrow Z$ is the center-valued trace. In particular, τ^{\prime} is normal on P if and only if it is normal on Z. Let ω be a P-central state, and consider the normal/singular decomposition of the state $\left.\omega\right|_{Z}$ (see [Ta, Definition III.2.15]). There is an increasing sequence $\left(p_{n}\right)$ of projections in Z such that $p_{n} \nearrow 1$ and $\left(\left.\omega\right|_{Z}\right)_{\mathrm{s}}\left(p_{n}\right)=0$ for all n (see [Ta, Theorem III.3.8]). We fix an ultralimit Lim on \mathbb{N} and let $\omega_{\mathrm{n}}(x)=\operatorname{Lim} \omega\left(p_{n} x\right)$ and $\omega_{\mathrm{s}}=\omega-\omega_{\mathrm{n}}$. Since ω is P-central, these are P-central positive linear functionals on $\mathbb{B}\left(L^{2}(P)\right)$, and $\left.\omega\right|_{Z}=\left.\omega_{\mathrm{n}}\right|_{Z}+\left.\omega_{\mathrm{s}}\right|_{Z}$ is the normal/singular decomposition of $\left.\omega\right|_{Z}$. Suppose that $\omega=\omega_{\mathrm{n}}^{\prime}+\omega_{\mathrm{s}}^{\prime}$ is another such decomposition. Then, since $\omega_{\mathrm{s}}+\omega_{\mathrm{s}}^{\prime}$ is singular on Z, there is an increasing sequence $\left(q_{n}\right)$ of projections in Z such that $q_{n} \nearrow 1$ and $\left(\omega_{\mathrm{s}}+\omega_{\mathrm{s}}^{\prime}\right)\left(q_{n}\right)=0$ for all n. It follows that $\omega_{\mathrm{n}}^{\prime}(x)=\lim \omega\left(q_{n} x\right)=\omega_{\mathrm{n}}(x)$ for every $x \in \mathbb{B}\left(L^{2}(P)\right)$. This proves the first half of this lemma. For the second half, we first observe that we may assume that ω is normal on P by uniqueness of the normal/singular decomposition. Thus, there is $h \in L^{1}(Z)_{+}$such that $\omega(z)=\tau(h z)$ for $z \in Z$. By assumption, h has full support and is \mathcal{G}-invariant. Thus, $\tilde{\omega}(x):=\operatorname{Lim} \omega\left(\left(h+n^{-1}\right)^{-1} x\right)$ defines a \mathcal{G}-invariant P-central state on $\mathbb{B}\left(L^{2}(P)\right)$ such that $\left.\tilde{\tau}\right|_{Z}=\left.\tau\right|_{Z}$.

LEMMA 6

Let φ be a completely bounded map on M. Then, there are $a *$-representation of the minimal tensor product $M \otimes_{\min } \bar{P}$ on a Hilbert space \mathcal{H} and operators $V, W \in \mathbb{B}\left(L^{2}(M), \mathcal{H}\right)$ such that $\|V\|=\|W\| \leq\|\varphi\|_{\mathrm{cb}}^{1 / 2}$ and

$$
\tau\left(y^{*} \varphi(a) x b^{*}\right)=\left\langle\varphi(a) \hat{x} b^{*}, \hat{y}\right\rangle=\langle\pi(a \otimes \bar{b}) V \hat{x}, W \hat{y}\rangle
$$

for every $a, x, y \in M$ and $b \in P$.
Proof
Since the $*$-representation $\varsigma: M \otimes_{\min } \bar{P} \rightarrow \mathbb{B}\left(L^{2}(M)\right)$ is continuous, a Stinespringtype factorization theorem ([BO, Theorem B.7]), applied to the completely bounded map $\varsigma \circ\left(\varphi \otimes \operatorname{id}_{\bar{P}}\right)$ yields a $*$-representation $\pi: M \otimes_{\min } \bar{P} \rightarrow \mathbb{B}(\mathcal{H})$ and operators $V, W \in \mathbb{B}\left(L^{2}(M), \mathcal{H}\right)$ such that $\|V\|\|W\| \leq\|\varphi\|_{\text {cb }}$ and

