
Examples of groups which are not
weakly amenable

Narutaka Ozawa

Abstract We prove that weak amenability of a locally compact group imposes a strong
condition on its amenable closednormal subgroups.This extends non–weak amenability
results of Haagerup (1988) and Ozawa and Popa (2010). A von Neumann algebra ana-
logue is also obtained.

1. Introduction

Let G be a group which is always assumed to be a locally compact topological
group. The group G is said to be weakly amenable if the Fourier algebra AG of
G has an approximate identity (ϕn) which is uniformly bounded as Herz–Schur
multipliers. (If one requires (ϕn) to be bounded as elements in AG, it becomes
one of the equivalent definitions of amenability; see Section 2 for the precise
definition.) Weak amenability is strictly weaker than amenability and passes to
closed subgroups. It was proved by De Cannière and Haagerup [dCH], Cowling
[Co], and Cowling and Haagerup [CH] that real simple Lie groups of real rank
one are weakly amenable (see also [Oz]) and by Haagerup [Ha] that real simple
Lie groups of real rank at least two are not weakly amenable. For the latter fact,
Haagerup proves that SL(2,R)�R

2 is not weakly amenable (see also [Do]). More
recently, it was proved by Ozawa and Popa [OP] that the wreath product Λ � Γ of
a nontrivial group Λ by a nonamenable discrete group Γ is not “weakly amenable
with constant 1.” In this paper, we generalize these non–weak amenability results
as follows.

THEOREM A

Let G be a weakly amenable group, and let N be an amenable closed normal
subgroup of G. Then, there is a (G � N)-invariant state on L∞(N), where the
semidirect product G � N acts on N by (g, a) · x = gaxg−1.

In particular, the wreath product by a nonamenable group is never weakly
amenable. The theorem also gives a new proof of Haagerup’s result that SL(2,Z)�
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Z
2 is not weakly amenable, without appealing to the lattice embedding into

SL(2,R) � R
2. We note for the sake of completeness that there is an even weaker

variant of weak amenability called the approximation property (see [HK]), and
SL(2,R) � R

2 has the approximation property, while SL(n ≥ 3,R) does not (see
[LdS]).

As [OP, Theorem 3.5], there is an analogous result for von Neumann algebras.
We refer to [OP, Section 3] and Section 4 of this paper for the terminology used
in the following theorem.

THEOREM B

Let M be a finite von Neumann algebra with the weak∗ completely bounded
approximation property. Then, every amenable von Neumann subalgebra P is
weakly compact in M .

It follows that a type II1 factor having the weak∗ completely bounded approx-
imation property and property (T) (e.g., the group von Neumann algebra of a
torsion-free lattice in Sp(1, n)) is not isomorphic to a group-measure-space von
Neumann algebra.

2. Preliminary on Herz–Schur multipliers

Let G be a group. We denote by λ the left regular representation of G on L2(G),
by C∗

λG the reduced group C∗-algebra, and by LG the group von Neumann
algebra of G. The Fourier algebra AG of G consists of all functions ϕ on G

such that there are vectors ξ, η ∈ L2(G) satisfying ϕ(x) = 〈λ(x)ξ, η〉 for every
x ∈ G. (In other words, AG = L2(G) ∗ L2(G).) It is a Banach algebra with the
norm ‖ϕ‖ = inf{ ‖ξ‖ ‖η‖ }, where the infimum is taken over all ξ, η ∈ L2(G) as
above. The Fourier algebra AG is naturally identified with the predual of LG

under the duality pairing 〈ϕ,λ(f)〉 =
∫

G
ϕf for ϕ ∈ AG and λ(f) ∈ LG. If H is a

closed subgroup of G, then ϕ|H ∈ AH for every ϕ ∈ AG. A continuous function
ϕ on G is called a Herz–Schur multiplier if there are a Hilbert space H and
bounded continuous functions ξ, η : G → H such that ϕ(y−1x) = 〈ξ(x), η(y)〉 for
every x, y ∈ G. The Herz–Schur norm of ϕ is defined by

‖ϕ‖cb = inf
{

‖ξ‖ ∞ ‖η‖ ∞
}
,

where the infimum is taken over all ξ, η ∈ C(G, H) as above. The Banach space
of Herz–Schur multipliers is denoted by B2(G). Clearly, one has a contractive
embedding of AG into B2(G). The Herz–Schur norm ‖ϕ‖cb coincides with the
cb-norm of the corresponding multipliers on LG or on C∗

λG:

‖ϕ‖cb = ‖mϕ : LG 
 λ(f) �→ λ(ϕf) ∈ LG‖cb = ‖mϕ|C∗
λG‖cb.

