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Abstract. In this paper, a new definition of majorization for C∗-algebras
is introduced. Sherman’s inequality is extended to self-adjoint operators and
positive linear maps by applying the method of premajorization used for com-
paring two tuples of objects. A general result in a matrix setting is established.
Special cases of the main theorem are studied. In particular, a HLPK-type
inequality is derived.

1. Introduction

We begin this expository section with some elements of majorization theory.
An m-tuple y = (y1, . . . , ym) ∈ Rm is said to be majorized by m-tuple x =
(x1, . . . , xm) ∈ Rm written as y ≺ x if

k∑
i=1

y[i] ≤
k∑

i=1

x[i] for k = 1, . . . ,m, and
m∑
i=1

yi =
m∑
i=1

xi,

where x[1] ≥ · · · ≥ x[m] and y[1] ≥ · · · ≥ y[m] are the entries of x and y, respec-
tively, stated in nonincreasing order (see [8, p. 8]).

It is not hard to verify that the majorization relation ≺ is a preorder on the
space Rm. An m × n real matrix S = (sij) is called column-stochastic if sij ≥ 0
for i = 1, . . . ,m, j = 1, . . . , n, and all column sums of S are equal to 1; that
is,

∑m
i=1 sij = 1 for j = 1, . . . , n. An m × n real matrix S = (sij) is called

row-stochastic if sij ≥ 0 for i = 1, . . . ,m, j = 1, . . . , n, and all row sums of S are
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equal to 1; that is,
∑n

j=1 sij = 1 for i = 1, . . . ,m. An m×m real matrix S = (sij)
is called doubly stochastic if sij ≥ 0 for i, j = 1, . . . ,m, and all column and row
sums of S are equal to 1; that is,

∑m
i=1 sij = 1 =

∑m
j=1 sij for i, j = 1, . . . ,m (see

[8, pp. 29–30]).
It is well known (see [8, p. 33]) that, for x,y ∈ Rm,

y ≺ x if and only if y = xS (1.1)

for some doubly stochastic m × m matrix S. A function F : Jm → R with an
interval J ⊂ R is said to be Schur-convex on Jm if, for x,y ∈ Jm,

y ≺ x implies that F (y) ≤ F (x).

(See [8, pp. 79–154] for applications of Schur-convex functions.) The next result
is called the majorization theorem or the HLPK theorem (see [8, pp. 92–93]).

Theorem A ([6, Theorem 108] and Karamata [7, p. 148]). Let f : J → R be a real
convex function defined on an interval J ⊂ R. Then for x = (x1, x2, . . . , xm) ∈ Jm

and y = (y1, y2, . . . , ym) ∈ Jm,

y ≺ x implies that
m∑
i=1

f(yi) ≤
m∑
i=1

f(xi). (1.2)

A generalization of Theorem A is as follows.

Theorem B ([13, pp. 826–827], [1, p. 93]). Let f be a real convex function defined
on an interval J ⊂ R. Let a = (a1, a2, . . . , am) ∈ Rm

+ , let b = (b1, b2, . . . , bn) ∈ Rn
+,

let x = (x1, x2, . . . , xm) ∈ Jm, and let y = (y1, y2, . . . , yn) ∈ Jn. If

y = xS and a = bST (1.3)

for some m× n column-stochastic matrix S = (sij), then

n∑
j=1

bjf(yj) ≤
m∑
i=1

aif(xi). (1.4)

If f is concave, then the inequality (1.4) is reversed.

Statement (1.4) is referred to as Sherman’s inequality. (Some applications of
Theorem B can be found in [1], [10], and [11].)

As usual, we denote by B(H) the linear space of all bounded linear operators
on a Hilbert space H. For selfadjoint operators A,B ∈ B(H), we write B ≤ A if
A−B is positive; that is, 〈Bh, h〉 ≤ 〈Ah, h〉 for all h ∈ H. In particular, we write
0 ≤ A if A is positive; that is, 0 ≤ 〈Ah, h〉 for all h ∈ H.

A linear map Φ : A → B between C∗-algebras A and B is said to be positive
in symbol Φ ≥ 0 if for self-adjoint operators A ∈ A,

0 ≤ A implies that 0 ≤ Φ(A).

