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Abstract. This article investigates a bijective map Φ between two von Neu-
mann algebras, one of which has no central abelian projections, satisfying
Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗,Φ(C)]∗ for all A,B,C in the domain, where
[A,B]∗ = AB−BA∗ is the skew Lie product of A and B. We show that the map
Φ(I)Φ is a sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism,
where Φ(I) is a self-adjoint central element in the range with Φ(I)2 = I.

1. Introduction

LetA be a ∗-algebra and let η be a nonzero scalar. For A,B ∈ A, define the Jor-
dan η-∗-product of A and B by A♦ηB = AB+ηBA∗. The Jordan (−1)-∗-product,
which is customarily called the skew Lie product, was extensively studied be-
cause it naturally arises in the problem of representing quadratic functionals
with sesquilinear functionals (see, for example, [11], [12], [10]) and in the problem
of characterizing ideals (see, for example, [2], [9]). A map Φ between ∗-algebras A
and B is said to preserve the Jordan η-∗-product if Φ(A♦ηB) = Φ(A)♦ηΦ(B) for
all A,B ∈ A. Recently, many authors have paid more attention to the maps pre-
serving the Jordan η-∗-product between ∗-algebra (see, for example, [1], [3], [7]).
In [4], Dai and Lu proved that if Φ is a bijective map preserving the Jordan
η-∗-product between two von Neumann algebras, one of which has no central
abelian projections, then Φ is a linear ∗-isomorphism if η is not real, and Φ is a
sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism if η is real.
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Recently, Huo et al. in [5] studied a more general problem. They considered
the Jordan triple η-∗-product of three elements A,B, and C in a ∗-algebra
A defined by A♦ηB♦ηC = (A♦ηB)♦ηC (we should be aware that ♦η is not
necessarily associative). A map Φ between ∗-algebras A and B is said to pre-
serve the Jordan triple η-∗-product if Φ(A♦ηB♦ηC) = Φ(A)♦ηΦ(B)♦ηΦ(C)
for all A,B,C ∈ A. Clearly, a map between ∗-algebras preserving the Jor-
dan η-∗-product also preserves the Jordan triple η-∗-product. However, the map
Φ : C → C,Φ(α + βi) = −4(α3 + β3i) is a bijection which preserves the Jordan
triple (−1)-∗-product and the Jordan triple 1-∗-product, but it does not preserve
the Jordan (−1)-∗-product or Jordan 1-∗-product. So, the class of those maps
preserving the Jordan triple η-∗-product is, in principle, wider than the class of
maps preserving the Jordan η-∗-product. In [5], let η 6= −1 be a nonzero complex
number, and let Φ be a bijection between two von Neumann algebras, one of
which has no central abelian projections, satisfying Φ(I) = I and preserving the
Jordan triple η-∗-product. In [5] it was shown that Φ is a linear ∗-isomorphism
if η is not real and that Φ is the sum of a linear ∗-isomorphism and a conjugate
linear ∗-isomorphism if η is real.

On the one hand, [5] did not include the case η = −1. Obviously, the Jordan
(triple) (−1)-∗-product is very important and meaningful. On the other hand, it
is easy to see that a map Φ preserving the Jordan triple η-∗-product does not need
to satisfy Φ(I) = I. Indeed, let Φ(A) = −A for all A ∈ A. Then Φ preserves the
Jordan triple η-∗-product but Φ(I) = −I. Because of the two reasons above, in the
current article we will discuss maps preserving the Jordan triple (−1)-∗-product
without the assumption Φ(I) = I. We will prove that, if Φ is a bijective map
preserving the Jordan triple (−1)-∗-product between two von Neumann algebras,
one of which has no central abelian projections, then the map Φ(I)Φ is a sum
of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism, where Φ(I) is
a self-adjoint central element in the range with Φ(I)2 = I. We mention that the
methods in [5] do not fit for solving our problem since their proofs heavily depend
on the assumption Φ(I) = I.