Indeed, ‖ϕ‖cb ≥ ‖mϕ‖cb is easy to see: Given a factorization ϕ(x−1y) = 〈ξ(x),
η(y)〉 with ξ, η ∈ C(G, H), we define Vξ : L2(G) → L2(G, H) by (Vξf)(x) =
f(x)ξ(x−1), and likewise for Vη . Then, λ(ϕf) = V ∗

η (λ(f) ⊗ 1H)Vξ and ‖mϕ‖cb ≤
‖ξ‖∞ ‖η‖ ∞. We will give a proof of the converse inequality in Lemma 1, but we
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sketch it here in the case of amenable groups. Let N be an amenable group,
and let ϕ ∈ B2(N). Since the unit character τ0 is continuous on C∗

λN , the linear
functional ωϕ = τ0 ◦ mϕ is bounded on C∗

λN and satisfies ‖ωϕ‖ ≤ ‖mϕ‖cb. Let
(π, H) be the GNS representation for |ωϕ|, and view π as a continuous unitary
N -representation. Then, there are vectors ξ, η ∈ H such that ‖ξ‖‖η‖ = ‖ωϕ‖ and
ϕ(x) = 〈π(x)ξ, η〉 for every x ∈ N . (Hence, ‖ωϕ‖ = ‖ϕ‖cb.)

DEFINITION

Let G be a group. By an approximate identity on G, we mean a net (ϕn) in AG

which converges to 1 uniformly on compacta. It is completely bounded if

‖(ϕn)‖cb := sup
n

‖ϕn‖cb < +∞.

A group G is said to be weakly amenable if there is a completely bounded approx-
imate identity on G. The Cowling–Haagerup constant Λcb(G) is defined to be

Λcb(G) = inf
{

‖(ϕn)‖cb : (ϕn) a c.b.a.i. on G
}
.

Note that the above infimum is attained (see [CH], [BO] for more information).

It is easy to see that if H ≤ G is a closed subgroup, then Λcb(H) ≤ Λcb(G). On
this occasion, we record that the same inequality holds also for a “random” or
“measure equivalence” subgroup in the sense of [Mo] and [Sa] (cf. [CZ]). For this,
we consider only countable discrete groups Λ and Γ. Recall that Λ is an ME
subgroup of Γ if there is a standard measure space Ω on which Λ × Γ acts by
measure-preserving transformations in such a way that each of the of Λ- and Γ-
actions admits a fundamental domain and the measure of ΩΓ := Ω/Γ is finite. The
action Λ � Ω gives rise to a measure-preserving action Λ � ΩΓ and a measurable
cocycle α : Λ × ΩΓ → Γ such that the action Λ � Ω is isomorphic (up to null sets)
to the twisted action Λ � ΩΓ × Γ, given by a(t, g) = (at,α(a, t)g) for a ∈ Λ, t ∈ ΩΓ,
and g ∈ Γ. The map α satisfies the cocycle identity α(ab, t) = α(a, bt)α(b, t) for
every a, b ∈ Λ and almost every t ∈ ΩΓ. For ϕ ∈ B2(Γ), we denote the “induced”
function on Λ by ϕα:

ϕα(a) =
∫

ΩΓ

ϕ
(
α(a, t)

)
dt.

