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Abstract. Let X be a Banach space, let T ∈ L(X) be a bounded linear
operator, and let Tn be a restriction of T on R(Tn). This article should be
viewed as a note on the research work of Carpintero et al. We give here sev-
eral different proofs for completeness, and we show the relations of T and Tn

to a much greater extent. Moreover, we give sufficient conditions for which
Weyl-type theorems for T are equivalent to Weyl-type theorems for Tn.

1. Introduction and preliminaries

Throughout this article, let L(X) denote the Banach algebra of all bounded
linear operators acting on an infinite-dimensional complex Banach space X. For
T ∈ L(X), let T ∗ denote its dual, N(T ) its kernel, α(T ) its nullity, R(T ) its range,
β(T ) its defect, σ(T ) its spectrum, and σa(T ) its approximate point spectrum.
Two other classical quantities in operator theory are the ascent and descent of
an operator T , defined as p(T ) = inf{n ∈ N : N(T n) = N(T n+1)} and q(T ) =
inf{n ∈ N : R(T n) = R(T n+1)}, respectively (the infimum of an empty set is
defined to be ∞). Note that if p(T ) and q(T ) are both finite, then p(T ) = q(T )
(see [1, Theorem 3.3]). If R(T ) is closed and α(T ) < ∞ (resp., β(T ) < ∞), then
T is said to be upper semi-Fredholm (resp., lower semi-Fredholm). If T is both
upper and lower semi-Fredholm, then T is said to be Fredholm. If T is either
upper or lower semi-Fredholm, then T is said to be semi-Fredholm, and its index
is defined by indT = α(T ) − β(T ). An operator T is called Browder (resp.,
upper semi-Browder) if T is Fredholm and p(T ) = q(T ) < ∞ (resp., T is upper
semi-Fredholm and p(T ) < ∞). The operator T is called Weyl (resp., upper
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semi-Weyl) if T is Fredholm and indT = 0 (resp., T is upper semi-Fredholm
and indT ≤ 0). For T ∈ L(X), let us define the Weyl spectrum and the upper
semi-Weyl spectrum of T , respectively, as follows:

σw(T ) = {λ ∈ C : λI − T is not Weyl}

and

σuw(T ) = {λ ∈ C : λI − T is not upper semi-Weyl}.

For each n ∈ N, define Tn to be the restriction of T on R(T n), viewed as a
map from R(T n) into R(T n) (in particular, T0 = T ). If there exists n ∈ N such
that R(T n) is closed and Tn is Fredholm (resp., upper semi-Fredholm), then T
is called B-Fredholm (resp., upper semi-B-Fredholm). Analogously, if there exists
n ∈ N such that R(T n) is closed and Tn is Browder (resp. upper semi-Browder),
then T is called B-Browder (resp., upper semi-B-Browder). Furthermore, 0 <
p(λI − T ) = q(λI − T ) < ∞ if and only if λ is a pole of the resolvent of T (see
[11, Proposition 50.2]). An operator T ∈ L(X) is said to be left Drazin invertible
if p(T ) < ∞ and R(T p(T )+1) is closed; T ∈ L(X) is called Drazin invertible if the
ascent and the descent of T are both finite.

Other spectra related to semi-B-Fredholm operators are defined as follows. The
left Drazin invertible spectrum is defined by

σld(T ) = {λ ∈ C : λI − T is not left Drazin invertible}.

The upper semi-B-Browder spectrum is defined by

σusbb(T ) = {λ ∈ C : λI − T is not upper semi-B-Browder}.

Clearly, by [2, Theorem 4.91], σld(T ) = σusbb(T ).
Now, we introduce an important property in local spectral theory. The local-

ized version of this property was introduced by Finch [9], and in the framework
of Fredholm theory this property has been characterized in several ways (see
Chapter 3 of [1]). An operator T ∈ L(X) is said to have the single-valued exten-
sion property at λ0 ∈ C (SVEP at λ0 for brevity) if for every open disk Dλ0 ⊆ C
centered at λ0, the only analytic function f : Dλ0 → X which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0 on Dλ0 . The operator T is said to have SVEP if T has the
SVEP at every point λ ∈ C. Evidently, T (or T ∗) has SVEP at λ ∈ isoσ(T ), and
T has SVEP at λ ∈ isoσa(T ). Note that (see [1, Theorem 3.8])

p(λI − T ) <∞ ⇒ T has SVEP at λ, (1.1)

q(λI − T ) <∞ ⇒ T ∗ has SVEP at λ. (1.2)

By Chapter 3 of [1], the implications (1.1) and (1.2) are actually equivalences
whenever T ∈ L(X) is semi-Fredholm.