A continuous function f : J → R defined on an interval J ⊂ R is said to be
operator-convex if f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B) for any λ ∈ [0, 1]
and any self-adjoint operators A, B with spectra in J .
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Theorem C ([5, Theorem 2.1, pp. 63–64]). Let f : J → R be an operator-convex
function on interval J ⊂ R. Then the inequality

f
( m∑

i=1

Φi(Ai)
)
≤

m∑
i=1

Φif(Ai) (1.5)

holds for self-adjoint operators Ai ∈ B(H) with spectra in J , i = 1, . . . ,m, and
positive linear maps Φi : B(H) → B(K), i = 1, . . . ,m, such that

∑m
i=1Φi(IH) =

IK, where IH and IK are the identity maps on Hilbert spaces H and K, respec-
tively.

In this article, we demonstrate a new definition of majorization for C∗-algebras,
and we present some results related to Theorems A, B, and C with this new
definition. The paper is organized as follows. In Section 2, we collect definitions
of right and left premajorizations aimed for comparing two tuples of operators or
maps (see [11, pp. 197–198]). In Section 3, we prove operator inequalities similar
to (1.2), (1.4), and (1.5) by using the method of premajorization. In Theorem 3.1,
we show a general result of the Sherman type. Next, in Section 4, we derive an
HLPK result. Section 5 is devoted to recovering a result by Moslehian et al. [9]
and the Choi–Davis inequality (see [2], [4]).

2. Right and left premajorizations for C∗-algebras

For a C∗-algebra A the symbol Asa(J) denotes the real space of self-adjoint
operators in A with spectra in a given interval J ⊂ R.

It is useful here to present some relevant definitions, as follow.
Let A and B be unital C∗-algebras with unities IA and IB, respectively. Let

S = (Sij) be an m × n matrix with linear maps Sij : A → B, i = 1, . . . ,m,
j = 1, . . . , n. We say that the m × n matrix S = (Sij) is column-stochastic if
Sij ≥ 0 for i = 1, . . . ,m, j = 1, . . . , n, and

∑m
i=1 Sij(IA) = IB for j = 1, . . . , n.

We say that the matrix S = (Sij) is row-stochastic if Sij ≥ 0 for i = 1, . . . ,m,
j = 1, . . . , n, and

∑n
j=1 Sij(IA) = IB for i = 1, . . . ,m.

In the case A = B and m = n, we say that the m × m matrix S = (Sij)
is strongly row-stochastic if Sij ≥ 0 for i, j = 1, . . . ,m, and

∑m
j=1 Sij = idA for

i = 1, . . . ,m, where idA is the identity map on A. In the case A = B and m = n,
we say that the m×m matrix S = (Sij) is called strongly doubly stochastic if S is
column-stochastic and strongly row-stochastic; that is, Sij ≥ 0 for i, j = 1, . . . ,m,
and

∑m
i=1 Sij(IA) = IA for j = 1, . . . ,m, and

∑m
j=1 Sij = idA for i = 1, . . . ,m.

An n-tuple B = (B1, B2, . . . , Bn) with operators Bj ∈ Bsa(J), j = 1, . . . , n, is
said to be right-premajorized by an m-tuple A = (A1, A2, . . . , Am) with opera-
tors Ai ∈ Asa(J), i = 1, . . . ,m, written as B ≺rp A, if there exists an m × n
column-stochastic matrix S = (Sij) such that

(B1, B2, . . . , Bn) = (A1, A2, . . . , Am)S, (2.1)

where the notation (2.1) means that

Bj = S1j(A1) + S2j(A2) + · · ·+ Smj(Am) for j = 1, . . . , n (2.2)
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with the right action of Sij on Ai (see [11], [3], [12]). Instead of (2.1), we also
write

(B1, B2, . . . , Bn) ≺rp (A1, A2, . . . , Am) by S.

Example 2.1. Let A = Mk(R) be the unital C∗-algebra of k × k real matrices,
and let B = R. Take m = n = 2. Let cij ∈ Rk, i, j = 1, 2, be unit vectors; that is,
‖cij‖2 = 〈cij, cij〉 = 1. We define

S =
1

2

(
S11 S12

S21 S22

)
,

where Sij : Mk(R) → R is given by Sij(A) = 〈Acij, cij〉 for A ∈ Mk(R), i, j = 1, 2.
Clearly, Sij are unital positive maps, and therefore S is column-stochastic.