Before stating the main results, we need some notation and preliminaries.
Throughout this paper, we often write the Jordan (−1)-∗-product by [A,B]∗,
that is, [A,B]∗ = AB − BA∗. All algebras and spaces are over the complex
number field C. A von Neumann algebra A is a weakly closed, self-adjoint alge-
bra of operators on a Hilbert space H containing the identity operator I. The set
Z(A) = {S ∈ A : ST = TS for all T ∈ A} is called the center of A. A projection
P is called a central abelian projection if P ∈ Z(A) and PAP is abelian. Recall
that the central carrier of A, denoted by A, is the smallest central projection P
satisfying PA = A. It is not difficult to see that the central carrier of A is the
projection onto the closed subspace spanned by {BA(x) : B ∈ A, x ∈ H}. If A is
self-adjoint, then the core of A, denoted by A, is sup{S ∈ Z(A) : S = S∗, S ≤ A}.
If P is a projection, it is clear that P is the largest central projection Q satisfying
Q ≤ P . A projection P is said to be core-free if P = 0. It is easy to see that
P = 0 if and only if I − P = I.
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Lemma 1.1 ([8, Lemma 4]). Let A be a von Neumann algebra with no central
abelian projections. Then there exists a projection P ∈ A such that P = 0 and
P = I.

Lemma 1.2. Let A be a von Neumann algebra on a Hilbert space H. Let A be
an operator in A and let P ∈ A be a projection with P = I. If ABP = 0 for all
B ∈ A, then A = 0.

Proof. This is easy to see from the fact that {BP (x) : B ∈ A, x ∈ H} is dense
in H. �

Lemma 1.3. Let A be an arbitrary von Neumann algebra. Then AB = BA∗ for
all B ∈ A implies that A ∈ Z(A) and that A = A∗.

Proof. In fact, take B = I, then A = A∗. So AB = BA for all B ∈ A, which
implies that A ∈ Z(A). �

2. Additivity

The main result in this section is the following.

Theorem 2.1. Let A be a von Neumann algebra with no central abelian projec-
tions and let B be a ∗-algebra. Suppose that a bijective map Φ : A → B satisfies
Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗,Φ(C)]∗ for all A,B,C ∈ A. Then Φ is additive.

Before the proof, we note that the hypothesis “A containing no central abelian
projections” is needed in the above theorem. For example, for α, β ∈ R, define
Φ(α+βi) = 4(α3+β3i). Then Φ is a bijection from C onto itself. It is not difficult
to verify that Φ preserves the skew Lie triple product. However, it is obviously
not additive.

Proof. First, we give a key technique. Suppose that A1, A2, . . . , An and T are in
A such that Φ(T ) =

∑n
i=1 Φ(Ai). Then for all S1, S2 ∈ A, we have

Φ
([[

S1, S2

]
∗, T

]
∗

)
=

[[
Φ(S1),Φ(S2)

]
∗,Φ(T )

]
∗ =

n∑
i=1

Φ
([[

S1, S2

]
∗, Ai

]
∗

)
, (2.1)

Φ
([[

S1, T
]
∗, S2

]
∗

)
=

[[
Φ(S1),Φ(T )

]
∗,Φ(S2)

]
∗ =

n∑
i=1

Φ
([[

S1, Ai

]
∗, S2

]
∗

)
, (2.2)

and

Φ
([[

T, S1

]
∗, S2

]
∗

)
=

[[
Φ(T ),Φ(S1)

]
∗,Φ(S2)

]
∗ =

n∑
i=1

Φ
([[

Ai, S1

]
∗, S2

]
∗

)
. (2.3)

Claim 1. We have Φ(0) = 0.
For every A ∈ A, we have

Φ(0) = Φ
([[

0, A
]
∗, A

]
∗

)
=

[[
Φ(0),Φ(A)

]
∗,Φ(A)

]
∗.

Since Φ is surjective, there exists A ∈ A such that Φ(A) = 0. So Φ(0) = 0.
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By Lemma 1.1, there exists a projection P such that P = 0 and P = I. Let
P1 = P and P2 = I − P . Denote Aij = PiAPj. Then A =

∑2
i,j=1Aij. In the

remainder of this article, when we write Aij it indicates that Aij ∈ Aij.

Claim 2. For every A12 ∈ A12, B21 ∈ A21, we have

Φ(A12 +B21) = Φ(A12) + Φ(B21).

Choose T =
∑2

i,j=1 Tij ∈ A such that

Φ(T ) = Φ(A12) + Φ(B21).

Since [[
i(P2 − P1), I

]
∗, A12

]
∗ =

[[
i(P2 − P1), I

]
∗, B21

]
∗ = 0,

it follows from (2.1) and Claim 1 that

Φ
([[

i(P2 − P1), I
]
∗, T

]
∗

)
= 0.

