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Abstract. Let L̂p(M) be the space of bounded Lp(M)-quasimartingales.

We prove that, with equivalent norms, (L̂p0(M), L̂p1(M))θ,p = L̂p(M), where

1 < p0, p1 ≤ ∞, 1 < θ < 1, and 1
p = 1−θ

p0
+ θ

p1
. We also prove that, for 1 < p <

q < ∞, (B̂MOc(M), Ĥc
p(M)) p

q ,q
= Ĥc

q(M) and (B̂MOr(M), Ĥr
p(M)) p

q ,q
=

Ĥr
q(M), where Ĥp(M) and B̂MO(M) are, respectively, the Hardy space and

the bounded mean oscillation space of noncommutative quasimartingales.

1. Introduction

Inspired by quantum mechanics and probability, noncommutative probability
has become an independent field of mathematical research. Today, many of the
classical martingale inequalities have been transferred to the noncommutative set-
ting. These include, in particular, the Doob maximal inequality, the Burkholder–
Gundy inequality, several weak-type (1, 1) inequalities, and the Gundy decompo-
sition.

As for the interpolation between the spaces of noncommutative martingales,
we recall the formula on real and complex interpolation of noncommutative
Lp-spaces. More precisely, for 0 < θ < 1 and 1 ≤ p0, p1 ≤ ∞, we have(

Lp0(M), Lp1(M)
)
θ,p

= Lp(M) and
(
Lp0(M), Lp1(M)

)
θ
= Lp(M),
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where 1
p
= 1−θ

p0
+ θ

p1
. The real interpolation results between bounded mean oscil-

lation (BMO) spaces and Lp-spaces (resp., Hardy spaces) were discussed by M.
Musat [3]. In this paper, we study interpolation in the noncommutative quasi-
martingale setting. We first prove a real interpolation theorem between the spaces

L̂p(M) of bounded Lp(M)-quasimartingales. And then we prove several real

interpolation theorems between B̂MO(M) and Ĥp(M), where B̂MO(M) and

Ĥp(M) are, respectively, the BMO space and the Hardy space of noncommuta-
tive quasimartingales.

2. Preliminaries

Let M be a von Neumann algebra acting on a Hilbert space H, and let τ be
a normal faithful trace on M with τ(1) = 1. We call (M, τ) a noncommutative
probability space. For 1 ≤ p ≤ ∞, let Lp(M) be the associated noncommutative
Lp-space. Recall that, for 1 ≤ p < ∞, the norm on Lp(M) is defined by

‖x‖p = τ
(
|x|p

) 1
p , x ∈ Lp(M),

where |x| = (x∗x)
1
2 is the usual modulus of x. Note that if p = ∞, then L∞(M)

is just M with the usual operator norm.
The noncommutative column spaces Lp(M; lc2) and the row spaces Lp(M; lr2)

were introduced in [4]. For 1 ≤ p < ∞, define Lp(M; lc2) (resp., Lp(M; lr2)) as the
completion of the family of all finite sequences x = (xn)n≥1 in Lp(M) under the
norm

‖x‖Lp(M;lc2)
=

∥∥∥(∑
n

|xn|2
) 1

2
∥∥∥
p

(
resp., ‖x‖Lp(M;lr2)

=
∥∥∥(∑

n

|x∗
n|2

) 1
2
∥∥∥
p

)
.

Let us recall the general setup for noncommutative martingales. Let (Mn)n≥1

be an increasing filtration of von Neumann subalgebras of M such that the union
of Mn’s is weak

∗-dense in M and En (with E0 = 0) is the conditional expectation
with respect to Mn. A sequence x = (xn)n≥1 is said to be adapted if xn ∈ L1(Mn)
for all n ≥ 1 and predictable if xn ∈ L1(Mn−1). A noncommutative martingale
with respect to the filtration (Mn)n≥1 is a sequence x = (xn)n≥1 in L1(M) such
that

En(xn+1) = xn for all n ≥ 1.

If, additionally, x = (xn)n≥1 ⊂ Lp(M) for some 1 ≤ p ≤ ∞, we call x an
Lp(M)-martingale. In this case, we set ‖x‖p = supn ‖xn‖p. If ‖x‖p < ∞, then x
is called a bounded Lp(M)-martingale. We refer to [5] for more information on
noncommutative martingales.