Here, we normalized the measure so that |ΩΓ| = 1. Since

ϕα(b−1a) =
∫

ΩΓ

ϕ
(
α(b, b−1at)−1α(a, t)

)
dt =

∫
ΩΓ

ϕ
(
α(b, b−1t)−1α(a, a−1t)

)
dt,

one has ϕα ∈ B2(Λ) and ‖ϕα‖cb ≤ ‖ϕ‖cb. Suppose now that ϕ ∈ AΓ. Then, ϕα is
a coefficient of the unitary Λ-representation σ on L2(Ω) induced by the measure-
preserving action Λ � Ω; that is, there are ξ, η ∈ L2(Ω) such that ϕα(a) =
〈σ(a)ξ, η〉. Since Ω admits a Λ-fundamental domain, σ is a multiple of the regular
representation and ϕα ∈ AΛ. By inducing an approximate identity on Γ, one sees
that if Γ is weakly amenable, then so is Λ and Λcb(Λ) ≤ Λcb(Γ).
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3. Proof of Theorem A

LEMMA 1

Let N be an amenable closed normal subgroup of G, and let ϕ ∈ B2(G). Then,
there are a Hilbert space H, functions ξ, η ∈ C(G, H), and a continuous unitary
representation π of N on H such that

• ‖ξ‖ ∞ = ‖η‖ ∞ = ‖ϕ‖1/2
cb ;

• ϕ(y−1x) = 〈ξ(x), η(y)〉 for every x, y ∈ G;
• π(a)ξ(x) = ξ(ax) and π(a)η(y) = η(ay) for every a ∈ N and x, y ∈ G.

Proof
We follow Jolissaint’s [Jo] simple proof of the inequality ‖ϕ‖cb ≤ ‖mϕ‖cb. Since
N is amenable, the quotient map q : G → G/N extends to a ∗-homomorphism
q : C∗

λG → C∗
λ(G/N) between the reduced group C∗-algebras. Since q ◦ mϕ is

completely bounded on C∗
λG, a Stinespring-type factorization theorem (see [BO,

Theorem B.7]) yields a ∗-representation π : C∗
λG → B(H) and operators V,W ∈

B(L2(G/N), H) such that ‖V ‖ = ‖W ‖ ≤ ‖q ◦ mϕ‖1/2
cb and (q ◦ mϕ)(X) = W ∗ ×

π(X)V for X ∈ C∗
λG. We view π as a continuous unitary representation of G.

Then, for a fixed unit vector ζ ∈ L2(G/N), the maps ξ(x) = π(x)V λG/N (q(x−1))ζ
and η(y) = π(y)WλG/N (q(y−1))ζ are continuous, ‖ξ‖∞, ‖η‖∞ ≤ ‖mϕ‖1/2

cb , and
ϕ(y−1x) = 〈ξ(x), η(y)〉 for every x, y ∈ G. Moreover, π(a)ξ(x) = ξ(ax) for a ∈ N ,
because λG/N (a) = 1. �

We denote by ϕg the right translation of a function ϕ by g ∈ G; that is, ϕg(x) =
ϕ(xg−1).

LEMMA 2

Let N be an amenable group, let ϕ ∈ B2(N), and let a ∈ N . Then,∥∥∥1
2
(ϕ + ϕa)

∥∥∥2

cb
+

∥∥∥1
2
(ϕ − ϕa)

∥∥∥2

cb
≤ ‖ϕ‖2

cb.

Proof
There are a continuous unitary representation π of N on a Hilbert space H and
vectors ξ, η ∈ H such that ‖ξ‖ = ‖η‖ = ‖ϕ‖1/2

cb and ϕ(x) = 〈π(x)ξ, η〉 for every
x ∈ N . Since (ϕ ± ϕa)(x) = 〈π(x)(ξ ± π(a−1)ξ), η〉, one has

‖ϕ + ϕa‖2
cb + ‖ϕ − ϕa‖2

cb ≤ ‖ξ + π(a−1)ξ‖2‖η‖2 + ‖ξ − π(a−1)ξ‖2‖η‖2 = 4‖ϕ‖2
cb.

�

For ϕ ∈ B2(G), we define ϕ∗(x) := ϕ(x−1) and say that ϕ is self-adjoint if ϕ∗ = ϕ.
For any ϕ ∈ B2(G), the function (ϕ + ϕ∗)/2 is self-adjoint and ‖(ϕ + ϕ∗)/2‖cb ≤
‖ϕ‖cb. Thus every approximate identity can be made self-adjoint without increas-
ing norm. We fix a closed subgroup N of G. A completely bounded approx-
imate identity (ϕn) on G is said to be N -optimal if all ϕn are self-adjoint,
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‖(ϕn)‖cb = Λcb(G) and

‖(ϕn|N )‖cb = inf
{

‖(ψn|N )‖cb : (ψn) a c.b.a.i. such that ‖(ψn)‖cb = Λcb(G)
}
.