From this, we get [[i(P2 − P1), I]∗, T ]∗ = 0. So T11 = T22 = 0.
Since [[A12, P1]∗, I]∗ = 0, it follows from (2.3) and Claim 1 that

Φ
([[

T, P1

]
∗, I

]
∗

)
= Φ

([[
B21, P1

]
∗, I

]
∗

)
.

By the injectivity of Φ, we obtain

2(TP1 − P1T
∗) =

[[
T, P1

]
∗, I

]
∗ =

[[
B21, P1

]
∗, I

]
∗ = 2(B21 −B∗

21).

Hence T21 = B21. Similarly, T12 = A12, proving the claim.

Claim 3. For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22, we have

Φ(A11 +B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21)

and

Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Let T =
∑2

i,j=1 Tij ∈ A be such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21).

It follows from (2.1) and Claim 2 that

Φ
(
2i(P2T + TP2)

)
= Φ

([[
iP2, I

]
∗, T

]
∗

)
= Φ

([[
iP2, I

]
∗, A11

]
∗

)
+ Φ

([[
iP2, I

]
∗, B12

]
∗

)
+ Φ

([[
iP2, I

]
∗, C21

]
∗

)
= Φ(2iB12) + Φ(2iC21)

= Φ
(
2i(B12 + C21)

)
.

Thus P2T + TP2 = B12 + C21, which implies that T22 = 0, T12 = B12, and
T21 = C21. Now we get T = T11 +B12 + C21.

Since [[
i(P2 − P1), I

]
∗, B12

]
∗ =

[[
i(P2 − P1), I

]
∗, C21

]
∗ = 0,
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it follows from (2.1) that

Φ
([[

i(P2 − P1), I
]
∗, T

]
∗

)
= Φ

([[
i(P2 − P1), I

]
∗, A11

]
∗

)
,

from which we get T11 = A11. Consequently, Φ(A11 + B12 + C21) = Φ(A11) +
Φ(B12) + Φ(C21).

Similarly, we can get that Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Claim 4. For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22, we have

Φ(A11 +B12 + C21 +D22) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

Let T =
∑2

i,j=1 Tij ∈ A be such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

It follows from (2.1) and Claim 3 that

Φ(2iP1T + 2iTP1) = Φ
([[

iP1, I
]
∗, T

]
∗

)
= Φ

([[
iP1, I

]
∗, A11

]
∗

)
+ Φ

([[
iP1, I

]
∗, B12

]
∗

)
+ Φ

([[
iP1, I

]
∗, C21

]
∗

)
+ Φ

([[
iP1, I

]
∗, D22

]
∗

)
= Φ(4iA11) + Φ(2iB12) + Φ(2iC21)

= Φ(4iA11 + 2iB12 + 2iC21).

Thus

P1T + TP1 = 2A11 +B12 + C21,

and then T11 = A11, T12 = B12, and T21 = C21.
Similarly, we can get

Φ(2iP2T + 2iTP2) = Φ(4iD22 + 2iB12 + 2iC21).

From this, we get T22 = D22, proving the claim.

Claim 5. For every Cjk, Djk ∈ Ajk, 1 ≤ j 6= k ≤ 2, we have

Φ(Cjk +Djk) = Φ(Cjk) + Φ(Djk).

For every Ajk, Bjk ∈ Ajk, since[[ i
2
I, Pj + Ajk

]
∗
, Pk +Bjk

]
∗
= i(Ajk +Bjk) + i(A∗

jk) + i(BjkA
∗
jk),

we get from Claim 4 that

Φ
(
i(Ajk +Bjk)

)
+ Φ(iA∗

jk) + Φ
(
i(BjkA

∗
jk)

)
= Φ

([[ i
2
I, Pj + Ajk

]
∗
, Pk +Bjk

]
∗

)
=

[[
Φ
( i

2
I
)
,Φ(Pj + Ajk)

]
∗
,Φ(Pk +Bjk)

]
∗

=
[[
Φ
( i

2
I
)
,Φ(Pj) + Φ(Ajk)

]
∗
,Φ(Pk) + Φ(Bjk)

]
∗

=
[[
Φ
( i

2
I
)
,Φ(Pj)

]
∗
,Φ(Pk)

]
∗
+
[[
Φ
( i

2
I
)
,Φ(Pj)

]
∗
,Φ(Bjk)