Let A1, A2 ∈ Mk(R) be symmetric matrices. Then

(B1, B2) ≺rp (A1, A2) by S;

that is,

(B1, B2) = (A1, A2)S,

where

B1 =
1

2
S11(A1) +

1

2
S21(A2) =

1

2
〈A1c11, c11〉+

1

2
〈A2c21, c21〉

and

B2 =
1

2
S12(A1) +

1

2
S22(A2) =

1

2
〈A1c12, c12〉+

1

2
〈A2c22, c22〉.

We return to definitions. Let A, B, and C be unital C∗-algebras. We denote by
P (A, C) the set of all positive linear maps from A to C. We write P (A) in place
of P (A,A).

An m-tuple Φ = (Φ1,Φ2, . . . ,Φm) with Φi ∈ P (A, C), i = 1, . . . ,m, is said
to be left-premajorized by an n-tuple Ψ = (Ψ1,Ψ2, . . . ,Ψn) with Ψj ∈ P (B, C),
j = 1, . . . , n, written as Φ ≺lp Ψ if there exists an n ×m row-stochastic matrix
R = (Rji) with positive linear maps Rji : A → B for j = 1, . . . , n, i = 1, . . . ,m
such that

(Φ1,Φ2, . . . ,Φm) = (Ψ1,Ψ2, . . . ,Ψn)R (2.3)

(see [11], [3], [12]). Here and in the remainder of this article, the notation (2.3)
means that

Φi = Ψ1R1i +Ψ2R2i + · · ·+ΨnRni for i = 1, . . . ,m, (2.4)

where ΨjRji = Ψj ◦ Rji denotes the composition of the maps Rji and Ψj and is
the left action of Rji on Ψj. In place of (2.3), we also write

(Φ1,Φ2, . . . ,Φm) ≺lp (Ψ1,Ψ2, . . . ,Ψn) by R.

Example 2.2. Let A = B = C = Mk(R) be the unital C∗-algebra of k × k real
matrices with even k = 2l. We put m = n = 2 and

R =
1

2

(
P Q
Q P

)
,

where P : Mk(R) → Mk(R) is the orthoprojector fromMk(R) ontoMl(R)⊕Ml(R)
and Q : Mk(R) → Mk(R) is the orthoprojector from Mk(R) onto the space Dk(R)
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of k× k real diagonal matrices. Clearly, P and Q are unital positive linear maps,
and R is column-stochastic. Moreover, P 2 = P , Q2 = Q, and PQ = Q = QP .
Therefore, (P +Q

2
, Q

)
= (P,Q)R,

which means that (P +Q

2
, Q

)
≺lp (P,Q) by R.

3. Sherman-type inequalities

We begin our discussion of Sherman-type inequalities with the following result.

Theorem 3.1. Let f : J → R be an operator-convex function on interval J ⊂ R.
Let A, B, and C be unital C∗-algebras. Suppose that Ai and Bj are self-adjoint
operators in Asa(J) and Bsa(J), respectively, for i = 1, . . . ,m, j = 1, . . . , n.
Suppose that Φi : A → C and Ψj : B → C are positive linear maps for i =
1, . . . ,m, j = 1, . . . , n. Assume also that

(B1, B2, . . . , Bn) ≺rp (A1, A2, . . . , Am) by S, (3.1)

and that

(Φ1,Φ2, . . . ,Φm) ≺lp (Ψ1,Ψ2, . . . ,Ψn) by ST (3.2)

for some m × n column-stochastic matrix S = (Sij) with positive linear maps
Sij : A → B. Then the following Sherman-type inequality holds:

n∑
j=1

Ψj

(
f(Bj)

)
≤

m∑
i=1

Φi

(
f(Ai)

)
. (3.3)

Proof. From (3.1) and (2.2), we have

Bj =
m∑
i=1

Sij(Ai) for j = 1, . . . , n. (3.4)

Likewise, by virtue of (3.2) and (2.4), we get

Φi =
n∑

j=1

ΨjSij for i = 1, . . . ,m. (3.5)

Remember that f is operator-convex, and that Sij ≥ 0 for i = 1, . . . ,m, j =
1, . . . , n, and

∑m
i=1 Sij(IA) = IB for j = 1, . . . , n, where IA and IB are unities of

the C∗-algebras A and B, respectively. Then it follows from (3.4) and Theorem C
(by Jensen’s operator inequality) that

f(Bj) = f
( m∑

i=1

Sij(Ai)
)
≤

m∑
i=1

Sij

(
f(Ai)

)
for j = 1, . . . , n.

