
Ann. Funct. Anal. 9 (2018), no. 3, 426–434

https://doi.org/10.1215/20088752-2017-0057

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

THE PERTURBATION CLASS OF
ALGEBRAIC OPERATORS AND APPLICATIONS

MOURAD OUDGHIRI and KHALID SOUILAH

Communicated by R. Mortini

Abstract. In this article, we completely describe the perturbation class, the
commuting perturbation class, and the topological interior of the class of all
bounded linear algebraic operators. As applications, we also focus on the sta-
bility of the essential ascent spectrum and the essential descent spectrum under
finite-rank perturbations.

1. Introduction

Throughout this article, X denotes an infinite-dimensional complex Banach
space, and B(X) denotes the algebra of all bounded linear operators on X.

Given a subset Λ ⊂ B(X), the perturbation class P(Λ) and the commuting
perturbation class Pc(Λ) of Λ are, respectively, defined by

P(Λ) =
{
S ∈ B(X) : T + S ∈ Λ for every T ∈ Λ

}
and

Pc(Λ) =
{
S ∈ B(X) : T + S ∈ Λ for every T ∈ Λ commuting with S

}
.

Note that in order to check whether an operator S satisfies the definition of a
perturbation class, we have to study the properties of T + S for T in a family of
operators, which can be tedious in the general case.

The concept of perturbation class has been considered in other situations. For
example, it is well known that the perturbation class of all invertible elements in a
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Banach algebra is the radical of that algebra, and that its commuting perturbation
class is the set of all quasinilpotent elements (see [9], [12]). For a detailed exposi-
tion on the perturbation classes problem, we direct the reader to [1], [6], [7], [9],
and [12] and the references therein.

In this article, we consider the perturbation classes problem, as well as the
commuting perturbation classes problem, for algebraic operators. Recall that an
operator T ∈ B(X) is said to be algebraic if there exists a nonzero complex
polynomial P such that P (T ) = 0. In particular, when T is annihilated by a
complex polynomial of degree at most 2, it is said to be quadratic.

The many applications of algebraic operators in applied linear algebra have
been investigated by several mathematicians (see, e.g., [2], [5], [11]). Denote by
A(X) the set of all algebraic operators in B(X), and denote by F(X) the set
of all finite-rank operators in B(X). Note that one of the main results in [11,
Proposition 2.4] states that the perturbation class of quadratic operators in B(X)
is the 1-dimensional subspace CI.

For an operator T ∈ B(X), write ker(T ) for its kernel and ran(T ) for its

range. For two subspaces M and M ′ of X, we write M
e
= M ′ if there exist

finite-dimensional subspaces L and L′ such that M ⊆ M ′ + L′ and M ′ ⊆ M +
L. The essential ascent ae(T ) and essential descent de(T ) of T ∈ B(X) are,
respectively, defined by

ae(T ) = inf
{
n ≥ 0: ker(T n)

e
= ker(T n+1)

}
and

de(T ) = inf
{
n ≥ 0: ran(T n)

e
= ran(T n+1)

}
,

where the infimum over the empty set is taken to be infinite. Operators with finite
essential ascent or descent seem to have been first studied in [8]. These operators
play a significant role in more general studies in [10].

Let us consider the sets

Ae(X) =
{
T ∈ B(X) : ae(T ) is finite and ran(T ae(T )+1) is closed

}
and

De(X) =
{
T ∈ B(X) : de(T ) is finite

}
.

The corresponding essential ascent spectrum σe
asc(T ) and essential descent spec-

trum σe
des(T ) of T ∈ B(X) are, respectively, defined by

σe
asc(T ) =

{
λ ∈ C : T − λ /∈ Ae(X)

}
and

σe
des(T ) =

{
λ ∈ C : T − λ /∈ De(X)

}
.