]
∗
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+
[[
Φ
( i

2
I
)
,Φ(Ajk)

]
∗
,Φ(Pk)

]
∗

+
[[
Φ
( i

2
I
)
,Φ(Ajk)

]
∗
,Φ(Bjk)

]
∗

= Φ(iBjk) + Φ
(
i(Ajk + A∗

jk)
)
+ Φ

(
i(BjkA

∗
jk)

)
= Φ(iBjk) + Φ(iAjk) + Φ(iA∗

jk) + Φ
(
i(BjkA

∗
jk)

)
,

which implies that Φ(i(Ajk + Bjk)) = Φ(iBjk) + Φ(iAjk). Let Ajk = −iCjk and
Bjk = −iDjk. Then

Φ(Cjk +Djk) = Φ
(
i(Ajk +Bjk)

)
= Φ(iBjk) + Φ(iAjk) = Φ(Cjk) + Φ(Djk).

Claim 6. For every Ajj, Bjj ∈ Ajj, 1 ≤ j ≤ 2, we have

Φ(Ajj +Bjj) = Φ(Ajj) + Φ(Bjj).

Let T =
∑2

i,j=1 Tij ∈ A be such that

Φ(T ) = Φ(Ajj) + Φ(Bjj).

For 1 ≤ j 6= k ≤ 2, it follows from (2.1) that

Φ
([[

iPk, I
]
∗, T

]
∗

)
= Φ

([[
iPk, I

]
∗, Ajj

]
∗

)
+ Φ

([[
iPk, I

]
∗, Bjj

]
∗

)
= 0.

Hence PkT + TPk = 0, implying that Tjk = Tkj = Tkk = 0. Now we get T = Tjj.
For every Cjk ∈ Ajk, j 6= k, it follows from (2.2) and Claim 5 that

Φ(2iTjjCjk) = Φ
([[

iPj, Tjj

]
∗, Cjk

]
∗

)
= Φ

([[
iPj, Ajj

]
∗, Cjk

]
∗

)
+ Φ

([[
iPj, Bjj

]
∗, Cjk

]
∗

)
= Φ(2iAjjCjk) + Φ(2iBjjCjk)

= Φ
(
2i(AjjCjk +BiiCjk)

)
.

Hence

(Tjj − Ajj −Bjj)Cjk = 0

for all Cjk ∈ Ajk; that is, (Tjj −Ajj −Bjj)CPj = 0 for all C ∈ A. It follows from
Lemma 1.2 that Tjj = Ajj +Bjj, proving the claim.

Claim 7. We have Φ is additive.

Let A =
∑2

i,j=1 Aij, B =
∑2

i,j=1Bij ∈ A. By Claims 4, 5, and 6, we have

Φ(A+B) = Φ
( 2∑
i,j=1

Aij +
2∑

i,j=1

Bij

)
= Φ

( 2∑
i,j=1

(Aij +Bij)
)

=
2∑

i,j=1

Φ(Aij +Bij) =
2∑

i,j=1

Φ(Aij) +
2∑

i,j=1

Φ(Bij)

= Φ
( 2∑
i,j=1

Aij

)
+ Φ

( 2∑
i,j=1

Bij

)
= Φ(A) + Φ(B).

�
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3. Main result

Our main result in this paper reads as follows.

Theorem 3.1. Let A and B be two von Neumann algebras, one of which has
no central abelian projections. Suppose that a bijective map Φ : A → B satisfies
Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗,Φ(C)]∗ for all A,B,C ∈ A. Then the following
statements hold:

(1) Φ(I) is a self-adjoint central element in B with Φ(I)2 = I;
(2) let φ(A) = Φ(I)Φ(A) for all A ∈ A; then there exists a central projection

E ∈ A such that the restriction of φ to AE is a linear ∗-isomorphism and
the restriction of φ to A(I − E) is a conjugate linear ∗-isomorphism.

The proof of Theorem 3.1 will be organized into several claims. First, note that
Φ is additive. Indeed, if A has no central abelian projections, then Theorem 2.1
assures that Φ is additive. If B has no central abelian projections, note that
Φ−1 : B → A is a bijection and preserves the skew Lie triple product. Applying
Theorem 2.1 to Φ−1, we know that Φ−1 (and hence Φ) is additive. In what follows,
without loss of generality, we assume that B has no central abelian projections.