$$
\varphi(a) \hat{x} b^{*}=\varsigma\left(\left(\varphi \otimes \operatorname{id}_{\bar{P}}\right)(a \otimes \bar{b})\right) \hat{x}=W^{*} \pi(a \otimes \bar{b}) V \hat{x}
$$

for $a, x \in M$ and $b \in P$.
Since $\mathrm{W}^{*} \mathrm{CBAP}$ passes to a subalgebra (which is the range of a conditional expectation), we assume from now on that P is regular in M; that is, $\mathcal{N}(P)$ generates M as a von Neumann algebra. We say that a linear map φ on M is $P-c b$ if there are a $*$-representation π of $M \otimes_{\min } \bar{P}$ on a Hilbert space \mathcal{H} and functions $V, W \in \ell_{\infty}(\mathcal{N}(P), \mathcal{H})$ such that

$$
\begin{equation*}
\left\langle\varphi(a) \hat{x} b^{*}, \hat{y}\right\rangle=\langle\pi(a \otimes \bar{b}) V(x), W(y)\rangle \tag{*}
\end{equation*}
$$

for every $a \in M, x, y \in \mathcal{N}(P)$, and $b \in P$. The P-cb norm of φ is defined as

$$
\|\varphi\|_{P}=\inf \left\{\|V\|_{\infty}\|W\|_{\infty}:(\pi, \mathcal{H}, V, W) \text { satisfies }(*)\right\} .
$$

It is indeed a norm, and the infimum is attained. (For the latter fact, use the ultraproduct.) By the above lemma, $\|\varphi\|_{P} \leq\|\varphi\|_{\mathrm{cb}}$. By an approximate identity, we mean a net (φ_{n}) of ultraweakly continuous finite-rank maps such that $\varphi_{n} \rightarrow$ id_{M} in the point-ultraweak topology and $\sup \left\|\varphi_{n}\right\|_{P}<+\infty$. It exists if M has the W^{*} CBAP. We define

$$
\Lambda_{P}(M)=\inf \left\{\sup _{n}\left\|\varphi_{n}\right\|_{P}:\left(\varphi_{n}\right) \text { an approximate identity }\right\} .
$$

For a map φ on M, we define $\varphi^{*}(a)=\varphi\left(a^{*}\right)^{*}$ and say that φ is self-adjoint if $\varphi=\varphi^{*}$. We note that if (π, \mathcal{H}, V, W) satisfies $(*)$ for φ, then (π, \mathcal{H}, W, V) satisfies $(*)$ for φ^{*}. In particular, $\left(\varphi+\varphi^{*}\right) / 2$ is self-adjoint and $\left\|\left(\varphi+\varphi^{*}\right) / 2\right\|_{P} \leq\|\varphi\|_{P}$. Thus, any approximate identity can be made self-adjoint without increasing the norm. For a P-cb map φ, we define a bounded linear functional μ_{φ} on $M \otimes_{\min } \bar{P}$ by

$$
\mu_{\varphi}(a \otimes \bar{b}):=\tau\left(\varphi(a) b^{*}\right)=\left\langle\varphi(a) \hat{1} b^{*}, \hat{1}\right\rangle=\langle\pi(a \otimes \bar{b}) V(1), W(1)\rangle .
$$

Note that $\left\|\mu_{\varphi}\right\| \leq\|\varphi\|_{P}$. If φ is ultraweakly continuous and finite-rank, then μ_{φ} extend to an ultraweakly continuous linear functional on the von Neumann algebra $M \bar{\otimes} \bar{P}$.

PROPOSITION 7

Let M be a finite von Neumann algebra having the $W^{*} C B A P$, and let $\left(\varphi_{n}\right)$ be a self-adjoint approximate identity such that $\sup _{n}\left\|\varphi_{n}\right\|_{P}=\Lambda_{P}(M)$. Then, the net $\mu_{n}:=\left.\mu_{\varphi_{n}}\right|_{P \bar{\otimes} \bar{P}}$ satisfies the following properties:

- μ_{n} are self-adjoint and ultraweakly continuous for all n;
- $\sup \left\|\mu_{n}\right\| \leq \Lambda_{P}(M)$ and $\mu_{n}(a \otimes \overline{1}) \rightarrow \tau(a)$ for every $a \in P$;
- $\left\|\mu_{n}-\mu_{n}^{v \otimes \bar{v}}\right\| \rightarrow 0$ for every $v \in \mathcal{U}(P)$, where $\mu_{n}^{v \otimes \bar{v}}(a \otimes \bar{b})=\mu_{n}((a \otimes \bar{b})(v \otimes$ $\left.\bar{v})^{*}\right) ;$
- $\left\|\mu_{n}-\mu_{n} \circ \operatorname{Ad}_{u \otimes \bar{u}}\right\| \rightarrow 0$ for every $u \in \mathcal{N}(P)$.