Simultaneously, Ψj, j = 1, . . . , n, are positive linear maps. Therefore, we have

Ψj

(
f(Bj)

)
≤ Ψj

( m∑
i=1

Sij

(
f(Ai)

))
=

m∑
i=1

ΨjSij

(
f(Ai)

)
for j = 1, . . . , n.
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For this reason, we obtain

n∑
j=1

Ψj

(
f(Bj)

)
≤

n∑
j=1

( m∑
i=1

ΨjSij

(
f(Ai)

))
=

m∑
i=1

( n∑
j=1

ΨjSij

(
f(Ai)

))
=

m∑
i=1

( n∑
j=1

ΨjSij

)(
f(Ai)

)
=

m∑
i=1

Φi

(
f(Ai)

)
,

the last equality being a consequence of (3.5). This completes the proof. �

Remark 3.2. For n = 1 in Theorem 3.1, we get Theorem C.

Remark 3.3. Premajorization relations (3.1)–(3.2) in Theorem 3.1 are the oper-
ator-map counterpart of the weighted majorization (1.3) adequate in the scalar
context (see Theorem B).

We demonstrate a specialization of Theorem 3.1 with B = C. Such a result gives
a motivation for the definition of a strongly row-stochastic (operator) matrix (see
the beginning of Section 2).

Corollary 3.4. Let f : J → R be an operator-convex function on interval J ⊂ R.
Let A and B be unital C∗-algebras. Suppose that Ai and Bj are self-adjoint oper-
ators in Asa(J) and Bsa(J), respectively, with spectra in J for i = 1, . . . ,m,
j = 1, . . . , n. Assume that

(B1, B2, . . . , Bn) ≺rp (A1, A2, . . . , Am) by S (3.6)

for some m × n column-stochastic matrix S = (Sij) with positive linear maps
Sij : A → B. Then the following Sherman-type inequality holds:

n∑
j=1

f(Bj) ≤
m∑
i=1

Φi

(
f(Ai)

)
, (3.7)

where Φi =
∑n

j=1 Sij is the ith row sum of the matrix S.

Proof. We define C = B. We introduce positive linear maps Φi : A → B and
Ψj : B → B for i = 1, . . . ,m, j = 1, . . . , n such that

Φi =
n∑

j=1

Sij and Ψj = idB.

Thus Φi is the ith row sum of S. It is easily seen that

(Φ1,Φ2, . . . ,Φm) ≺lp (Ψ1,Ψ2, . . . ,Ψn) by ST . (3.8)

On account of (3.6) and (3.8), we are allowed to use Theorem 3.1. Therefore,
inequality (3.7) is a direct consequence of (3.3). This finishes the proof. �
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4. hlpk-type inequality

In the case A = B = C and m = n, where A is an unital C∗-algebra with unity
IA, we now give definitions. We say that an operatorm-tupleB = (B1, B2, . . . , Bm)
with Bj ∈ Asa(J), j = 1, . . . ,m, is strongly majorized by an operator m-tuple
A = (A1, A2, . . . , Am) with Ai ∈ Asa(J), i = 1, . . . ,m, written as B ≺str A if
there exists an m×m strongly doubly stochastic matrix S = (Sij) such that

(B1, B2, . . . , Bm) = (A1, A2, . . . , Am)S (4.1)

in the sense that

Bj = S1j(A1) + S2j(A2) + · · ·+ Smj(Am) for j = 1, . . . ,m

with the right action of Sij on Ai (see [11], [3], [12]).
Instead of (4.1), we also write

(B1, B2, . . . , Bm) ≺str (A1, A2, . . . , Am) by S. (4.2)

It is interesting that (4.2) implies that

B1 +B2 + · · ·+Bm = A1 + A2 + · · ·+ Am.

Indeed, we have

m∑
j=1

Bj =
m∑
j=1

m∑
i=1

Sij(Ai) =
m∑
i=1

m∑
j=1

Sij(Ai)

=
m∑
i=1

( m∑
j=1

Sij

)
(Ai) =

m∑
i=1

idA(Ai) =
m∑
i=1

Ai.

We apply Corollary 3.4 to prove the following majorization theorem for C∗-alge-
bras. An alternative proof of Theorem 4.1 can be done via the operator convexity
and the above definition of strong majorization.