Claim 1. We have the following:

(1) Φ(I)2 = I and Φ(I) is a self-adjoint central element in B;
(2) Φ(iI)2 = −I and Φ(iI) is a conjugate self-adjoint central element in B;
(3) Φ(A∗) = Φ(A)∗ for all A ∈ A;
(4) Φ(Z(A)) = Z(B).

Proof. Let A ∈ A be arbitrary. Since Φ is surjective, there exists B ∈ A such
that Φ(B) = I. Then

0 = Φ
([[

I, A
]
∗, B

]
∗

)
=

[[
Φ(I),Φ(A)

]
∗, I

]
∗

= Φ(I)Φ(A)− Φ(A)Φ(I)∗ − Φ(A)∗Φ(I)∗ + Φ(I)Φ(A)∗

holds true for all A ∈ A. That is,

Φ(I)
(
Φ(A) + Φ(A)∗

)
=

(
Φ(A) + Φ(A)∗

)
Φ(I)∗

holds true for all A ∈ A. So Φ(I)B = BΦ(I)∗ holds true for all B = B∗ ∈ B.
Since for every B ∈ B, B = B1 + iB2 with B1 =

B+B∗

2
and B2 =

B−B∗

2i
, it follows

that Φ(I)B = BΦ(I)∗ holds true for all B ∈ B. It follows from Lemma 1.3 that
Φ(I)∗ = Φ(I) ∈ Z(B).

For all A ∈ A, since Φ(I) is a self-adjoint central element, then

2Φ(A− A∗) = Φ
([[

A, I
]
∗, I

]
∗

)
=

[[
Φ(A),Φ(I)

]
∗,Φ(I)

]
∗ (3.1)

= 2Φ(I)2
(
Φ(A)− Φ(A)∗

)
.

Consequently, for every A = −A∗ ∈ A,

Φ(A) = Φ(I)2
(
Φ
(A
2

)
− Φ

(A
2

)∗)
(3.2)
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which ensures that Φ(A) = −Φ(A)∗. Note that Φ−1 has the same properties as Φ,
and note that we have Φ preserving the conjugate self-adjoint elements in both
directions (i.e., A = −A∗ if and only if Φ(A) = −Φ(A)∗). It follows from the
additivity of Φ and (3.2) that Φ(A) = Φ(I)2Φ(A) for all A = −A∗ ∈ A, and then
B = Φ(I)2B for all B = −B∗ ∈ B. For every B ∈ B, we have B = B1 + iB2,
where B1 = B−B∗

2
and B2 = B+B∗

2i
are conjugate self-adjoint elements. Then

B = Φ(I)2B for all B ∈ B. So Φ(I)2 = I, which, together with (3.1) and the
additivity of Φ, implies that Φ(A∗) = Φ(A)∗ for all A ∈ A.

Let Z ∈ Z(A) be arbitrary. For every A = A∗ ∈ A,

0 = Φ
([[

A,Z
]
∗, C

]
∗

)
=

[[
Φ(A),Φ(Z)

]
∗,Φ(C)

]
∗

holds true for all C ∈ A. It follows from Lemma 1.3 that[
Φ(A),Φ(Z)

]
∗ ∈ Z(B).

Note that we have shown that Φ preserves star operator. Hence[
Φ(A),Φ(Z)

]
= Φ(A)Φ(Z)− Φ(Z)Φ(A) ∈ Z(B).

By the Kleinecke–Shirokov theorem (see [6]), [Φ(A),Φ(Z)] is quasinilpotent, and
therefore, being central, is zero. Then BΦ(Z) = Φ(Z)B holds true for all B =
B∗ ∈ B. Thus Φ(Z)B = BΦ(Z) holds true for all B ∈ B. Hence Φ(Z) ∈ Z(B).
Applying the similar process to Φ−1, we get Φ(Z(A)) = Z(B).

Note that Φ(iI) ∈ Z(B) and that Φ(iI)∗ = −Φ(iI). Then

−4Φ(I) = Φ
([[

iI, I
]
∗, iI

]
∗

)
=

[[
Φ(iI),Φ(I)

]
∗,Φ(iI)

]
∗ = 4Φ(I)Φ(iI)2.

So Φ(iI)2 = −I. �

Now, defining a map φ : A → B by φ(A) = Φ(I)Φ(A) for all A ∈ A, it is easy
to see that φ has the following properties.