We briefly recall some basic notions concerning the real method of interpola-
tion. Let (X0, X1) be a compatible couple of quasi-Banach spaces. ItsK-functional
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is defined by

Kt(x;X0, X1) = inf
{
‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
for x ∈ X0 +X1 and t > 0. Let 0 < θ < 1 and 0 < q ≤ ∞. Set

‖x‖θ,q =
(∫ ∞

0

[
t−θKt(x;X0, X1)

]q dt
t

) 1
q
.

(The usual modification should be made for q = ∞.) Then the real interpolation
space (X0, X1)θ,q is defined as (X0, X1)θ,q = {x ∈ X0+X1 : ‖x‖θ,q < ∞} equipped
with the norm ‖ · ‖θ,q. Another method of interpolation is complex interpolation.
We refer to J. Bergh and J. Löfström [1] for more information.

In this paper, we focus on noncommutative quasimartingales, which are the gen-
eralizations of noncommutative martingales and the noncommutative analogues
of classical quasimartingales.

Definition 2.1. Let 1 ≤ p ≤ ∞. An adapted sequence x = (xn)n≥1 in L1(M) is
called a p-quasimartingale with respect to (Mn)n≥1 if

∞∑
n=1

∥∥En−1(dxn)
∥∥p

p
< ∞, (2.1)

where dxn = xn − xn−1 (with dx1 = x1). If, in addition, xn ∈ Lp(M) (n ≥ 1), we
call x an Lp(M)-quasimartingale. In this case, we set

‖x‖p := sup
n

‖yn‖p +
( ∞∑
n=1

∥∥En−1(dxn)
∥∥p

p

) 1
p
,

where yn =
∑n

k=1(dxk − Ek−1(dxk)). If ‖x‖p < ∞, then x is called a bounded

Lp(M)-quasimartingale. The noncommutative quasimartingale space L̂p(M) is
defined as the space of all bounded Lp(M)-quasimartingales and is equipped
with the norm ‖ · ‖p.

Remark 2.2. Another kind of p quasimartingale is defined by replacing (2.1) with

∞∑
n=1

∥∥En−1(dxn)
∥∥
p
< ∞.

The quasimartingale defined in Definition 2.1 is more general, which is more
suitable for the study of interpolation theorems.

A basic fact with respect to quasimartingales is that each p quasimartingale
can be decomposed as a sum of a martingale and a predicable quasimartingale,
which we call Doob’s decomposition. Doob’s decomposition plays a key role in
this paper.

Lemma 2.3 (Doob’s decomposition). Let 1 ≤ p ≤ ∞, and let x = (xn)n≥1

be a p-quasimartingale. Then x can be uniquely decomposed into xn = yn + zn
(n ≥ 1), where y = (yn)n≥1 is a martingale and z = (zn)n≥1 is a predictable
p-quasimartingale with z1 = 0.
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Proof. We define two sequences y = (yn)n≥1 and z = (zn)n≥1 by

yn =
n∑

k=1

(
dxk − Ek−1(dxk)

)
and zn =

n∑
k=1

(
Ek−1(dxk)

)
. (2.2)

Then xn = yn+ zn is the desired decomposition. The proof is similar to the proof
of Lemma 2.2 in [2]. We omit the details. �

The space Fp(M) defined in the following will play an important role later in
the paper.

Definition 2.4. For 1 ≤ p ≤ ∞, let Fp(M) be the subspace of lp(Lp(M)) of all
sequences dx = (dxn)n≥1 such that x = (xn)n≥1 is a predictable p-quasimartingale
with x1 = 0, equipped with the norm

‖dx‖Fp(M) := ‖dx‖lp(Lp(M)) =
( ∞∑
n=1

∥∥En−1(dxn)
∥∥p

p

) 1
p
.

3. Main results

Our first result in this section is concerned with the real interpolation between

the spaces L̂p(M) of bounded Lp(M)-quasimartingales. Later, we use p′ to denote
the conjugate index of p for 1 ≤ p ≤ ∞.

Theorem 3.1. Let 1 < p0, p1 ≤ ∞, 1 < θ < 1, and 1
p
= 1−θ

p0
+ θ

p1
. Then(

L̂p0(M), L̂p1(M)
)
θ,p

= L̂p(M) (with equivalent norms). (3.1)

For the proof of Theorem 3.1, we will need the following lemmas.