Let Π00(T ) denote the set of all poles of T . We say that λ ∈ σa(T ) is a left pole
of T if λI − T is left Drazin inverse. Let Πa(T ) denote the set of all left poles
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of T . We also set

p00(T ) =
{
λ ∈ Π00(T ) : α(λI − T ) < ∞

}
,

pa00(T ) =
{
λ ∈ Πa(T ) : α(λI − T ) < ∞

}
,

E(T ) =
{
λ ∈ isoσ(T ) : 0 < α(λI − T )

}
,

Ea(T ) =
{
λ ∈ isoσa(T ) : 0 < α(λI − T )

}
,

π00(T ) =
{
λ ∈ isoσ(T ) : 0 < α(λI − T ) < ∞

}
,

and

πa
00(T ) =

{
λ ∈ isoσa(T ) : 0 < α(λI − T ) < ∞

}
,

where isoK denotes the set of all isolated points of K ⊆ C.
Let T ∈ L(X). Following Coburn [7], T is said to satisfy Weyl’s theorem, in

symbol (W ), if σ(T ) \ σw(T ) = π00(T ), while, according to Rakoc̆ević [12], T is
said to satisfy a-Weyl’s theorem, in symbol (aW ), if σa(T ) \ σuw(T ) = πa

00(T ).
Following Harte and Lee [10], T is said to satisfy Browder’s theorem, in symbol
(B), if σ(T ) \ σw(T ) = p00(T ), while, according to Djordjević and Han [8], T is
said to satisfy a-Browder’s theorem, in symbol (aB), if σa(T ) \ σuw(T ) = pa00(T ).

In Section 2, we will need the following basic results.

Lemma 1.1 ([3, Lemma 1.1]). Let T ∈ L(X) and p = p(T ) < ∞. Then the
following statements are equivalent.

(1) There exists n ≥ p+ 1 such that T n(X) is closed,
(2) Tm(X) is closed for all m ≥ p.

Lemma 1.2. Let T ∈ L(X), and let Tn, n ∈ N be the restriction of the operator
T on the subspace R(T n) = T n(X). Then, for all λ 6= 0, we have

(1) N((λI − Tn)
m) = N((λI − T )m), for any m ∈ N,

(2) R((λI − Tn)
m) = R((λI − T )m) ∩R(T n), for any m ∈ N,

(3) α(λI − Tn) = α(λI − T ),
(4) β(λI − Tn) = β(λI − T ),
(5) p(λI − Tn) = p(λI − T ),
(6) q(λI − Tn) < ∞ ⇔ q(λI − T ) < ∞.

Proof. The proofs of (1), (2), (3), (4), and (5) may be found in [3, Lemma 2.1].
(6) Suppose that q(λI−T ) < ∞. From (2) we show that R((λI−Tn)

q(λI−T )) =
R((λI−T )q(λI−T ))∩R(T n) = R((λI−T )q(λI−T )+1)∩R(T n) = R((λI−Tn)

q(λI−T )+1),
so q(λI − Tn) < ∞. On the other hand, if q(λI − Tn) < ∞, from [4, Lemma 3] it
follows that q(λI − T ) < ∞. �

Lemma 1.3 ([3, Lemma 2.2]). If R(T n) is closed in X and R((λI − Tn)
m) is

closed in R(T n), then there exists k ∈ N such that R((λI − T )k) is closed in X.

Lemma 1.4 ([6, Lemma 1.5]). If R(T n) is closed in X and R((λI − Tn)
m) is

closed in R(T n) for λ 6= 0, then R((λI − T )m) is closed in X.