Claim 2. The following hold:

(1) φ is an additive bijection and satisfies

φ
([[

A,B
]
∗, C

]
∗

)
=

[[
φ(A), φ(B)

]
∗, φ(C)

]
∗

for all A,B,C ∈ A;
(2) φ(I) = I, φ(iI)2 = −I and φ(iI) is conjugate self-adjoint central element

in B;
(3) φ(A∗) = φ(A)∗ for all A ∈ A;
(4) φ(Z(A)) = Z(B).

Claim 3. We have that P is a projection in A if and only if φ(P ) is a projection
in B.

Proof. To prove the necessity, we suppose that P is a projection in A. On the
one hand, we have

φ(iP ) =
1

4
φ
([[

iI, I
]
∗, P

]
∗

)
=

1

4

[[
φ(iI), I

]
∗, φ(P )

]
∗ = φ(iI)φ(P ).
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On the other hand, we also have

φ(iP ) =
1

4
φ
([
[iP, I]∗, P

]
∗

)
=

1

4

[[
φ(iP ), I

]
∗, φ(P )

]
∗ = φ(iI)φ(P )2.

Hence φ(iI)(φ(P ) − φ(P )2) = 0. Since φ(iI)2 = −I, we get φ(P ) = φ(P )2.
Together with part (3) of Claim 2, this implies that φ(P ) is a projection in B.

So far we have established the necessity. Note that the preceding proof does
not use the condition that B has no central abelian projections. Therefore, the
previous result can apply to φ−1. Now, if φ(P ) is a projection in B, then P =
φ−1(φ(P )) is a projection in A, proving the sufficiency. �

Since B has no central abelian projections, by Lemma 1.1 there exists a pro-
jection Q1 in B such that Q1 = 0 and Q1 = I. Then by Claim 3, P1 = φ−1(Q1)
is a projection in A. Set P2 = I − P1 and set Q2 = I −Q1. Denote Aij = PiAPj

and Bij = QiBQj. Then A =
∑2

i,j=1Aij and B =
∑2

i,j=1 Bij.

Claim 4. We have φ(Aij) = Bij, φ(Aii) ⊆ Bii, 1 ≤ i 6= j ≤ 2.

Proof. Let A12 be an arbitrary element in A12. Then from

−2φ(A12) = φ
([[

iI, P1

]
∗, iA12

]
∗

)
=

[[
φ(iI), Q1

]
∗, φ(iA12)

]
∗

= 2φ(iI)
(
Q1φ(iA12) + φ(iA12)Q1

)
,

we get that Q2φ(A12)Q2 = 0; and from

−2φ(A12) = φ
([[

iI, P2

]
∗, iA12

]
∗

)
=

[[
φ(iI), Q2

]
∗, φ(iA12)

]
∗

= 2φ(iI)
(
Q2φ(iA12) + φ(iA12)Q2

)
,

we get Q1φ(A12)Q1 = 0. Hence φ(A12) = B12 + B21 for some B12 ∈ B12 and
B21 ∈ B21.

Now to show that φ(A12) ⊆ B12, we have to show that B21 = 0. This can be
seen from

0 = φ
([[

iI, A12

]
∗, P1

]
∗

)
=

[[
φ(iI), φ(A12)

]
∗, Q1

]
∗

= 2φ(iI)(B21 +B∗
21).

So Φ(A12) ⊆ B12. Hence by considering φ−1, we have Φ(A12) = B12. Similarly, we
have Φ(A21) = B21.

Let Aii be an arbitrary element in Aii. Then for j 6= i, we have

0 = φ
([[

iI, Pj

]
∗, Aii

]
∗

)
=

[[
φ(iI), Qj

]
∗, φ(Aii)

]
∗ = 2φ(iI)

(
Qjφ(Aii) + φ(Aii)Qj

)
,

which implies that Qiφ(Aii)Qj = Qjφ(Aii)Qi = Qjφ(Aii)Qj = 0. So φ(Aii) =
Qiφ(Aii)Qi ⊆ Bii. �

Claim 5. We have that φ is multiplicative.
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Proof. Let A and B be in A. Write A =
∑2

i,j=1 Aij and B =
∑2

i,j=1 Bij, where

Aij, Bij ∈ Aij. To show φ(AB) = φ(A)φ(B), by the additivity of φ, it suffices to
show that φ(AijBkl) = φ(Aij)φ(Bkj) for all i, j, k, l ∈ {1, 2}. Since if j 6= k, then
φ(AijBkl) = φ(Aij)φ(Bkj) = 0 by Claim 4, we only need to consider the cases
with j = k.