Lemma 3.2 (see [1]). Let (X0, X1) be a couple of Banach spaces such that X0∩X1

is dense in both X0 and X1. Assume that 1 ≤ q < ∞ and 0 < θ < 1. Then

(X0, X1)
∗
θ,q = (X∗

0 , X
∗
1 )θ,q′ (with equivalent norms).

Lemma 3.3. Let 1 ≤ p < ∞. Then L̂p(M)∗ = L̂p′(M) with equivalent norms.
The duality is given by

(x, u) = τ(y∞v∞) +
∞∑
n=1

τ(dzn dwn), x ∈ L̂p(M), u ∈ L̂p′(M),

where xn = yn + zn and un = vn + wn are Doob’s decompositions of x and u,
respectively; y∞ is the limit of (yn)n≥1 in Lp(M); and v∞ is the limit of (vn)n≥1

in Lp′(M).

Proof. Let u = (un)n≥1 ∈ L̂p′(M). We define a linear functional on L̂p(M) by

`u(x) = τ(y∞v∞) +
∞∑
n=1

τ(dzn dwn), x = (xn)n≥1 ∈ L̂p(M),
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where xn = yn + zn and un = vn + wn are Doob’s decompositions of x and u,
respectively; y∞ is the limit of (yn)n≥1 in Lp(M); and v∞ is the limit of (vn)n≥1

in Lp′(M). Then, by Hölder’s inequality, we have∣∣`u(x)∣∣ ≤ ‖y∞‖p‖v∞‖p′ +
( ∞∑
n=1

‖dzn‖pp
) 1

p
( ∞∑
n=1

‖dwn‖p
′

p′

) 1
p′

≤
(
sup
n

‖yn‖p +
( ∞∑
n=1

‖dzn‖pp
) 1

p
)(

sup
n

‖vn‖p′ +
( ∞∑
n=1

‖dwn‖p
′

p′

) 1
p′
)

= ‖x‖p‖u‖p′ .

Thus `u(x) is continuous on L̂p(M) and ‖`u‖ ≤ ‖u‖p′ .
We pass to the converse inclusion. Let ` ∈ L̂p(M)∗, and let `1 be the restriction

of ` on Lp(M). Then there exists an element v ∈ Lp′(M) with ‖v‖p′ ≤ ‖`‖ such
that

`1(a) = τ(av), a ∈ Lp(M). (3.2)

On the other hand, we define a functional on Fp(M) by

`2(db) = `(b), db = (dbn)n≥1 ∈ Fp(M).

Then `2 is a continuous linear functional on Fp(M) and ‖`2‖ ≤ ‖`‖ since∣∣`2(db)∣∣ ≤ ‖`‖‖b‖L̂p(M) = ‖`‖‖db‖lp(Lp(M)) = ‖`‖‖db‖Fp(M).

By the Hahn–Banach theorem, `2 extends to a functional on lp(Lp(M)). Since
(lp(Lp(M)))∗ = lp′(Lp′(M)), by the representation theorem there exists a se-
quence w′ = (w′

n)n≥1 ∈ lp′(Lp′(M)) such that

`2(s) =
∞∑
n=1

τ(w′
nsn)

(
s = (sn)n≥1 ∈ lp

(
Lp(M)

))
(3.3)

and ‖w′‖lp′ (Lp′ (M)) ≤ ‖`2‖. Set w1 = 0 and wn =
∑n

k=1 Ek−1(w
′
k) (n ≥ 2). For any

db = (dbn)n≥1 ∈ Fp(M), noting that db = (dbn)n≥1 is predictable, it follows from
(3.3) that

`2(db) =
∞∑
n=1

τ
(
En−1(w

′
ndbn)

)
=

∞∑
n=1

τ(dwn dbn). (3.4)

It is easy to see that w = (wn)n≥1 is a predictable p′-quasimartingale with
w1 = 0 and( ∞∑

n=1

∥∥En−1(dwn)
∥∥p′

p′

) 1
p′ ≤

( ∞∑
n=1

‖w′
n‖

p′

p′

) 1
p′
= ‖w′‖lp′ (Lp′ (M)) ≤ ‖`2‖.