In [4], the authors studied the essential ascent spectrum, showing that an oper-
ator F ∈ B(X) has some finite-rank power if and only if σe

asc(T + F ) = σe
asc(T )

for every T ∈ B(X) commuting with F . Similar results for the essential descent
spectrum were established in [3]. These characterizations—of commuting pertur-
bations leaving invariant the essential ascent spectrum and the essential descent
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spectrum of the operators in their commutants—can be considered as charac-
terizations of the commuting perturbation class of the sets Ae(X) and De(X).
Indeed, one can easily get

Pc

(
Ae(X)

)
= Pc

(
De(X)

)
=

{
F ∈ B(X) : F n has finite rank for some n ≥ 1

}
.

As applications of the perturbation class of algebraic operators, we also consider
here the perturbation classes problem for the essential ascent spectrum and the
essential descent spectrum.

This article is organized as follows. In the Section 2, we establish that the
perturbation class of A(H), where H is an infinite-dimensional complex Hilbert
space, is the subspace CI + F(H). We also look at the stability of the essential
ascent spectrum and the essential descent spectrum under finite-rank perturba-
tions. Section 3 is devoted to proving that the commuting perturbation class of
A(X) is itself. In the final section, we show that the topological interior of A(X)
is empty.

2. Perturbation class of A(H), Ae(H), and De(H)

It is well known that the set A(X) is stable under finite-rank perturbations,
and hence its perturbation class contains the subspace CI + F(X). The main
result of this section is the following theorem, which states that the perturbation
class of algebraic operators consists exactly of finite-rank operators plus scalar
multiples of the identity.

Theorem 2.1. Let H be an infinite-dimensional complex Hilbert space. Then

P
(
A(H)

)
= CI + F(H).

Before proving this theorem, we need to establish the following auxiliary results.
Let z ∈ X and f ∈ X∗ be nonzero, where X∗ denotes the topological dual space.
As usual, we will denote by z⊗f the rank 1 operator given by (z⊗f)(x) = f(x)z
for all x ∈ X. Note that every rank 1 operator in B(X) can be written in this
form.

Lemma 2.2. Let N ∈ B(X) be a nilpotent operator of index n, and let x ∈ X
be such that Nn−1x 6= 0. Then there exists a closed N-invariant subspace Y such
that X = Span{Nkx : 0 ≤ k ≤ n− 1} ⊕ Y .

Proof. Since N is nilpotent, the vectors Nkx, 0 ≤ k ≤ n − 1, are linearly inde-
pendent. Let f ∈ X∗ be a linear form satisfying

f(Nkx) = δk,n−1 for 0 ≤ k ≤ n− 1.

Consider also the operator P ∈ B(X) defined by

P = x⊗ fNn−1 +Nx⊗ fNn−2 + · · ·+Nn−1x⊗ f.

A simple computation shows that P 2 = P , and therefore X = ker(I−P )⊕ker(P ).
Since N commutes with P , we infer that ker(P ) is a closed N -invariant subspace.
Furthermore, we have PNkx = Nkx for every 0 ≤ k ≤ n− 1, and hence

Span{Nkx : 0 ≤ k ≤ n−1} ⊆ ker(I−P ) = ran(P ) ⊆ Span{Nkx : 0 ≤ k ≤ n−1},
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so that ker(I − P ) = Span{Nkx : 0 ≤ k ≤ n − 1}. Consequently, ker(P ) is the
desired subspace. �

Lemma 2.3. Let S ∈ B(X) be a nilpotent operator having an infinite-dimensional
range. Then there exists T ∈ A(X) such that T + S /∈ A(X).

Proof. Let n0 be the nilpotence index of S, and let x0 ∈ X be such that
Sn0−1x0 6= 0. Lemma 2.2 ensures the existence of an S-invariant complement X1

of Span{Skx0 : 0 ≤ k ≤ n0 − 1}. Choose a linear form f0 ∈ X∗ satisfying f0 ≡ 0
on X1 and

f0(S
kx0) = δk,n0−1 for 0 ≤ k ≤ n0 − 1.