Note that an N -optimal approximate identity exists (if G is weakly amenable).

PROPOSITION 3

Let G be a weakly amenable group, and let N be an amenable closed normal
subgroup of G. Let (ϕn) be an N -optimal approximate identity on G. Then, for
every g ∈ G and a ∈ N ,

lim
n

‖(ϕn − ϕn ◦ Adg)|N ‖cb = 0 and lim
n

‖(ϕn − ϕa
n)|N ‖cb = 0.

Proof
We apply Lemma 1 for each ϕn and find (πn, Hn, ξn, ηn) satisfying the con-
ditions stated there. In particular, ‖ξ‖∞ = ‖η‖ ∞ ≤ Λcb(G)1/2 and ϕn(y−1x) =
〈ξn(x), ηn(y)〉 for every x, y ∈ G. Let g ∈ G be given, and consider ψn = (ϕn +
ϕg

n)/2. Since (ψn) is a completely bounded approximate identity, one must have
lim infn ‖ψn‖cb ≥ Λcb(G). Meanwhile, since ϕn is self-adjoint,

ψn(y−1x) =
1
4
(

〈ξn(x) + ξn(xg−1), ηn(y)〉 + 〈ηn(x) + ηn(xg−1), ξn(y)〉
)
,

and hence

‖ψn‖cb ≤
∥∥∥ 1√

2

(ξn + ξg
n

2
,
ηn + ηg

n

2

)∥∥∥
L∞(G,H ⊕ H)

∥∥∥ 1√
2
(ηn, ξn)

∥∥∥
L∞(G,H ⊕ H)

≤ Λcb(G).

It follows that

lim
n

∥∥∥ 1√
2

(ξn + ξg
n

2
,
ηn + ηg

n

2

)∥∥∥
L∞(G,H ⊕ H)

= Λcb(G)1/2,

which means that there is a net zn ∈ G such that

lim
n

∥∥∥ξn(zn) + ξn(zng−1)
2

∥∥∥ = Λcb(G)1/2

and

lim
n

∥∥∥ηn(zn) + ηn(zng−1)
2

∥∥∥ = Λcb(G)1/2.

By the parallelogram identity, this implies that

lim
n

‖ξn(zn) − ξn(zng−1)‖ = 0 and lim
n

‖ηn(zn) − ηn(zng−1)‖ = 0.

The unitary N -representation π′
n = πn ◦ Adzn satisfies π′

n(a)ξn(x) = ξn(znaz−1
n x),

ϕn(a) = 〈π′
n(a)ξn(zn), ηn(zn)〉

and

(ϕn ◦ Adg)(a) = 〈π′
n(a)ξn(zng−1), ηn(zng−1)〉
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for a ∈ N . It follows that ‖(ϕn − ϕn ◦ Adg)|N ‖cb → 0. That ‖(ϕn − ϕa
n)|N ‖cb → 0

follows from N -optimality of (ϕn) and Lemma 2. �

Proof of Theorem A
Let (ϕn) be an N -optimal approximate identity on G, and consider linear func-
tionals ωn = τ0 ◦ mϕn on C∗

λN , where τ0 is the unit character on N (see Sec-
tion 2). Since ϕn ∈ AG, the linear functionals ωn extend to ultraweakly continu-
ous linear functionals on the group von Neumann algebra LN . Indeed, they are
nothing but ϕn|N ∈ AN = (LN)∗. One has ‖ωn‖ ≤ Λcb(G), ωn(1LN ) = ϕn(1N ),
and, by Proposition 3, ‖ωn − ωn ◦ Adg ‖ → 0 and ‖ωn − ωa

n‖ → 0 for every g ∈ G

and a ∈ N . We consider ζn := |ωn|1/2 ∈ L2(N) and ζ ′
n := ωn|ωn| −1/2 ∈ L2(N) so

that ωn(X) = 〈Xζn, ζ ′
n〉 for X ∈ LN . Here the absolute value and the square

root are taken in the sense of the standard representation LN ⊂ B(L2(N)). (In
the case where N is abelian, the Fourier transform L2(N) ∼= L2(N̂) implements
LN ∼= L∞(N̂) and (LN)∗ ∼= L1(N̂), and the absolute value and square root
are computed as ordinary functions on the Pontrjagin dual N̂ .) We note that
ϕn(1) ≤ ‖ζn‖2