Set un = vn+wn (n ≥ 1), where vn = En(v) (n ≥ 1). Then u = (un)n≥1 ∈ L̂p′(M)
and

‖u‖L̂p′ (M) = ‖v‖p′ +
( ∞∑
n=1

∥∥En−1(dwn)
∥∥p′

p′

) 1
p′ ≤ 2‖`‖.
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For any x = (xn)n≥1 ∈ L̂p(M), let xn = yn + zn (n ≥ 1) be its Doob’s de-
composition. Noting that y = (yn)n≥1 is a bounded Lp(M)-martingale and that
dz = (dzn)n≥1 ∈ Fp(M), it follows from (3.2) and (3.4) that `(x) = `(y) + `(z) =
τ(y∞v∞) +

∑∞
n=1 τ(dwn dzn). �

Our last lemma concerns the real interpolation of Fp(M).

Lemma 3.4. Let 1 ≤ p0, p1 ≤ ∞, 1 < θ < 1, and 1
p
= 1−θ

p0
+ θ

p1
. Then(

Fp0(M), Fp1(M)
)
θ,p

= Fp(M) (with equivalent norms). (3.5)

Proof. Notice that Fp(M) is 1-complemented in lp(Lp(M)) via the projection

P :

{
lp(Lp(M)) −→ Fp(M),

(an)n≥1 −→ (En−1(an))n≥1.

The fact that lp(Lp(M)) forms an interpolation scale with respect to the real
interpolation yields the required result. �

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1.

Case 1: 1 < p0, p1 < ∞. Let x ∈ (L̂p0(M), L̂p1(M))θ,p, and let x = x0 + x1

be a decomposition with x0 ∈ L̂p0(M) and x1 ∈ L̂p1(M). Let xk
n = ykn + zkn

(n ≥ 1) be the Doob’s decomposition of xk (k = 0, 1). Then yk = (ykn)n≥1 is a

bounded Lpk(M)-martingale and dzk = (dzkn)n≥1 ∈ Fpk(M). Let y = y0 + y1 and
z = z0 + z1. Then

Kt

(
y;Lp0(M), Lp1(M)

)
+Kt

(
dz;Fp0(M), Fp1(M)

)
≤ ‖y0‖Lp0 (M) + t‖y1‖Lp1 (M) + ‖dz0‖Fp0 (M) + t‖dz1‖Fp1 (M)

= ‖x0‖L̂p0 (M) + t‖x1‖L̂p1 (M).

Taking the infimum over all decompositions of x, we get

Kt

(
y;Lp0(M), Lp1(M)

)
+Kt

(
dz;Fp0(M), Fp1(M)

)
≤ Kt

(
x; L̂p0(M), L̂p1(M)

)
.

By the equality ‖x‖(X0,X1)θ,p = (
∫∞
0
[t−θKt(x;X0, X1)]

p dt
t
)
1
p , we get that

‖y‖(Lp0 (M),Lp1 (M))θ,p + ‖dz‖(Fp0 (M),Fp1 (M))θ,p ≤ 21−
1
p‖x‖(L̂p0 (M),L̂p1 (M))θ,p

.

Noting that (Lp0(M), Lp1(M))θ,p = Lp(M) and by Lemma 3.4, we obtain that

‖y‖p + ‖dz‖Fp(M) ≤ 21−
1
p‖x‖(L̂p0 (M),L̂p1 (M))θ,p

.

This means that ‖x‖L̂p(M) ≤ 21−
1
p‖x‖(L̂p0 (M),L̂p1 (M))θ,p

and that(
L̂p0(M), L̂p1(M)

)
θ,p

⊂ L̂p(M). (3.6)

Using (3.6) and Lemma 3.2, we have that

L̂p′(M)∗ ⊂
(
L̂p′0

(M), L̂p′1
(M)

)∗
θ,p′

=
(
L̂p′0

(M)∗, L̂p′1
(M)∗

)
θ,p
.
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By Lemma 3.3, we have that

L̂p(M) ⊂
(
L̂p0(M), L̂p1(M)

)
θ,p
. (3.7)

Putting (3.6) and (3.7) together, we obtain that(
L̂p0(M), L̂p1(M)

)
θ,p

= L̂p(M).

Case 2: 1 < p0 < p1 = ∞. Notice that (3.6) holds when p1 = 1 or p1 = ∞.
Then, by Lemma 3.2,

L̂p′(M)∗ ⊂
(
L̂p′0

(M), L̂1(M)
)∗
θ,p′

=
(
L̂p′0

(M)∗, L̂1(M)∗
)
θ,p
.