First of all, φ(B12)φ(A11)
∗ = 0, which implies that

φ(A11B12)− φ(B∗
12A

∗
11) = φ

([[
A11, B12

]
∗, I

]
∗

)
=

[[
φ(A11), φ(B12)

]
∗, I

]
∗

= φ(A11)φ(B12)− φ(B12)
∗φ(A11)

∗.

Thus φ(A11B12) = φ(A11)φ(B12) by Claim 4. Similarly, we can prove that
φ(A22B21) = φ(A22)φ(B21).

For D12 ∈ B12, we have C12 = φ−1(D12) ∈ A12 by Claim 4. Thus

φ(A11B11)D12 = φ(A11B11C12) = φ(A11)φ(B11C12) = φ(A11)φ(B11)D12

for all D12 ∈ B12. Since Q2 = I, by Lemma 1.2 and Claim 4, φ(A11B11) =
φ(A11)φ(B11). Similarly, we can prove that φ(A22B22) = φ(A22)φ(B22).

By Claim 4, we have

φ(A12B21)− φ(B21A12) = φ
([[

A12, I
]
∗, B21

]
∗

)
=

[[
φ(A12), I

]
∗, φ(B21)

]
∗

= φ(A12)φ(B21)− φ(B21)φ(A12).

Thus φ(A12B21) = φ(A12)φ(B21) and φ(A21B12) = φ(A21)φ(B12).
For D21 ∈ B21, we have C21 = φ−1(D21) ∈ A12. Thus

φ(A12B22)D21 = φ(A12B22C21) = φ(A12)φ(B22C21) = φ(A12)φ(B21)D21

for all D21 ∈ B21. Since we have Q1 = I, by Lemma 1.2 and Claim 4, φ(A12B22) =
φ(A12)φ(B22). Similarly, we can prove that φ(A21B11) = φ(A21)φ(B11). �

Claim 6. There is a central projection E ∈ A such that the restriction of φ to
AE is a linear ∗-isomorphism and the restriction of φ to A(I−E) is a conjugate
linear ∗-isomorphism.

Proof. For every rational number q, we have φ(qI) = qI. Indeed, since q is rational
number, there exist two integers r and s such that q = r

s
. Since φ(I) = I and φ

is additive, we get

φ(qI) = φ
(r
s
I
)
= rφ

(1
s
I
)
=

r

s
φ(I) = qI.

Now we show that φ is real linear. Let A be a positive element in A. Then
A = B2 for some self-adjoint element B ∈ A. It follows from Claim 5 that
φ(A) = φ(B)2. By Claim 2(3), we get that φ(B) is self-adjoint. So φ(A) is positive.
This shows that φ preserves positive elements. Let λ ∈ R. Choose sequence {an}
and {bn} of rational numbers such that an ≤ λ ≤ bn for all n and limn→∞ an =
limn→∞ bn = λ. It follows from

anI ≤ λI ≤ bnI
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that

anI ≤ φ(λI) ≤ bnI.

Taking the limit, we get φ(λI) = λI. Hence for all A ∈ A,

φ(λA) = φ
(
(λI)A

)
= φ(λI)φ(A) = λφ(A).

Hence φ is real linear.

Let F = I−iφ(iI)
2

. Then it is easy to verify that F is a central projection in B
by Claim 2(2). Since φ(iI) = i(2F − I), we have

Fφ(iI) = iFand(I − F )φ(iI) = i(F − I).

Let E = φ−1(F ). Then by Claim 2(4) and Claim 3, E is a central projection in A.
Moreover, for A ∈ A, the following hold:

φ(iAE) = φ(A)φ(E)φ(iI) = iφ(A)F = iφ(AE),

and

φ
(
iA(I − E)

)
= φ(A)φ(I − E)φ(iI) = −iφ(A)(I − F ) = −iφ

(
A(I − E)

)
.

That is, the restriction of φ to AE is linear and the restriction of φ to A(I −E)
is conjugate linear. This, together with Claim 2 and Claim 5, shows Claim 6. �
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