2 ≤ Λcb(G). By continuity of the absolute value (see Proposition
[Ta, III.4.10]) and the Powers–Størmer inequality, one has ‖ζn − Adg ζn‖2 → 0
for every g ∈ G. Moreover, since

‖ζn‖2‖ζ ′
n‖2 −

∥∥∥ζn + λ(a−1)ζn

2

∥∥∥
2

‖ζ ′
n‖2 ≤ ‖ωn‖ −

∥∥∥ωn + ωa
n

2

∥∥∥ → 0,

one has ‖ζn − λ(a−1)ζn‖2 → 0 for every a ∈ N . Thus, any limit point of (ζ2
n) in

L∞(N)∗ is a nonzero positive (G�N )-invariant linear functional on L∞(N). �

COROLLARY 4

Let Γ and Λ be discrete groups with Λ nontrivial and Γ nonamenable. Then the
wreath product Λ � Γ is not weakly amenable. Also, the group SL(2,Z) � Z

2 is not
weakly amenable.

Proof
The proof is the same as that of [OP, Corollary 2.12]. We note that the stabilizer
of a nonneutral element in Z

2 is an abelian (amenable) subgroup of SL(2,Z). �

4. Proof of Theorem B

We first fix notation. Throughout this section, M is a finite von Neumann algebra
with a distinguished faithful normal tracial state τ , and P is an amenable von
Neumann subalgebra of M . The normalizer N (P ) of P in M is

N (P ) =
{
u ∈ U (M) : Adu(P ) = P

}
,

where U (M) is the group of the unitary elements of M and Adu(x) = uxu∗. The
GNS Hilbert space with respect to the trace τ is denoted by L2(M), and the
vector in L2(M) associated with x ∈ M is denoted by x̂, that is, 〈x̂, ŷ〉 = τ(y∗x),
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for x, y ∈ M . The complex conjugate M̄ = {ā : a ∈ M } of M acts on L2(M)
from the right. Thus there is a ∗-representation ς of the algebraic tensor product
M ⊗ M̄ on L2(M) defined by ς(a ⊗ b̄)x̂ = âxb∗ for a, b, x ∈ M . We also use the
bimodule notation ax̂b∗ for ς(a ⊗ b̄)x̂. Since P is amenable, the ∗-homomorphism
ς|M ⊗P̄ is continuous with respect to the minimal tensor norm.

DEFINITION

A von Neumann algebra M is said to have the weak∗ completely bounded approxi-
mation property, or W∗CBAP in short, if there is a net of ultraweakly continuous
finite-rank maps (ϕn) on M such that ϕn → idM in the point-ultraweak topology
and sup ‖ϕn‖cb < +∞.

Recall that a finite von Neumann algebra P is amenable (i.e., hyperfinite, injec-
tive, AFD, etc.) if the trace τ on P extends to a P -central state ω on B(L2(P )).
Here, a state ω is said to be P -central if ω ◦ Adu = ω for every u ∈ U (P ) or,
equivalently, ω(ax) = ω(xa) for every a ∈ P and x ∈ B(L2(P )).

DEFINITION

Let P be a finite von Neumann algebra, and let G be a group acting on P by
trace-preserving ∗-automorphisms. We denote by σ the corresponding unitary
representation of G on L2(P ). The action G � P is said to be weakly compact
if there is a state ω on B(L2(P )) such that ω|P = τ and ω ◦ Adu = ω for every
u ∈ σ(G) ∪ U (P ). (This forces P to be amenable.) A von Neumann subalgebra
P of a finite von Neumann algebra M is said to be weakly compact in M if the
conjugate action by the normalizer N (P ) is weakly compact (see [OP] for more
information).