Using Lemma 3.3, we have that

L̂p(M) ⊂
(
L̂p0(M), L̂∞(M)

)
θ,p
.

Therefore,

L̂p(M) =
(
L̂p0(M), L̂∞(M)

)
θ,p
. �

By the connection between real and complex interpolation, we obtain a result
for complex interpolation.

Corollary 3.5. Let 1 < p0 < p1 < ∞, 0 < η < 1, and 1
p
= 1−η

p0
+ η

p1
. Then the

following holds with equivalent norms:(
L̂p0(M), L̂p1(M)

)
η
= L̂p(M).

Proof. Take p2 such that 1 < p2 < p0, and let θ0 = 1 − p2
p0
, θ1 = 1 − p2

p1
, and

θ = 1− p2
p
. Then 0 < θ0 < θ1 < 1 and θ = (1− η)θ0 + ηθ1. By Theorem 4.7.2 of

[1] on the connection between real and complex interpolation, we obtain((
L̂p2(M), L̂∞(M)

)
θ0,p0

,
(
L̂p2(M), L̂∞(M)

)
θ1,p1

)
η
=

(
L̂p2(M), L̂∞(M)

)
θ,p
.

Notice that 1−θ0
p2

= 1
p0
, 1−θ1

p2
= 1

p1
, and 1−θ

p2
= 1

p
. Using Theorem 3.1, we get that

(L̂p0(M), L̂p1(M))η = L̂p(M). �

The second part of this section is concerned with real interpolation between the

spaces B̂MO(M) and the Hardy spaces Ĥp(M) of noncommutative quasimartin-
gales. First, we introduce the Hardy spaces of noncommutative quasimartingales.

Definition 3.6. Let 1 ≤ p < ∞.

(1) The column Hardy space Ĥc
p(M) of noncommutative quasimartingales

is defined as the space of all Lp(M)-quasimartingales x = (xn)n≥1 such that
(dx)n≥1 ∈ Lp(M; lc2), equipped with the norm

‖x‖Ĥc
p(M) =

∥∥∥( ∞∑
n=1

|dyn|2
) 1

2
∥∥∥
p
+
( ∞∑
n=1

∥∥En−1(dxn)
∥∥p

p

) 1
p
,

where yn =
∑n

k=1(dxk − Ek−1(dxk)). Similarly, the row space Ĥr
p(M) is defined

as the space of all Lp(M)-quasimartingales x = (xn)n≥1 such that x∗ ∈ Ĥc
p(M),

equipped with the norm ‖x‖Ĥr
p(M) = ‖x∗‖Ĥc

p(M).
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(2) The space Ĥp(M) is defined as the sum space Ĥp(M) = Ĥc
p(M)+ Ĥr

p(M)

for 1 ≤ p < 2 and the intersection space Ĥp(M) = Ĥc
p(M) ∩ Ĥr

p(M) for
2 ≤ p < ∞.

Now we turn to the definition of the BMO space of quasimartingales B̂MO(M).
Recall that the dual space of H1(M) is BMO(M), which is defined in [4] as the
intersection space

BMO(M) = BMOc(M) ∩ BMOr(M),

where

BMOc(M) =
{
x ∈ L2(M) : ‖x‖BMOc(M) = sup

n

∥∥En(∣∣x− En−1(x)
∣∣2)∥∥1/2

∞

}
,

BMOr(M) =
{
x ∈ L2(M) : ‖x‖BMOr(M) = ‖x∗‖BMOc(M)

}
.

This leads us to consider the spaces defined in the following.

Definition 3.7. We define B̂MOc(M) as the space of all adaptable sequences
x = (xn)n≥1 which can be decomposed as x = y + z such that y ∈ BMOc(M)
and dz ∈ F∞(M), equipped with the norm

‖x‖
B̂MOc(M)

= ‖y‖BMOc(M) + sup
n

‖dzn‖∞. (3.8)

Similarly, the space B̂MOr(M) is defined as the space of all adaptable sequences

x = (xn)n≥1 such that x∗ = (x∗
n)n≥1 ∈ B̂MOc(M), equipped with the norm

‖x‖
B̂MOr(M)

= ‖x∗‖
B̂MOc(M)

. We define B̂MO(M) as the intersection space of

B̂MOc(M) and B̂MOr(M).