Proof

The first two conditions are easy to see. Let $u \in \mathcal{N}(P)$ be given, and define φ_{n}^{u} by $\varphi_{n}^{u}(a)=\varphi_{n}\left(a u^{*}\right) u$ for $a \in M$. We note that $\left.\mu_{\varphi_{n}^{u}}\right|_{P \bar{\otimes} \bar{P}}=\mu_{n}^{u \otimes \bar{u}}$ if $u \in \mathcal{U}(P)$. Thus, it suffices to show

$$
\lim _{n}\left\|\mu_{\varphi_{n}}-\mu_{\varphi_{n}^{u}}\right\|=0 \quad \text { and } \quad \lim _{n}\left\|\mu_{\varphi_{n}}-\mu_{\varphi_{n}} \circ \operatorname{Ad}_{u \otimes \bar{u}}\right\|=0
$$

Take $\left(\pi_{n}, \mathcal{H}_{n}, V_{n}, W_{n}\right)$ satisfying $(*)$ and $\lim \left\|V_{n}\right\|_{\infty}=\lim \left\|W_{n}\right\|_{\infty}=\Lambda_{P}(M)^{1 / 2}$. It follows that

$$
\left\langle\varphi_{n}^{u}(a) \hat{x} b^{*}, \hat{y}\right\rangle=\left\langle\varphi_{n}\left(a u^{*}\right) \widehat{u x} b^{*}, \hat{y}\right\rangle=\left\langle\pi_{n}(a \otimes \bar{b}) \pi_{n}\left(u^{*} \otimes \overline{1}\right) V_{n}(u x), W_{n}(y)\right\rangle
$$

for every $a \in M, b \in P$, and $x, y \in \mathcal{N}(P)$. Hence with $V_{n}^{u}(x)=\pi_{n}\left(u^{*} \otimes \overline{1}\right) V_{n}(u x)$, the quadruplet $\left(\pi_{n}, \mathcal{H}_{n}, V_{n}^{u}, W_{n}\right)$ satisfies $(*)$ for φ_{n}^{u}. Note that $\left\|V_{n}^{u}\right\|_{\infty}=\left\|V_{n}\right\|_{\infty}$.

We define W_{n}^{u} similarly. Since φ_{n} is self-adjoint, $\left(\pi_{n}, \mathcal{H}_{n}, W_{n}, V_{n}\right)$ (resp., $\left(\pi_{n}, \mathcal{H}_{n}\right.$, $\left.W_{n}^{u}, V_{n}\right)$) satisfies (*) for φ_{n} (resp., φ_{n}^{u}), too. Thus, for $\psi_{n}=\left(\varphi_{n}+\varphi_{n}^{u}\right) / 2$, one has

$$
\begin{aligned}
\left\|\psi_{n}\right\|_{P} \leq & \left\|\frac{1}{\sqrt{2}}\left(\frac{V_{n}+V_{n}^{u}}{2}, \frac{W_{n}+W_{n}^{u}}{2}\right)\right\|_{\ell_{\infty}(\mathcal{N}(P), \mathcal{H} \oplus \mathcal{H})} \\
& \times\left\|\frac{1}{\sqrt{2}}\left(W_{n}, V_{n}\right)\right\|_{\ell_{\infty}(\mathcal{N}(P), \mathcal{H} \oplus \mathcal{H})}
\end{aligned}
$$