If M admits a crossed product decomposition M = P � Λ such that the “core”
P is nonatomic and weakly compact in M , then M does not have property (T).
Indeed, the hypothesis implies that LΛ is coamenable in M (see [OP, Proposi-
tion 3.2]); that is, the M -M module L2〈M,eLΛ〉 contains an approximately cen-
tral vector (see [OP, Theorem 2.1]). But since L2〈M,eLΛ〉 ∼=

⊕
t∈Λ L2(P ) ⊗ L2(P )

as a P -P module, it does not contain a nonzero central vector. This proves that
M does not have property (T).

LEMMA 5

Every P -central state ω on B(L2(P )) decomposes uniquely as a sum ω = ωn +ωs

of P -central positive linear functionals such that ωn|P is normal and ωs|P is
singular. A trace-preserving action G � P is weakly compact if there is a positive
linear functional ω on B(L2(P )) such that

• ω(p) > 0 for every nonzero central projection p in P ,
• ω ◦ Adu = ω for every u ∈ σ(G) ∪ U (P ).
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Proof
We denote by Z the center of P . Recall that every tracial state τ ′ on P sat-
isfies τ ′ = τ ′ |Z ◦ EZ , where EZ : P → Z is the center-valued trace. In particu-
lar, τ ′ is normal on P if and only if it is normal on Z. Let ω be a P -central
state, and consider the normal/singular decomposition of the state ω|Z (see
[Ta, Definition III.2.15]). There is an increasing sequence (pn) of projections
in Z such that pn ↗ 1 and (ω|Z)s(pn) = 0 for all n (see [Ta, Theorem III.3.8]).
We fix an ultralimit Lim on N and let ωn(x) = Limω(pnx) and ωs = ω − ωn.
Since ω is P -central, these are P -central positive linear functionals on B(L2(P )),
and ω|Z = ωn|Z + ωs|Z is the normal/singular decomposition of ω|Z . Suppose
that ω = ω′

n + ω′
s is another such decomposition. Then, since ωs + ω′

s is singular
on Z, there is an increasing sequence (qn) of projections in Z such that qn ↗ 1
and (ωs + ω′

s)(qn) = 0 for all n. It follows that ω′
n(x) = limω(qnx) = ωn(x) for

every x ∈ B(L2(P )). This proves the first half of this lemma. For the second
half, we first observe that we may assume that ω is normal on P by unique-
ness of the normal/singular decomposition. Thus, there is h ∈ L1(Z)+ such that
ω(z) = τ(hz) for z ∈ Z. By assumption, h has full support and is G-invariant.
Thus, ω̃(x) := Limω((h + n−1)−1x) defines a G-invariant P -central state on
B(L2(P )) such that τ̃ |Z = τ |Z . �

LEMMA 6

Let ϕ be a completely bounded map on M . Then, there are a ∗-representation
of the minimal tensor product M ⊗min P̄ on a Hilbert space H and operators
V,W ∈ B(L2(M), H) such that ‖V ‖ = ‖W ‖ ≤ ‖ϕ‖1/2

cb and

τ
(
y∗ϕ(a)xb∗)

= 〈ϕ(a)x̂b∗, ŷ〉 = 〈π(a ⊗ b̄)V x̂,W ŷ〉

for every a,x, y ∈ M and b ∈ P .

Proof
Since the ∗-representation ς : M ⊗min P̄ → B(L2(M)) is continuous, a Stinespring-
type factorization theorem ([BO, Theorem B.7]), applied to the completely bound-
ed map ς ◦ (ϕ ⊗ idP̄ ) yields a ∗-representation π : M ⊗min P̄ → B(H) and operators
V,W ∈ B(L2(M), H) such that ‖V ‖ ‖W ‖ ≤ ‖ϕ‖cb and

ϕ(a)x̂b∗ = ς
(
(ϕ ⊗ idP̄ )(a ⊗ b̄)

)
x̂ = W ∗π(a ⊗ b̄)V x̂

for a,x ∈ M and b ∈ P . �

Since W∗CBAP passes to a subalgebra (which is the range of a conditional expec-
tation), we assume from now on that P is regular in M ; that is, N (P ) generates
M as a von Neumann algebra. We say that a linear map ϕ on M is P -cb if
there are a ∗-representation π of M ⊗min P̄ on a Hilbert space H and functions
V,W ∈ �∞(N (P ), H) such that