Lemma 1.5(4) below was first established in [6, Lemma 2.2]. We give here a
different proof for completeness.
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Lemma 1.5. Let T ∈ L(X), and let Tn, n ∈ N be the restriction of the operator
T on the subspace R(T n). If R(T n) is closed, we have

(1) σ(Tn) ⊆ σ(T ) and σa(Tn) ⊆ σa(T ),
(2) σw(Tn) ⊆ σw(T ) and σuw(Tn) ⊆ σuw(T ),
(3) If 0 /∈ Π00(T ), then σ(T ) = σ(Tn),
(4) If 0 /∈ Πa(T ), then σa(T ) = σa(Tn).

Proof. The proofs of (1) and (2) may be found in [6, Lemma 2.1].
(3) By (1), we need only to show that σ(T ) ⊆ σ(Tn). Let λ /∈ σ(Tn). Here we

consider the two difference cases λ 6= 0 and λ = 0. If λ 6= 0, Lemma 1.2 implies
α(λI − T ) = α(λI − Tn) = β(λI − Tn) = β(λI − T ) = 0, so λ /∈ σ(T ). If λ = 0,
then p(Tn) = q(Tn) = 0. By [4, Lemmas 2 and 3], p(T ) = q(T ) < ∞. Suppose
that 0 < p(T ) = q(T ) < ∞. Then 0 ∈ Π00(T ), which is a contradiction. Thus
p(T ) = q(T ) = 0, which implies λ /∈ σ(T ). Consequently, σ(T ) ⊆ σ(Tn).

(4) By (1), we need only to show that σa(T ) ⊆ σa(Tn). Let λ /∈ σa(Tn). Here we
consider the two difference cases λ 6= 0 and λ = 0. If λ 6= 0, thenN(λI−Tn) = {0}
and R(λI−Tn) is closed. By Lemmas 1.2 and 1.4, N(λI−T ) = {0} and R(λI−T )
is closed, which implies that λI − T is bounded below, so λ /∈ σa(T ). If λ = 0,
then p(Tn) = 0 and R(Tn) is closed. By [4, Lemma 2], p(T ) < ∞. Moreover,
by [4, Remark 1], p(T ) = inf{k ∈ N : Tk is injective} ≤ n. By Lemma 1.1,
R(Tm) is closed for any m ≥ p(T ), since R(T n+1) = R(Tn) is closed. Thus,
if 0 ∈ σa(T ), then 0 ∈ Πa(T ), which is a contradiction. Hence, 0 /∈ σa(T ).
Consequently, σa(T ) ⊆ σa(Tn). �

From [3], [5], and [6], it follows that several spectral properties are the same
for T and Tn. First we give a number of different proofs for completeness, and
then we show the relations of T and Tn to a much greater extent. Moreover, we
give sufficient conditions for which Weyl-type theorems for T are equivalent to
Weyl-type theorems for Tn.

2. Relations of T and Tn

Theorems 2.1 and 2.2 below were first established in [3, Lemmas 2.3 and 2.4],
respectively. We give some different proofs for completeness.

Theorem 2.1. Let T ∈ L(X). If 0 /∈ Π00(T ) and there exists n ∈ N such that
R(T n) is closed, then π00(T ) ⊆ π00(Tn).

Proof. Let λ ∈ π00(T ). Then λ ∈ isoσ(T ) and 0 < α(λI − T ) < ∞; Lemma
1.5 implies λ ∈ isoσ(T ) = iso σ(Tn). Now, here we consider two difference cases.
Case I: if λ 6= 0, by Lemma 1.2, 0 < α(λI−Tn) = α(λI−T ) < ∞, so λ ∈ π00(Tn).
Case II: if λ = 0, we claim that α(Tn) > 0. Suppose that α(Tn) = 0. We have
p(Tn) = 0 and, by [4, Lemma 2], p(T ) < ∞. Also α(T n) < ∞, because α(T ) < ∞.
We have that T n is upper semi-Fredholm, since R(T n) is closed. Thus T is upper
semi-Fredholm by [2, Theorem 1.46], and so T n+1 is upper semi-Fredholm by
[2, Theorem 1.42]. Hence R(Tn) = R(T n+1) is closed, which implies that Tn is
bounded below, and so Tn is semi-Fredholm. Also T ∗

n has SVEP at 0, because
0 ∈ isoσ(Tn). Then by [2, Theorem 2.46], q(Tn) < ∞, which implies q(T ) < ∞
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by [4, Lemma 3]. Thus 0 < p(T ) = q(T ) < ∞, which is a contradiction since
0 /∈ Π00(T ). Hence, α(Tn) > 0. On the other hand, since N(Tn) ⊆ N(T ) and
α(T ) < ∞, we have α(Tn) < ∞. Thus 0 < α(Tn) < ∞, and so 0 ∈ π00(Tn).
Consequently, π00(T ) ⊆ π00(Tn). �

Theorem 2.2. Let T ∈ L(X). If 0 /∈ Πa(T ) and there exists n ∈ N such that
R(T n) is closed, then πa

00(T ) ⊆ πa
00(Tn).

Proof. Let λ ∈ πa
00(T ). Then λ ∈ isoσa(T ) and 0 < α(λI − T ) < ∞. Since

0 /∈ Πa(T ), by Lemma 1.5, λ ∈ isoσa(T ) = iso σa(Tn). For λ 6= 0, by Lemma 1.2,
0 < α(λI − Tn) = α(λI − T ) < ∞, so λ ∈ πa

00(Tn). For λ = 0, we claim that
α(Tn) > 0. If α(Tn) = 0, then in similar way as in the proof of Theorem 2.1,
we can prove that Tn is bounded below, so 0 /∈ σa(Tn), which is a contradiction.
Hence α(Tn) > 0. On the other hand, since N(Tn) ⊆ N(T ) and α(T ) < ∞, we
have α(Tn) < ∞. Thus 0 < α(Tn) < ∞, and so λ = 0 ∈ πa

00(Tn). Consequently,
πa
00(T ) ⊆ πa

00(Tn). �

Theorems 2.1 and 2.2 were first extended in [5, Lemmas 2.3 and 2.4]. Theo-
rems 2.3 and 2.4 below provide some different conclusions.

Theorem 2.3. Let T ∈ L(X). If 0 /∈ Π00(T ) and there exists n ∈ N such that
R(T n) is closed, then E(Tn) ⊆ E(T ).

Proof. Let λ ∈ E(Tn). Then λ ∈ isoσ(Tn) and 0 < α(λI − Tn). By Lemma 1.5,
λ ∈ isoσ(Tn) = isoσ(T ). Also, since N(λI − Tn) ⊆ N(λI − T ), we have 0 <
α(λI − Tn) ≤ α(λI − T ). So λ ∈ E(T ). Hence, E(Tn) ⊆ E(T ). �

Theorem 2.4. Let T ∈ L(X). If 0 /∈ Πa(T ) and there exists n ∈ N such that
R(T n) is closed, then Ea(Tn) ⊆ Ea(T ).

Proof. By arguments similar to those in Theorem 2.3, we can prove that Ea(Tn) ⊆
Ea(T ). �

To get the inclusions π00(Tn) ⊆ π00(T ), π
a
00(Tn) ⊆ πa

00(T ), E(T ) ⊆ E(Tn), and
Ea(T ) ⊆ Ea(Tn), we need to resolve the following questions.

Question 2.5. Let T ∈ L(X), and let Tn, n ∈ N be the restriction of the operator
T on the subspace R(T n). If R(T n) is closed, we have the following.

(1) If 0 /∈ Π00(T ), then α(Tn) < ∞ ⇒ α(T ) < ∞? α(T ) > 0 ⇒ α(Tn) > 0?
(2) If 0 /∈ Πa(T ), then α(Tn) < ∞ ⇒ α(T ) < ∞? α(T ) > 0 ⇒ α(Tn) > 0?

Corollary 2.6. Let T ∈ L(X). If 0 /∈ E(T ) and there exists n ∈ N such that
R(T n) is closed, then E(T ) = E(Tn).