Since ran(S) is infinite-dimensional, then S|X1 is nilpotent of index n1 ≥ 2. Take
x1 ∈ X1 with Sn1−1x1 6= 0, and we denote by X2 an S-invariant subspace such
that X1 = Span{Skx1 : 0 ≤ k ≤ n1 − 1} ⊕ X2. Consider a linear form f1 ∈ X∗

satisfying f1 ≡ 0 on Span{Skx0 : 0 ≤ k ≤ n0 − 1} ⊕X2 and

f1(S
kx1) = δk,n1−1 for 0 ≤ k ≤ n1 − 1.

Repeating the same argument, we get linearly independent sets

{Skxm : 0 ≤ k ≤ nm − 1 and m ≥ 0} ⊂ X and {fm : m ≥ 0} ⊂ X∗

such that

Snm−1xm 6= 0, Snmxm = 0 and fm(S
kxp) = δk,nm−1δp,m for m, p, k ≥ 0.

Now, consider the operator T ∈ B(X) given by

T =
∑
k≥0

αkS
nk+1−2xk+1 ⊗ fk,

where the αk’s are nonzero complex numbers for which
∑

k≥0 |αk|‖Snk+1−2xk+1 ⊗
fk‖ is finite. Since fi(S

nj+1−2xj) = 0 for every i, j ≥ 0, then( m∑
k=0

αkS
nk+1−2xk+1 ⊗ fk

)2

= 0 for every m ≥ 0.

Thus, T 2 = 0 and T ∈ A(X). Let us show that T +S /∈ A(X). Put u = Sn0−2x0.
Then, for every integer p ≥ 1, we get

(T + S)u = Sn0−1x0,

(T + S)2u = α0S
n1−2x1,

(T + S)3u = α0S
n1−1x1,

(T + S)4u = α0α1S
n2−2x2,

...

(T + S)2pu = α0 · · ·αp−1S
np−2xp,

(T + S)2p+1u = α0 · · ·αp−1S
np−1xp,

which means that {u, (T + S)u, . . . , (T + S)nu} is a linearly independent set for
every integer n ≥ 0, and hence T + S is nonalgebraic by [2, Theorem 4.2.7]. This
completes the proof. �
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In the following, we derive an analogous result for idempotent operators.

Lemma 2.4. Let H be an infinite-dimensional complex Hilbert space, and let
P ∈ B(H) be an idempotent operator such that dim ran(P ) = dimker(P ) = ∞.
Then there exists T ∈ A(H) such that T + P /∈ A(H).

Proof. Note that H = ker(P ) ⊕ ran(P ) and, for every finite-codimensional sub-
space Y , we have that Y ∩ ran(P ) and Y ∩ ker(P ) are infinite-dimensional. Let
x0 ∈ ker(P ) be such that ‖x0‖ = 1, and choose y0 ∈ Span{x0}⊥ ∩ ran(P ) sat-
isfying ‖y0‖ = 1. Now, take x1 ∈ Span{x0, y0}⊥ ∩ ker(P ) with ‖x1‖ = 1, and
let y1 ∈ Span{x0, x1, y0}⊥ ∩ ran(P ) be such that ‖y0‖ = 1. Repeating the same
argument, we get an orthonormal system {xn, yn : n ≥ 0} such that

xn ∈ ker(P ) and yn ∈ ran(P ) for n ≥ 0.

One can easily verify that {2−1(yn + xn), 2
−1(yn − xn) : n ≥ 0} is an orthonormal

system. Put M = Span{2−1(yn+xn), 2
−1(yn−xn) : n ≥ 0}, and define S ∈ B(H)

by S|M⊥ = 0. Then

S(yn + xn) = 0 and S(yn − xn) = −(yn + xn) + yn+1 + xn+1 for n ≥ 0.

Clearly, S2 = 0. Moreover, for u = 2−1(y0 + x0), we have

(S + 2P − I)u = 2−1(y0 − x0),

(S + 2P − I)2u = 2−1(y1 + x1),

(S + 2P − I)3u = 2−1(y1 − x1),
...