(∗) 〈ϕ(a)x̂b∗, ŷ〉 = 〈π(a ⊗ b̄)V (x),W (y)〉
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for every a ∈ M , x, y ∈ N (P ), and b ∈ P . The P -cb norm of ϕ is defined as

‖ϕ‖P = inf
{

‖V ‖ ∞ ‖W ‖∞ : (π, H, V,W ) satisfies (∗)
}
.

It is indeed a norm, and the infimum is attained. (For the latter fact, use the
ultraproduct.) By the above lemma, ‖ϕ‖P ≤ ‖ϕ‖cb. By an approximate identity,
we mean a net (ϕn) of ultraweakly continuous finite-rank maps such that ϕn →
idM in the point-ultraweak topology and sup ‖ϕn‖P < +∞. It exists if M has
the W∗CBAP. We define

ΛP (M) = inf
{

sup
n

‖ϕn‖P : (ϕn) an approximate identity
}

.

For a map ϕ on M , we define ϕ∗(a) = ϕ(a∗)∗ and say that ϕ is self-adjoint if
ϕ = ϕ∗. We note that if (π, H, V,W ) satisfies (∗) for ϕ, then (π, H,W,V ) satisfies
(∗) for ϕ∗. In particular, (ϕ + ϕ∗)/2 is self-adjoint and ‖(ϕ + ϕ∗)/2‖P ≤ ‖ϕ‖P .
Thus, any approximate identity can be made self-adjoint without increasing the
norm. For a P -cb map ϕ, we define a bounded linear functional μϕ on M ⊗min P̄

by

μϕ(a ⊗ b̄) := τ
(
ϕ(a)b∗)

= 〈ϕ(a)1̂b∗, 1̂〉 = 〈π(a ⊗ b̄)V (1),W (1)〉.

Note that ‖μϕ‖ ≤ ‖ϕ‖P . If ϕ is ultraweakly continuous and finite-rank, then
μϕ extend to an ultraweakly continuous linear functional on the von Neumann
algebra M ⊗̄ P̄ .

PROPOSITION 7

Let M be a finite von Neumann algebra having the W∗CBAP, and let (ϕn) be a
self-adjoint approximate identity such that supn ‖ϕn‖P = ΛP (M). Then, the net
μn := μϕn |P ⊗̄P̄ satisfies the following properties:

• μn are self-adjoint and ultraweakly continuous for all n;
• sup ‖μn‖ ≤ ΛP (M) and μn(a ⊗ 1̄) → τ(a) for every a ∈ P ;
• ‖μn − μv⊗v̄

n ‖ → 0 for every v ∈ U (P ), where μv⊗v̄
n (a ⊗ b̄) = μn((a ⊗ b̄)(v ⊗

v̄)∗);
• ‖μn − μn ◦ Adu⊗ū ‖ → 0 for every u ∈ N (P ).

Proof
The first two conditions are easy to see. Let u ∈ N (P ) be given, and define ϕu

n by
ϕu

n(a) = ϕn(au∗)u for a ∈ M . We note that μϕu
n

|P ⊗̄P̄ = μu⊗ū
n if u ∈ U (P ). Thus,

it suffices to show

lim
n

‖μϕn − μϕu
n

‖ = 0 and lim
n

‖μϕn − μϕn ◦ Adu⊗ū ‖ = 0.

Take (πn, Hn, Vn,Wn) satisfying (∗) and lim ‖Vn‖ ∞ = lim ‖Wn‖ ∞ = ΛP (M)1/2.
It follows that

〈ϕu
n(a)x̂b∗, ŷ〉 = 〈ϕn(au∗)ûxb∗, ŷ〉 = 〈πn(a ⊗ b̄)πn(u∗ ⊗ 1̄)Vn(ux),Wn(y)〉

for every a ∈ M , b ∈ P , and x, y ∈ N (P ). Hence with V u
n (x) = πn(u∗ ⊗ 1̄)Vn(ux),

the quadruplet (πn, Hn, V u
n ,Wn) satisfies (∗) for ϕu

n. Note that ‖V u
n ‖ ∞ = ‖Vn‖ ∞.
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We define Wu
n similarly. Since ϕn is self-adjoint, (πn, Hn,Wn, Vn) (resp., (πn, Hn,