Proof. Since 0 /∈ E(T ) and Π00(T ) ⊆ E(T ), we have that 0 /∈ Π00(T ). By
Theorem 2.3, we need only to show that E(T ) ⊆ E(Tn). Let λ ∈ E(T ). Then
λ ∈ isoσ(T ) and α(λI−T ) > 0. By Lemma 1.5, λ ∈ isoσ(T ) = iso σ(Tn). Observe
that, 0 /∈ E(T ) implies λ 6= 0. By Lemma 2.1, α(λI − Tn) = α(λI − T ) > 0. So
λ ∈ E(Tn). Hence, E(T ) ⊆ E(Tn). �

Corollary 2.7. Let T ∈ L(X). If 0 /∈ Ea(T ) and there exists n ∈ N such that
R(T n) is closed, then Ea(T ) = Ea(Tn).
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Proof. By arguments similar to those in Corollary 2.6, we can prove that Ea(T ) =
Ea(Tn). �

Similarly as in the above theorems, we have the following relations.

Theorem 2.8. Let T ∈ L(X). If 0 /∈ Π00(T ) and there exists n ∈ N such that
R(T n) is closed, then Π00(T ) = Π00(Tn).

Proof. We show Π00(T ) ⊆ Π00(Tn). Let λ ∈ Π00(T ). Then 0 < p(λI − T ) =
q(λI − T ) < ∞. Observe that 0 /∈ Π00(T ) implies λ 6= 0. From Lemma 1.2, we
have 0 < p(λI−Tn) = p(λI−T ) < ∞ and q(λI−Tn) < ∞. Hence 0 < p(λI−Tn) =
q(λI − Tn) < ∞, which implies λ ∈ Π00(Tn). Consequently, Π00(T ) ⊆ Π00(Tn).

We show Π00(Tn) ⊆ Π00(T ). Let λ ∈ Π00(Tn). Then λ ∈ σ(Tn) and 0 <
p(λI−Tn) = q(λI−Tn) < ∞. By [4, Lemmas 2 and 3], p(λI−T ) = q(λI−T ) < ∞.
Suppose that p(λI − T ) = q(λI − T ) = 0. Then λ /∈ σ(T ). By Lemma 1.5,
λ /∈ σ(Tn), which leads to a contradiction. Hence 0 < p(λI−T ) = q(λI−T ) < ∞,
which implies λ ∈ Π00(T ). Consequently, Π00(Tn) ⊆ Π00(T ). �

Theorem 2.9. Let T ∈ L(X). If 0 /∈ Πa(T ) and there exists n ∈ N such that
R(T n) is closed, then Πa(T ) = Πa(Tn).

Proof. We show Πa(T ) ⊆ Πa(Tn). Let λ ∈ Πa(T ). Then λ ∈ isoσa(T ), p(λI −
T ) < ∞ and R((λI − T )p(λI−T )+1) is closed. From Lemma 1.5, we have λ ∈
isoσa(T ) = iso σa(Tn). Observe that 0 /∈ Πa(T ) implies λ 6= 0. By Lemma 1.2,
p(λI−Tn) = p(λI−T ) < ∞ and R((λI−Tn)

p(λI−Tn)+1) = R((λI−T )p(λI−Tn)+1)∩
R(T n) = R((λI−T )p(λI−T )+1)∩R(T n) is closed. Hence λ ∈ Πa(Tn). Consequently,
Πa(T ) ⊆ Πa(Tn).

We show Πa(Tn) ⊆ Πa(T ). Let λ ∈ Πa(Tn). Here we consider two difference
cases. Case I: if λ 6= 0, then λ ∈ σa(Tn), p(λI−Tn) < ∞ and R((λI−Tn)

p(λI−Tn)+1)
is closed. By Lemma 1.5, λ ∈ σa(Tn) = σa(T ). Also, it follows from Lemmas 1.2
and 1.4 that p(λI − T ) = p(λI − Tn) < ∞ and that R((λI − T )p(λI−T )+1) =
R((λI − T )p(λI−Tn)+1) is closed. Hence λ ∈ Πa(T ). Case II: if λ = 0, then 0 ∈
Πa(Tn) = σa(Tn)\σld(Tn). Since σld(Tn) = σusbb(Tn), Tn is upper semi-B-Browder,
then there exits m ∈ N such that R(Tm

n ) = R(T n+m) is closed and Tn[m] is upper
semi-Browder, where Tn[m] denotes the restriction of T on R(Tm+n). Thus T
is upper semi-B-Browder, and so 0 /∈ σusbb(T ) = σld(T ). By Lemma 1.5, 0 ∈
σa(Tn) = σa(T ), so 0 ∈ σa(T ) \ σld(T ) = Πa(T ). Hence, Πa(Tn) ⊆ Πa(T ). �

Theorems 2.10 and 2.11 were first established in [6, Lemma 2.3]. We give dif-
ferent proofs for completeness.