Meanwhile, since $\left(\psi_{n}\right)$ is an approximate identity, one must have $\lim \inf \left\|\psi_{n}\right\|_{P} \geq$ $\Lambda_{P}(M)$. It follows that

$$
\lim _{n}\left\|\frac{1}{\sqrt{2}}\left(\frac{V_{n}+V_{n}^{u}}{2}, \frac{W_{n}+W_{n}^{u}}{2}\right)\right\|_{\ell_{\infty}(\mathcal{N}(P), \mathcal{H} \oplus \mathcal{H})}=\Lambda_{P}(M)^{1 / 2}
$$

and hence there is a net $\left(z_{n}\right)$ in $\mathcal{N}(P)$ such that

$$
\lim _{n}\left\|\frac{1}{\sqrt{2}}\left(\frac{\left(V_{n}+V_{n}^{u}\right)\left(z_{n}\right)}{2}, \frac{\left(W_{n}+W_{n}^{u}\right)\left(z_{n}\right)}{2}\right)\right\|_{\mathcal{H} \oplus \mathcal{H}}=\Lambda_{P}(M)^{1 / 2} .
$$

By the parallelogram identity, this implies that

$$
\lim _{n}\left\|V_{n}\left(z_{n}\right)-V_{n}^{u}\left(z_{n}\right)\right\|=0 \quad \text { and } \quad \lim _{n}\left\|W_{n}\left(z_{n}\right)-W_{n}^{u}\left(z_{n}\right)\right\|=0
$$

Let $\pi_{n}^{\prime}=\pi_{n} \circ\left(\mathrm{id}_{M} \otimes \mathrm{Ad}_{\bar{z}_{n}^{-1}}\right)$. Since

$$
\begin{aligned}
\mu_{\varphi_{n}}(a \otimes \bar{b}) & =\left\langle\varphi_{n}(a) \hat{z}_{n} \operatorname{Ad}_{z_{n}^{-1}}(b)^{*}, \hat{z}_{n}\right\rangle=\left\langle\pi_{n}^{\prime}(a \otimes \bar{b}) V_{n}\left(z_{n}\right), W_{n}\left(z_{n}\right)\right\rangle, \\
\mu_{\varphi_{n}^{u}}(a \otimes \bar{b}) & =\left\langle\varphi_{n}\left(a u^{*}\right) \widehat{u z_{n}} \operatorname{Ad}_{z_{n}^{-1}}(b)^{*}, \hat{z}_{n}\right\rangle \\
& =\left\langle\pi_{n}^{\prime}(a \otimes \bar{b}) V_{n}^{u}\left(z_{n}\right), W_{n}\left(z_{n}\right)\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\mu_{\varphi_{n}} \circ \operatorname{Ad}_{u \otimes \bar{u}}\right)(a \otimes \bar{b}) & =\left\langle\varphi_{n}\left(u a u^{*}\right) \widehat{u z_{n}} \operatorname{Ad}_{z_{n}^{-1}}(b)^{*}, \widehat{u z_{n}}\right\rangle \\
& =\left\langle\pi_{n}^{\prime}(a \otimes \bar{b}) V_{n}^{u}\left(z_{n}\right), W_{n}^{u}\left(z_{n}\right)\right\rangle,
\end{aligned}
$$

we conclude that $\left\|\mu_{\varphi_{n}}-\mu_{\varphi_{n}^{u}}\right\| \rightarrow 0$ and $\left\|\mu_{\varphi_{n}}-\mu_{\varphi_{n}} \circ \operatorname{Ad}_{u \otimes \bar{u}}\right\| \rightarrow 0$.

Proof of Theorem B

Since M has the W^{*} CBAP, there is a net $\left(\mu_{n}\right)$ satisfying the conclusion of Proposition 7. We view μ_{n} as an element in $L^{1}(P \bar{\otimes} \bar{P})$ (see Section 2 in [OP]) and let $\zeta_{n}=\left|\mu_{n}\right|^{1 / 2} \in L^{2}(P \bar{\otimes} \bar{P})$ and $\zeta_{n}^{\prime}=\mu_{n}\left|\mu_{n}\right|^{-1 / 2} \in L^{2}(P \bar{\otimes} \bar{P})$ so that $\mu_{n}(X)=$ $\left\langle X \zeta_{n}, \zeta_{n}^{\prime}\right\rangle$ for $X \in P \bar{\otimes} \bar{P}$. By continuity of the absolute value (see [Ta, Proposition III.4.10]) and the Powers-Størmer inequality, one has $\left\|\zeta_{n}-\operatorname{Ad}_{u \otimes \bar{u}} \zeta_{n}\right\|_{2} \rightarrow 0$ for every $u \in \mathcal{N}(P)$. Since