(S + 2P − I)2nu = 2−1(yn + xn),

(S + 2P − I)2n+1u = 2−1(yn − xn).

Thus {(S + 2P − I)ku : 0 ≤ k ≤ n} is a linearly independent set for every n ≥ 0,
and hence S +2P − I is nonalgebraic, so that 2−1S +P /∈ A(H). To conclude, it
suffices to take T = 2−1S. �

With these results in hand, we are ready to prove our main theorem.

Proof of Theorem 2.1. We have only to prove that P(A(H)) ⊆ CI + F(H). For
this, let S ∈ P(A(H)), and suppose to the contrary that S /∈ CI + F(H).
Note that S is an algebraic operator, and hence H = H1 ⊕ · · · ⊕ Hn where
Hk = ker(S − λk)

mk for 1 ≤ k ≤ n, and the scalars λk are distinct. Clearly, the
operators Nk = (S − λk)|Hk

, 1 ≤ k ≤ n, are nilpotent and we have

S = (N1 + λ1)⊕ · · · ⊕ (Nn + λn).

We discuss two cases.
Case 1. There exists j ∈ {1, . . . , n} such that dim ran(Nj) = ∞. Then it follows

from Lemma 2.3 that there exists a bounded algebraic operator Tj on Hj such
that Tj + Nj is nonalgebraic. Thus, if we consider the operator T ∈ B(H) given
by T|Hj

= Tj and T|Hk
= 0 for k 6= j, we get that T ∈ A(H) and T + S /∈ A(H),

which is a contradiction.
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Case 2. For every k ∈ {1, . . . , n}, dim ran(Nk) is finite. Then, the operator
N = N1 ⊕ · · · ⊕Nn has finite rank and

S = (λ1 ⊕ · · · ⊕ λn) +N.

Since S /∈ CI+F(H), we infer that n ≥ 2 and there exist r, t ∈ {1, . . . , n}, r 6= t,
such that dimHr = dimHt = ∞. Without loss of generality, we may assume that
r = 0 and t = 1. Consider the idempotent operator P ∈ B(H1 ⊕ H2) defined
by P = 0 ⊕ I. It follows from Lemma 2.4 that there exists a bounded algebraic
operator R on H1 ⊕ H2 such that R + P is nonalgebraic. To conclude, consider
the operator T ∈ B(H) given by

T|H1⊕H2 = (λ2 − λ1)R + λ1 and T|H3⊕···⊕Hn = 0.

Clearly, we have T ∈ A(H). Since N|H1⊕H2 is finite rank and

S|H1⊕H2 = (λ1 ⊕ λ2) +N|H1⊕H2 = (λ2 − λ1)P + λ1 +N|H1⊕H2 ,

we assert that (T + S)|H1⊕H2 is nonalgebraic, and hence T + S /∈ A(H). This
contradiction finishes the proof. �

We continue by stating a question which arises in a natural way from our result.

Question 2.5. Does Theorem 2.1 remain true in the context of Banach spaces?

Now, as applications of Theorem 2.1, we characterize finite-rank operators as
the class of operators leaving invariant the sets Ae(H) and De(H).

Theorem 2.6. Let H be an infinite-dimensional complex Hilbert space. Then

P
(
Ae(H)

)
= P

(
De(H)

)
= F(H).

Proof. Since Ae(H) and De(H) are stable under finite-rank perturbations (see
[10]), we have F(H) ⊆ P(Ae(H)) and F(H) ⊆ P(De(H)).

Let us show that P(Ae(H)) ⊆ F(H). Let F ∈ P(Ae(H)). It follows that

σe
asc(T + F ) = σe

asc(T ) for every T ∈ B(H).

In particular, this equality holds for every T ∈ B(H) commuting with F . Thus,
it follows from [4, Theorem 3.2] that F n is finite rank for some integer n ≥ 1.
Now, for every T ∈ B(H), we get by [4, Theorem 2.7] that

T is algebraic ⇔ σe
asc(T ) = ∅ ⇔ σe

asc(T + F ) = ∅ ⇔ T + F is algebraic.