Theorem 2.10. Let T ∈ L(X). If 0 /∈ Π00(T ) and there exists n ∈ N such that
R(T n) is closed, then p00(T ) = p00(Tn).

Proof. Observe that 0 /∈ Π00(T ) implies 0 /∈ p00(T ). Suppose that 0 ∈ p00(Tn).
Then 0 ∈ Π00(Tn). By Theorem 2.8, Π00(T ) = Π00(Tn). Then 0 ∈ Π00(T ), which
leads to a contradiction. Hence, 0 /∈ p00(Tn).

Let 0 6= λ ∈ C. By Lemma 1.2, α(λI−T ) = α(λI−Tn). Also, from Theorem 2.8
we know that Π00(T ) = Π00(Tn). Thus p00(T )\{0} = p00(Tn)\{0}. Consequently,
p00(T ) = p00(Tn). �
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Theorem 2.11. Let T ∈ L(X). If 0 /∈ Πa(T ) and there exists n ∈ N such that
R(T n) is closed, then pa00(T ) = pa00(Tn).

Proof. By arguments similar to those in Theorem 2.10, we can prove that pa00(T ) =
pa00(Tn). �

3. Weyl-type theorems and restrictions

In this section, we give conditions for which Weyl’s theorem (resp., a-Weyl’s
theorem, Browder’s theorem, a-Browder’s theorem) for an operator T ∈ L(X)
is equivalent to Weyl’s theorem (resp., a-Weyl’s theorem, Browder’s theorem,
a-Browder’s theorem) for a certain restriction Tn of T .

Theorem 3.1. Let T ∈ L(X). If 0 /∈ Π00(T ), then T satisfies (W ) if and only if
there exists n ∈ N such that R(T n) is closed and Tn satisfies (W ).

Proof. (Sufficiency) Suppose that there exists n ∈ N such that R(T n) is closed and
Tn satisfies (W ). Let λ ∈ π00(T ). By Theorem 2.1 and hypothesis, λ ∈ π00(Tn) =
σ(Tn)\σw(Tn). Suppose that λ = 0. Since Tn is Fredholm and 0 ∈ isoσ(Tn), by
[2, Corollary 2.49], 0 < p(Tn) = q(Tn) < ∞. From [4, Lemmas 2 and 3] we have
0 < p(T ) = q(T ) < ∞, which is a contradiction because 0 /∈ Π00(T ). Thus λ 6= 0.
Since λI − Tn is Weyl and λ ∈ σ(Tn), 0 < α(λI − Tn) = β(λI − Tn) < ∞.
By Lemma 1.2, 0 < α(λI − T ) = β(λI − T ) < ∞, so λI − T is Weyl, and
thus λ ∈ σ(T )\σw(T ). Hence, π00(T ) ⊆ σ(T )\σw(T ). On the other hand, let
λ ∈ σ(T )\σw(T ). By Lemma 1.5 and hypothesis, λ ∈ σ(Tn)\σw(Tn) = π00(Tn). By
arguments similar to those above, we have that λ 6= 0. Since λI −Tn is Weyl and
λ ∈ σ(Tn), 0 < α(λI−Tn) = β(λI−Tn) < ∞, by Lemma 1.2, 0 < α(λI−T ) < ∞.
From the hypothesis and Lemma 1.5, λ ∈ π00(Tn) ⊆ isoσ(Tn) = iso σ(T ), thus
λ ∈ π00(T ). Hence, σ(T )\σw(T ) ⊆ π00(T ). Consequently, σ(T )\σw(T ) = π00(T ),
which implies that T satisfies (W ).

(Necessary) Suppose that T satisfies (W ). Then for n = 0, R(T 0) = X is closed
and T0 = T satisfies (W ). �

By arguments similar to those in Theorem 3.1, we can prove the necessary
conditions of the following theorems, thus we only need to proof the sufficiency
of these theorems.