Theorem 4.1. Let f : J → R be an operator-convex function on interval J ⊂ R.
Let A be a unital C∗-algebra. Suppose that Ai and Bj are self-adjoint operators
in Asa(J) with spectra in J for i, j = 1, . . . ,m. Assume that

(B1, B2, . . . , Bm) ≺str (A1, A2, . . . , Am). (4.3)

Then the following HLPK-type inequality holds:

m∑
j=1

f(Bj) ≤
m∑
i=1

f(Ai). (4.4)

Proof. We define n = m and C = B = A. It follows from (4.3) that

(B1, B2, . . . , Bm) ≺rp (A1, A2, . . . , Am) by S

for some m×m strongly doubly stochastic matrix S = (Sij).
We consider the special maps

Φi = idA and Ψj = idA for i, j = 1, . . . ,m.
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However, S is strongly doubly stochastic, and so

idA =
m∑
j=1

Sij for i = 1, . . . ,m.

In conclusion, we are permitted to utilize Corollary 3.4 with Φi = idA, i =
1, . . . ,m. Then, by (3.7), we obtain

m∑
j=1

f(Bj) ≤
m∑
i=1

Φi

(
f(Ai)

)
=

m∑
i=1

f(Ai),

as required. �

5. Further applications

We continue to study special cases of Theorem 3.1. A specialization of The-
orem 3.1 for m = n = 2 and A = B = C corresponds in some sense to [9,
Theorem 2.1], due to Moslehian et al., as follows.

Corollary 5.1 ([9, Theorem 2.1]). Let f : J → R be an operator-convex function
on interval J ⊂ R. Let A be a unital C∗-algebra. Suppose that Ai and Bj are
self-adjoint operators in Asa(J) with spectra in J for i, j = 1, 2. If

(B1, B2) ≺str (A1, A2), (5.1)

then

f
(
Φ(B1)

)
+ f

(
Φ(B2)

)
≤ Φ

(
f(A1)

)
+ Φ

(
f(A2)

)
, (5.2)

where Φ : A → A is a unital positive linear map.

Proof. We set C = B = A and n = m = 2. By virtue of (5.1) there exists a 2× 2
strongly doubly stochastic matrix S =

(
S11 S12
S21 S22

)
such that

(B1, B2) = (A1, A2)S. (5.3)

Denote

S0 =

(
Φ 0
0 Φ

)
.

It follows from (5.3) that(
Φ(B1),Φ(B2)

)
= (B1, B2)S0 = (A1, A2)SS0, (5.4)

where

SS0 =

(
S11Φ, S12Φ
S21Φ, S22Φ

)
is column-stochastic because Φ is unital and S is strongly doubly (hence column-)
stochastic.

In consequence, by (5.4),(
Φ(B1),Φ(B2)

)
≺rp (A1, A2) by SS0. (5.5)

On the other hand, by defining

(Φ1,Φ2) = (Φ,Φ) and (Ψ1,Ψ2) = (idA, idA), (5.6)
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we obtain

(Φ,Φ) ≺lp (idA, idA) by (SS0)
T . (5.7)

In fact,

(SS0)
T =

(
S11Φ, S21Φ
S12Φ, S22Φ

)
,

and, therefore, for j = 1, 2,

idASj1Φ + idASj2Φ = Sj1Φ + Sj2Φ = (Sj1 + Sj2)Φ = idAΦ = Φ,

proving (5.7). By making use of (5.5), (5.6), (5.7), and of Theorem 3.1 for m =
n = 2 and, A = B = C, we deduce from (3.3) that

f
(
Φ(B1)

)
+ f

(
Φ(B2)

)
≤ Φf(A1) + Φf(A2),

as claimed. �

Corollary 5.2 (Choi–Davis inequality [2, Theorem 2.1], [4, p. 44]). Let f : J → R
be an operator-convex function on interval J ⊂ R. Let A be a unital C∗-algebra.
Suppose that A is a self-adjoint operator in Asa(J). Then

f
(
Φ(A)

)
≤ Φ

(
f(A)

)
, (5.8)

where Φ : A → A is a unital positive linear map.

Proof. We define A1 = A2 = A, B1 = B2 = A, and S =
(
idA 0
0 idA

)
. Clearly,

(A,A) ≺str (A,A) by S,

and S is strongly doubly stochastic. In other words, (5.1) is met. According to
Corollary 5.1, from (5.2), we infer that

f
(
Φ(A)

)
+ f

(
Φ(A)

)
≤ Φ

(
f(A)

)
+ Φ

(
f(A)

)
,

which gives (5.8), as desired. �
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