Wu
n , Vn)) satisfies (∗) for ϕn (resp., ϕu

n), too. Thus, for ψn = (ϕn + ϕu
n)/2, one

has

‖ψn‖P ≤
∥∥∥ 1√

2

(Vn + V u
n

2
,
Wn + Wu

n

2

)∥∥∥
�∞(N (P ),H ⊕ H)

×
∥∥∥ 1√

2

(
Wn, Vn

)∥∥∥
�∞(N (P ),H ⊕ H)

.

Meanwhile, since (ψn) is an approximate identity, one must have lim inf ‖ψn‖P ≥
ΛP (M). It follows that

lim
n

∥∥∥ 1√
2

(Vn + V u
n

2
,
Wn + Wu

n

2

)∥∥∥
�∞(N (P ),H ⊕ H)

= ΛP (M)1/2

and hence there is a net (zn) in N (P ) such that

lim
n

∥∥∥ 1√
2

( (Vn + V u
n )(zn)

2
,
(Wn + Wu

n )(zn)
2

)∥∥∥
H ⊕ H

= ΛP (M)1/2.

By the parallelogram identity, this implies that

lim
n

‖Vn(zn) − V u
n (zn)‖ = 0 and lim

n
‖Wn(zn) − Wu

n (zn)‖ = 0.

Let π′
n = πn ◦ (idM ⊗ Adz̄−1

n
). Since

μϕn(a ⊗ b̄) = 〈ϕn(a)ẑn Adz−1
n

(b)∗, ẑn〉 = 〈π′
n(a ⊗ b̄)Vn(zn),Wn(zn)〉,

μϕu
n
(a ⊗ b̄) = 〈ϕn(au∗)ûzn Adz−1

n
(b)∗, ẑn〉

= 〈π′
n(a ⊗ b̄)V u

n (zn),Wn(zn)〉,

and

(μϕn ◦ Adu⊗ū)(a ⊗ b̄) = 〈ϕn(uau∗)ûzn Adz−1
n

(b)∗, ûzn〉

= 〈π′
n(a ⊗ b̄)V u

n (zn),Wu
n (zn)〉,

we conclude that ‖μϕn − μϕu
n

‖ → 0 and ‖μϕn − μϕn ◦ Adu⊗ū ‖ → 0. �

Proof of Theorem B
Since M has the W∗CBAP, there is a net (μn) satisfying the conclusion of Propo-
sition 7. We view μn as an element in L1(P ⊗̄ P̄ ) (see Section 2 in [OP]) and
let ζn = |μn|1/2 ∈ L2(P ⊗̄ P̄ ) and ζ ′

n = μn|μn| −1/2 ∈ L2(P ⊗̄ P̄ ) so that μn(X) =
〈Xζn, ζ ′

n〉 for X ∈ P ⊗̄ P̄ . By continuity of the absolute value (see [Ta, Proposi-
tion III.4.10]) and the Powers–Størmer inequality, one has ‖ζn − Adu⊗ū ζn‖2 → 0
for every u ∈ N (P ). Since

2‖μn‖ ≈ ‖μn + μv⊗v̄
n ‖ ≤ ‖ζn + (v ⊗ v̄)ζn‖2‖ζ ′

n‖2 ≤ 2‖ζn‖2‖ζ ′
n‖2 = 2‖μn‖,

one also has ‖ζn − (v ⊗ v̄)ζn‖ → 0 for every v ∈ U (P ). Now, fix an ultralimit Lim,
and define ω on B(L2(P )) by ω(x) = Lim〈(x ⊗ 1̄)ζn, ζn〉. Then ω is an N (P )-
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invariant P -central positive linear functional satisfying

ω(p) = Limn |μn|(p ⊗ 1̄) ≥ Limn |μn(p ⊗ 1̄)| = τ(p)

for every central projection p in P . By Lemma 5, we are done. �
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