We are ready to state the following result.

Theorem 3.8. Let 1 < p < q < ∞. Then, with equivalent norms,(
B̂MOc(M), Ĥc

p(M)
)

p

q
,q
= Ĥc

q(M)

and (
B̂MOr(M), Ĥr

p(M)
)

p

q
,q
= Ĥr

q(M).

The following lemma is a key step toward the proof of Theorem 3.8.

Lemma 3.9.

(1) Let 1 < p < ∞. Then Ĥc
p(M)∗ = Ĥc

p′(M) and Ĥr
p(M)∗ = Ĥr

p′(M) with
equivalent norms.

(2) Ĥc
1(M)∗ = B̂MOc(M) and Ĥr

1(M)∗ = B̂MOr(M) with equivalent norms.

Proof. (1) Let u = (un)n≥1 ∈ Ĥc
p′(M), and let un = vn+wn (n ≥ 1) be its Doob’s

decomposition. Define a linear functional on Ĥc
p(M) by

`u(x) =
∞∑
n=1

τ(dv∗n dyn) +
∞∑
n=1

τ(dw∗
n dzn)

(
x ∈ Ĥc

p(M)
)
,
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where xn = yn + zn (n ≥ 1) is the Doob’s decomposition of x. Notice that the
series

∑
n dv∗n dyn converges in L1(M) and that∥∥∥ ∞∑

n=1

dv∗n dyn

∥∥∥
1
≤

∥∥∥( ∞∑
n=1

|dvn|2
) 1

2
∥∥∥
p′

∥∥∥( ∞∑
n

|dyn|2
) 1

2
∥∥∥
p
.

It follows that the series
∑

n τ(dv
∗
n dyn) converges and that∣∣∣ ∞∑

n=1

τ(dv∗n dyn)
∣∣∣ ≤ ∥∥∥ ∞∑

n=1

dv∗n dyn

∥∥∥
1
≤

∥∥∥( ∞∑
n=1

|dvn|2
) 1

2
∥∥∥
p′

∥∥∥( ∞∑
n=1

|dyn|2
) 1

2
∥∥∥
p
.

Then, by Hölder’s inequality,∣∣`u(x)∣∣ ≤ ∥∥∥( ∞∑
n=1

|dvn|2
) 1

2
∥∥∥
p′

∥∥∥( ∞∑
n=1

|dyn|2
) 1

2
∥∥∥
p
+
( ∞∑
n=1

‖dwn‖p
′

p′

) 1
p′
( ∞∑
n=1

‖dzn‖pp
) 1

p

≤
(∥∥∥( ∞∑

n=1

|dvn|2
) 1

2
∥∥∥
p′
+
( ∞∑
n=1

‖dwn‖p
′

p′

) 1
p′
)

×
(∥∥∥( ∞∑

n=1

|dyn|2
) 1

2
∥∥∥
p
+
( ∞∑
n=1

‖dzn‖pp
) 1

p
)

= ‖u‖Ĥc
p′ (M)‖x‖Ĥc

p(M).

Thus `u is continuous on Ĥc
p(M) and ‖`u‖ ≤ ‖u‖Ĥc

p′ (M).

We pass to the converse inclusion. Let ` ∈ Ĥc
p(M)∗. First, we restrict ` on

the subspace Hc
p(M). Since Hc

p(M)∗ = Hc
p′(M), there exists a sequence v =

(vn)n≥1 ∈ Hc
p′(M) such that

`(a) =
∞∑
n=1

τ(dv∗n dan)
(
a = (an)n≥1 ∈ Hc

p(M)
)
. (3.9)

Imitating the proof of Theorem 3.1, there exists a predictable quasimartingale

w = (wn)n≥1 in L̂p′(M) with w1 = 0 such that

`(b) =
∞∑
n=1

τ(dw∗
n dbn) (3.10)

for any db = (dbn)n≥1 ∈ Fp(M) and (
∑∞

n=1 ‖dwn‖p
′

p′)
1
p′ ≤ ‖`‖. Set un = vn + wn

(n ≥ 1). Then u = (un)n≥1 ∈ Ĥc
p′(M) and

‖u‖Ĥc
p′ (M) = ‖v‖Hc

p′ (M) +
( ∞∑
n=1

‖dwn‖p
′

p′

) 1
p′ ≤ 2‖`‖.