Thus, Theorem 2.1 infers that F ∈ CI + F(H). Taking into account that F n ∈
F(H), we conclude that F ∈ F(H). Using [3, Theorems 2.7 and 3.1] and the
same arguments as above, we get that P(De(H)) ⊆ F(H). �

As a direct consequence of Theorem 2.6, we derive the following corollary.

Corollary 2.7. Let H be an infinite-dimensional complex Hilbert space, and let
F ∈ B(H). Then the following assertions are equivalent:

(1) F ∈ F(H),
(2) σe

asc(T + F ) = σe
asc(T ) for every T ∈ B(H),

(3) σe
des(T + F ) = σe

des(T ) for every T ∈ B(H).
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3. Commuting perturbation class of A(X)

In this section, we focus on the commuting perturbations that leave invariant
the set of algebraic operators. More precisely, the following theorem states the
main result of this section.

Theorem 3.1. We have Pc(A(X)) = A(X).

To prove this theorem, we need the following lemma.

Lemma 3.2. Let T ∈ B(X) be an algebraic operator, and let N ∈ B(X) be a
nilpotent operator such that NT = TN . Then T +N is algebraic.

Proof. Since T is algebraic, we can write X = X1⊕· · ·⊕Xr, where Xk = ker(T −
λk)

mk , and the scalars λk are distinct. Clearly, the operators Tk = (T − λk)|Xk
,

1 ≤ k ≤ r, are nilpotent and

T = (T1 + λ1)⊕ · · · ⊕ (Tn + λr).

Furthermore, the fact that NT = TN implies that Xk, 1 ≤ k ≤ r, are N -invariant
subspaces. Hence, with respect to the decomposition of X, we can express N as
N = N1⊕· · ·⊕Nr. Since Nk is nilpotent and TkNk = NkTk, it follows that Nk+Tk

is nilpotent for 1 ≤ k ≤ r, and hence N + T is algebraic. �

Proof of Theorem 3.1. Clearly, we have Pc(A(X)) ⊆ A(X). Let S, T ∈ A(X) be
such that TS = ST . Then, X = X1 ⊕ · · · ⊕Xn, where Xk = ker(T − λk)

mk , and
the scalars λk are distinct. Moreover, the operators Tk = (T − λk)|Xk

, 1 ≤ k ≤ n,
are nilpotent and

T = (T1 + λ1)⊕ · · · ⊕ (Tn + λn).

Since TS = ST , then Xk are S-invariant for 1 ≤ k ≤ r. Hence, with respect to
the decomposition of X, we can write S = S1 ⊕ · · · ⊕ Sn. One can easily see that
Sk is algebraic and that TkSk = SkTk for 1 ≤ k ≤ n. Now, Lemma 3.2 infers that
Tk +Sk is algebraic for 1 ≤ k ≤ n, so that T +S is algebraic. This completes the
proof. �

4. Topological interior of A(X)

The main result of this section is the following theorem.

Theorem 4.1. The topological interior of A(X) is empty.

Before presenting the proof of this theorem, we first establish the following
lemma.

Lemma 4.2. Let S ∈ B(X) be a nilpotent operator. Then, for every ε > 0, there
exists T ∈ B(X) such that ‖T‖ < ε and T + S /∈ A(X).

Proof. Since S is nilpotent, then dimker(S) = ∞. Let x0 ∈ ker(S) be nonzero,
and write X = Span{x0} ⊕ X0, where X0 is a closed subspace. Choose a linear
form f0 ∈ X∗ such that

f0(x0) = 1 and f0(x) = 0 for x ∈ X0.
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Let x1 ∈ ker(S) ∩X0 be nonzero, and write X0 = Span{x1} ⊕X1. In particular,
the vectors x0 and x1 are linearly independent andX = Span{x0, x1}⊕X1. Hence,
there exists a linear form f1 ∈ X∗ satisfying

f1(xi) = δi1 for 0 ≤ i ≤ 1 and f1(x) = 0 for x ∈ X1.