Theorem 3.2. Let T ∈ L(X). If 0 /∈ Πa(T ), then T satisfies (aW ) if and only
if there exits n ∈ N such that R(T n) is closed and Tn satisfies (aW ).

Proof. (Sufficiency) Suppose that there exists n ∈ N such that R(T n) is closed
and Tn satisfies (aW ). Let λ ∈ πa

00(T ). By Theorem 2.2 and hypothesis, λ ∈
πa
00(Tn) = σa(Tn)\σuw(Tn). Since λI−Tn is upper semi-Fredholm, α(λI−Tn) < ∞

and R(λI−Tn) is closed. By Lemma 1.3, there exists k ∈ N such that R(λI−T )k

is closed. Also, α(λI − T ) < ∞ because λ ∈ πa
00(T ). Then α((λI − T )k) < ∞.

Thus, (λI − T )k is upper semi-Fredholm. By [2, Theorem 1.46], λI − T is upper
semi-Fredholm. Moreover, T has SVEP at λ since λ ∈ isoσa(T ). Then by [2,
Corollary 2.48], ind(λI − T ) ≤ ∞. Thus λI − T is upper semi-Weyl, and so
λ ∈ σa(T )\σuw(T ). Hence, π

a
00(T ) ⊆ σa(T )\σuw(T ). On the other hand, let λ ∈

σa(T )\σuw(T ), we have that α(λI −T ) < ∞. By Lemma 1.5 and hypothesis, λ ∈
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σa(Tn)\σuw(Tn) = πa
00(Tn). Then λ ∈ isoσa(Tn) = iso σa(T ) and 0 < α(λI−Tn) <

∞. Since N(λI − Tn) ⊆ N(λI − T ) and α(λI − Tn) > 0, we have α(λI − T ) > 0.
Thus 0 < α(λI − T ) < ∞, and so λ ∈ πa

00(T ). Hence, σa(T )\σuw(T ) ⊆ πa
00(T ).

Consequently, σa(T )\σuw(T ) = πa
00(T ), which implies that T satisfies (aW ). �

Theorem 3.3. Let T ∈ L(X). If 0 /∈ Π00(T ), then T satisfies (B) if and only if
there exits n ∈ N such that R(T n) is closed and Tn satisfies (B).

Proof. (Sufficiency) Suppose that there exists n ∈ N such that R(T n) is closed and
Tn satisfies (B). From [2, Theorem 4.25] it follows that σ(Tn) = σw(Tn)∪isoσ(Tn).
By the hypothesis and Lemma 1.5, σ(T ) = σ(Tn) = σw(Tn)∪ isoσ(T ) ⊆ σw(T )∪
isoσ(T ), so σ(T ) ⊆ σw(T )∪ isoσ(T ). Observe that σw(T )∪ isoσ(T ) ⊆ σ(T ) holds
for every T ∈ L(X). Hence σ(T ) = σw(T ) ∪ isoσ(T ), and by [2, Theorem 4.25],
T satisfies (B). �

Theorem 3.4. Let T ∈ L(X). If 0 /∈ Πa(T ), then T satisfies (aB) if and only if
there exits n ∈ N such that R(T n) is closed and Tn satisfies (aB).

Proof. (Sufficiency) By [2, Theorem 4.35], we need only to show that σa(T ) =
σuw(T )∪ isoσa(T ). Observe first that σuw(T )∪ isoσa(T ) ⊆ σa(T ) holds for every
T ∈ L(X). And by arguments similar to those in Theorem 3.3, we have that
σa(T ) ⊆ σuw(T ) ∪ isoσa(T ). So σa(T ) = σuw(T ) ∪ isoσa(T ). Hence, T satisfies
(aB). �

Remark 3.5. Obviously, if we replace the assumptions of Theorems 3.1 and 3.3
(resp., Theorems 3.2 and 3.4) by 0 /∈ isoσ(T ), p(T ) = ∞, or q(T ) = ∞ (resp.,
0 /∈ isoσa(T ) or p(T ) = ∞), then the results are true.
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