For any x = (xn)n≥1 ∈ Ĥc
p(M), let xn = yn + zn (n ≥ 1) be the Doob’s decom-

position of x. It follows from (3.9) and (3.10) that

`(x) = `(y) + `(z) =
∞∑
n=1

τ(dv∗n dyn) +
∞∑
n=1

τ(dw∗
n dzn).
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Therefore, this proves that Ĥc
p(M)∗ = Ĥc

p′(M). Passing to adjoint, we obtain the

identity Ĥr
p(M)∗ = Ĥr

p′(M).

(2) Let u = (un)n≥1 ∈ B̂MOc(M), and let un = vn + wn (n ≥ 1) be its

decomposition. Define a linear functional on Ĥc
1(M) by

`u(x) =
∞∑
n=1

τ(dv∗n dyn) +
∞∑
n=1

τ(dw∗
n dzn)

(
x ∈ Ĥc

1(M)
)
,

where xn = yn + zn (n ≥ 1) is the Doob’s decomposition of x. Notice that∣∣∣ ∞∑
n=1

τ(dv∗n dyn)
∣∣∣ ≤ √

2‖y‖Hc
1(M)‖v‖BMOc(M)

(see [4, Appendix]). Putting the preceding inequalities together, we obtain that

∣∣`u(x)∣∣ ≤ √
2‖y‖Hc

1(M)‖v‖BMOc(M) + sup
n

‖dwn‖∞
∞∑
n=1

‖dzn‖1

≤
√
2
(
‖y‖Hc

1(M) +
∞∑
n=1

‖dzn‖1
)(

‖v‖BMOc(M) + sup
n

‖dwn‖∞
)

=
√
2‖x‖Ĥc

1(M)‖u‖B̂MOc(M)
.

Thus `u ∈ Ĥc
1(M)∗ and ‖`u‖ ≤

√
2‖u‖

B̂MOc(M)
.

We pass to the converse inclusion. Let ` ∈ Ĥc
1(M)∗. First, we restrict ` on

the subspace Hc
1(M). Since Hc

1(M)∗ = BMOc(M), there exists a martingale
v = (vn)n≥1 ∈ BMOc(M) such that

`(s) =
∞∑
n=1

τ(dv∗n dsn)
(
s = (sn)n≥1 ∈ Hc

1(M)
)

(3.11)

and ‖v‖BMOc(M) ≤ ‖`‖. Similarly to the proof of (i), there exists u = (un)n≥1 ∈
B̂MOc(M) and ‖u‖

B̂MOc(M)
≤ 2‖`‖ such that

`(x) =
∞∑
n=1

τ(dv∗n dyn) +
∞∑
n=1

τ(dw∗
n dzn)

(
x ∈ Ĥc

1(M)
)
.

Therefore, this proves that H̃c
1(M)∗ = B̂MOc(M). Passing to adjoint, we obtain

the identity H̃r
1(M)∗ = B̂MOr(M). �

Proof of Theorem 3.8. Let x ∈ (B̂MOc(M), Ĥc
p(M)) p

q
,q, and let x = x0 + x1 be

a decomposition with x0 ∈ B̂MOc(M) and x1 ∈ Ĥc
p(M). Let x0

n = y0n + z0n
(n ≥ 1) be the decomposition as in (3.8). Then y0 = (y0n)n≥1 ∈ BMOc(M) and
dz0 = (dz0n)n≥1 ∈ F∞(M). Let x1

n = y1n+z1n (n ≥ 1) be the Doob’s decomposition
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of x1. Then y1 = (y1n)n≥1 ∈ Hc
p(M) and dz1 = (dz1n)n≥1 ∈ Fp(M). Let y = y0+y1

and z = z0 + z1. Then

Kt

(
y; BMOc(M),Hc

p(M)
)
+Kt

(
dz;F∞(M), Fp(M)

)
≤ ‖y0‖BMOc(M) + t‖y1‖Hc

p(M) + ‖dz0‖F∞(M) + t‖dz1‖Fp(M)

= ‖x0‖
B̂MOc(M)

+ t‖x1‖Ĥc
p(M).

Taking the infimum over all decompositions of x, we get

Kt

(
y; BMOc(M),Hc

p(M)
)
+Kt

(
dz;F∞(M), Fp(M)

)
≤ Kt

(
x; B̂MOc(M), Ĥc

p(M)
)
.