Note that f0(x1) = 0. Repeating the same argument, we get two linearly inde-
pendent sets {xn}n≥0 ⊂ ker(S) and {fn}n≥0 ⊂ X∗ such that fi(xj) = δij for all
i, j ≥ 0. Now, let ε > 0, and consider the operator T ∈ B(X) given by

T =
∞∑
n=0

αnxn+1 ⊗ fn,

where αn are nonzero complex numbers for which
∑

n≥0 |αn|‖xn+1⊗ fn‖ < ε. For
every integer n ≥ 1, we have

(T + S)x0 = α0x1,

(T + S)2x0 = α0α1x2,

(T + S)3x0 = α0α1α2x3,
...

(T + S)nx0 = α0 · · ·αn−1xn,

so that {(T + S)kx0 : 0 ≤ k ≤ n} is a linearly independent set. Hence, T + S is
nonalgebraic. This completes the proof. �

It is well known that if Y is an infinite-dimensional Banach space, then the alge-
bra B(Y ) contains a nonalgebraic operator (see [5, Corollary 1.10]). We recapture
this result as an immediate consequence of Lemma 4.2.

Corollary 4.3. Let Y be a Banach space. Then the following assertions are
equivalent:

(1) Y is infinite-dimensional,
(2) B(Y ) contains a nonalgebraic operator.

Proof of Theorem 4.1. Let S ∈ A(X) and ε > 0. We claim that there exists
T ∈ B(X) such that ‖T‖ < ε and T + S /∈ A(X). Write X = X1 ⊕ · · · ⊕ Xn,
where Xk = ker(S−λk)

mk for 1 ≤ k ≤ n, and the scalars λk are distinct. Clearly,
the operators Nk = (S − λk)|Xk

, 1 ≤ k ≤ n, are nilpotent and

S = (N1 + λ1)⊕ · · · ⊕ (Nn + λn).

Without loss of generality, we may assume that dimX1 = ∞. Let P ∈ B(X)
be the idempotent operator given by P = I ⊕ 0 ⊕ · · · ⊕ 0 with respect to the
decomposition of X. From Lemma 4.2, there exists a bounded operator T1 on X1

such that ‖T1‖ < ε‖P‖−1 and T1+N1 is nonalgebraic. If we set T = T1⊕0⊕· · ·⊕0,
then we get ‖T‖ < ε and T + S /∈ A(X). This finishes the proof. �

We end this article with the following question.

Question 4.4. What can we say about the topological closure of A(X)?
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1. P. Aiena and M. González, Intrinsic characterizations of perturbation classes on some
Banach spaces, Arch. Math. (Basel) 94 (2010), no. 4, 373–381. Zbl 1187.47014. MR2643971.
DOI 10.1007/s00013-010-0103-7. 427

2. B. Aupetit, A Primer on Spectral Theory, Universitext, Springer, New York, 1991.
Zbl 0715.46023. MR1083349. DOI 10.1007/978-1-4612-3048-9. 427, 429

3. O. Bel Hadj Fredj, Essential descent spectrum and commuting compact perturbations,
Extracta Math. 21 (2006), no. 3, 261–271. Zbl 1131.47002. MR2332074. 427, 431

4. O. Bel Hadj Fredj, M. Burgos, and M. Oudghiri, Ascent spectrum and essential ascent spec-
trum, Studia Math. 187 (2008), no. 1, 59–73. Zbl 1160.47007. MR2410883. DOI 10.4064/
sm187-1-3. 427, 431

5. M. Burgos, A. Kaidi, M. Mbekhta, and M. Oudghiri, The descent spectrum and perturba-
tions, J. Operator Theory 56 (2006), no. 2, 259–271. Zbl 1117.47008. MR2282682. 427,
433
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