$$
2\left\|\mu_{n}\right\| \approx\left\|\mu_{n}+\mu_{n}^{v \otimes \bar{v}}\right\| \leq\left\|\zeta_{n}+(v \otimes \bar{v}) \zeta_{n}\right\|_{2}\left\|\zeta_{n}^{\prime}\right\|_{2} \leq 2\left\|\zeta_{n}\right\|_{2}\left\|\zeta_{n}^{\prime}\right\|_{2}=2\left\|\mu_{n}\right\|,
$$

one also has $\left\|\zeta_{n}-(v \otimes \bar{v}) \zeta_{n}\right\| \rightarrow 0$ for every $v \in \mathcal{U}(P)$. Now, fix an ultralimit Lim, and define ω on $\mathbb{B}\left(L^{2}(P)\right)$ by $\omega(x)=\operatorname{Lim}\left\langle(x \otimes \overline{1}) \zeta_{n}, \zeta_{n}\right\rangle$. Then ω is an $\mathcal{N}(P)$ -
invariant P-central positive linear functional satisfying

$$
\omega(p)=\operatorname{Lim}_{n}\left|\mu_{n}\right|(p \otimes \overline{1}) \geq \operatorname{Lim}_{n}\left|\mu_{n}(p \otimes \overline{1})\right|=\tau(p)
$$

for every central projection p in P. By Lemma 5 , we are done.

References

[BO] N. Brown and N. Ozawa, C^{*}-algebras and Finite-Dimensional Approximations, Grad. Studies in Math. 88, Amer. Math. Soc., Providence, 2008.
[dCH] J. de Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), 455-500.
[Co] M. Cowling, "Harmonic analysis on some nilpotent Lie groups (with application to the representation theory of some semisimple Lie groups)" in Topics in Modern Harmonic Analysis, Vols. I, II (Turin/Milan, 1982), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, 81-123.
[CH] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549.
[CZ] M. Cowling and R. J. Zimmer, Actions of lattices in $\mathrm{Sp}(1, n)$, Ergodic Theory Dynam. Systems 9 (1989), 221-237.
[Do] B. Dorofaeff, The Fourier algebra of $\operatorname{SL}(2, \mathbf{R}) \rtimes \mathbf{R}^{n}, n \geq 2$, has no multiplier bounded approximate unit, Math. Ann. 297 (1993), 707-724.
[Ha] U. Haagerup, Group C*-algebras without the completely bounded approximation property, preprint, 1988.
[HK] U. Haagerup and J. Kraus, Approximation properties for group C*-algebras and group von Neumann algebras, Trans. Amer. Math. Soc. 344 (1994), 667-699.
[Jo] P. Jolissaint, A characterization of completely bounded multipliers of Fourier algebras, Colloq. Math. 63 (1992), 311-313.
[LdS] V. Lafforgue and M. de la Salle, Noncommutative L^{p}-spaces without the completely bounded approximation property, Duke Math. J. 160 (2011), 71-116.
[Mo] N. Monod, "An invitation to bounded cohomology" in International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, 1183-1211.
[Oz] N. Ozawa, Weak amenability of hyperbolic groups, Groups Geom. Dyn. 2 (2008), 271-280.
[OP] N. Ozawa and S. Popa, On a class of II_{1} factors with at most one Cartan subalgbra, Ann. of Math. (2) $\mathbf{1 7 2}$ (2010), 713-749.
[Sa] H. Sako, The class \mathcal{S} as an ME invariant, Int. Math. Res. Not. IMRN 2009, no. 15, 2749-2759.
[Ta] M. Takesaki, Theory of operator algebras, I, reprint of the first (1979) ed., Encyclopaedia Math. Sci. 124, Operator Algebras and Non-commutative Geometry 5, Springer, Berlin, 2002.

Department of Mathematical Sciences, University of Tokyo, 153-8914; narutaka@ms.u-tokyo.ac.jp

[^0]: Kyoto Journal of Mathematics, Vol. 52, No. 2 (2012), 333-344