By the definition of ‖x‖(A0,A1) p
q ,q
, we get that

‖y‖(BMOc(M),Hc
p(M)) p

q ,q
+ ‖dz‖

(F∞(M),Fp(M)) p
q ,q

≤2
1− 1

p ‖x‖
(B̂MOc(M),Ĥc

p(M)) p
q ,q

.

By the equality (BMOc(M),Hc
p(M)) p

q
,q = Hc

q(M) and Lemma 3.4, we obtain

‖y‖Hc
q(M) + ‖dz‖Fq(M) ≤ 21−

1
p‖x‖

(B̂MOc(M),Ĥc
p(M)) p

q ,q

.

This means that ‖x‖Ĥc
q(M) ≤ 21−

1
p‖x‖

(B̂MOc(M),Ĥc
p(M)) p

q ,q

and

(
B̂MOc(M), Ĥc

p(M)
)

p

q
,q
⊂ Ĥc

q(M). (3.12)

Replacing L̂p(M) (resp., L̂pk(M) (k = 0, 1)) with Ĥc
p(M) (resp., Ĥpk(M) (k =

0, 1)) and Lp(M) (resp., L̂pk(M) (k = 0, 1)) with Hc
p(M) (resp., Ĥpk(M) (k =

0, 1)) in the proof of (3.6), we have that, for 1 ≤ p0, p1 < ∞, and 1 < θ < 1,(
Ĥc

p0
(M), Ĥc

p1
(M)

)
θ,p

⊂ Ĥc
p(M),

where 1
p
= 1−θ

p0
+ θ

p1
. Then, by Lemma 3.2,

Ĥc
q′(M)∗ ⊂

(
Ĥc

1(M), Ĥc
p′(M)

)∗
p

q
,q′

=
(
Ĥc

1(M)∗, Ĥc
p′(M)∗

)
p

q
,q
.

By Lemma 3.9, we have that

Ĥc
q(M) ⊂

(
B̂MOc(M), Ĥc

p(M)
)

p

q
,q
. (3.13)

Putting (3.12) and (3.13) together, we obtain(
B̂MOc(M), Ĥc

p(M)
)

p

q
,q
= Ĥc

q(M).

Similarly, we have that(
B̂MOr(M), Ĥr

p(M)
)

p

q
,q
= Ĥr

q(M). �
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Lemma 3.10. Let 1 < p < ∞. Then there exist two positive constants αp and
βp depending only on p such that, for each quasimartingale x, it holds that

αp
−1‖x‖p ≤ ‖x‖Ĥp(M) ≤ βp‖x‖p.

Proof. Let x be a quasimartingale, and let xn = yn + zn (n ≥ 1) be the Doob’s

decomposition of x. Then ‖x‖p = ‖y‖p + (
∑∞

n=1 ‖dzn‖pp)
1
p and ‖x‖Ĥp(M) =

‖y‖Hp(M)+(
∑∞

n=1 ‖dzn‖pp)
1
p . The desired inequality follows from the Burkholder–

Gundy inequalities for noncommutative martingales. �

Corollary 3.11. Let 1 < p0, p1 < ∞, 1 < θ < 1, and 1
p
= 1−θ

p0
+ θ

p1
. Then, with

equivalent norms, (
Ĥp0(M), Ĥp1(M)

)
θ,p

= Ĥp(M).

Proof. Since L̂p(M) = Ĥp(M) by Lemma 3.9, the desired result comes from
(3.1). �

Corollary 3.12. Let 2 ≤ p < q < ∞. Then, with equivalent norms,(
B̂MO(M), L̂p(M)

)
p

q
,q
= L̂q(M).

Proof. Using Lemma 3.10 and Theorem 3.8, we obtain, for 2 ≤ p < q < ∞,(
B̂MO(M), L̂p(M)

)
p

q
,q
=

(
B̂MO(M), Ĥp(M)

)
p

q
,q
⊂ Ĥc

q(M) ∩ Ĥr
q(M)

= L̂q(M).

By Theorem 3.1, we get that

L̂q(M) =
(
L̂∞(M), L̂p(M)

)
p

q
,q
⊂

(
B̂MO(M), L̂p(M)

)
p

q
,q
. �
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