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Abstract. In this article, we study some geometric properties like paral-
lelism, orthogonality, and semirotundity in the space of bounded linear oper-
ators. We completely characterize parallelism of two compact linear operators
between normed linear spaces X and Y, assuming X to be reflexive. We also
characterize parallelism of two bounded linear operators between normed linear
spaces X and Y. We investigate parallelism and approximate parallelism in the
space of bounded linear operators defined on a Hilbert space. Using the char-
acterization of operator parallelism, we study Birkhoff–James orthogonality
in the space of compact linear operators as well as bounded linear operators.
Finally, we introduce the concept of semirotund points (semirotund spaces)
which generalizes the notion of exposed points (strictly convex spaces). We
further study semirotund operators and prove that B(X,Y) is a semirotund
space which is not strictly convex if X,Y are finite-dimensional Banach spaces
and Y is strictly convex.

1. Introduction

In this article, letters X, Y denote normed linear spaces and H denotes a Hilbert
space over the field K ∈ {C,R}. Also X∗ denotes the dual space of X. Let BX =
{x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be the unit ball and the unit
sphere of X, respectively. Let B(X,Y)(K(X,Y)) denote the space of all bounded
(compact) linear operators from X to Y. We write B(X,Y) = B(X)(K(X,Y) =
K(X)) if X = Y. For x, y ∈ X, x is said to be orthogonal to y in the sense
of Birkhoff–James (see [5]), written as x ⊥B y, if ‖x‖ ≤ ‖x + λy‖ for all λ ∈
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K. Moreover, x is said to be norm-parallel (see [18]) to y, written as x ‖ y,
if ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T, where T = {λ ∈ K : |λ| = 1}.
We would like to note that in the context of a Banach space, Birkhoff–James
orthogonality is homogeneous but not symmetric [10], whereas norm-parallelism is
both symmetric and R-homogeneous. The notion of Birkhoff–James orthogonality
coincides with inner product orthogonality if the underlying space is a Hilbert
space. Furthermore, two elements of a Hilbert space are norm-parallel if and only
if they are linearly dependent. In the case of normed linear spaces, two linearly
dependent vectors are norm-parallel, but the converse is not true in general. In
`2∞, (1, 1) and (1, 0) are norm-parallel but linearly independent. Paul, Sain, and
Jha [14] studied the notion of strong orthogonality. For x, y ∈ X, x is said to be
strongly orthogonal to y in the sense of Birkhoff–James, written as x ⊥SB y, if
‖x‖ < ‖x+ λy‖ for all λ ∈ K \ {0}.

Birkhoff–James orthogonality plays a very important role in the study of the
geometry of Banach spaces. It has been explored in various settings by many other
mathematicians (see [1]–[4], [12], [15], [19]). Furthermore, various generalizations
of it have also been considered. Dragomir [9] defined approximate Birkhoff–James
orthogonality as follows. Let ε ∈ [0, 1) and let x, y ∈ X. Then x is said to be
approximate Birkhoff–James orthogonal to y if ‖x+ λy‖ ≥ (1− ε)‖x‖, ∀λ ∈ K.

Later on, Chmieliński [7] slightly modified the definition given by Dragomir
and defined approximate Birkhoff–James orthogonality as follows:

x ⊥ε
D y ⇐⇒ ‖x+ λy‖ ≥

√
1− ε2‖x‖, ∀λ ∈ K.

Motivated by the notion of approximate Birkhoff–James orthogonality, Zamani
and Moslehian [20] introduced the notion of approximate parallelism (ε-paralle-
lism) in the setting of normed linear space. For x, y ∈ X and ε ∈ [0, 1), x is said to
be approximately parallel to y, written as x ‖ε y, if inf{‖x+µy‖ : µ ∈ K} ≤ ε‖x‖.
We would like to remark here that, in general, in a normed linear space, x ‖ε y
with ε = 0 implies that x ‖ y but not the other way around. As, for example, in
`2∞, (1, 1) ‖ (1, 0) but (1, 1) 6‖ε (1, 0) with ε = 0.

We will see later that the norm attainment set of a bounded linear operator
plays an important role in the study of norm-parallelism and Birkhoff–James
orthogonality of bounded linear operators between Banach spaces. For a bounded
linear operator T ∈ B(X,Y), we define MT to be the set of all unit vectors in SX
at which T attains norm; that is,

MT =
{
x ∈ SX : ‖Tx‖ = ‖T‖

}
.

The purpose of this article is to study norm-parallelism and Birkhoff–James
orthogonality in the space of bounded linear operators from the point of view
of operator norm attainment. Bottazzi, Conde, Moslehian, Wójcik, and Zamani
[6, Theorem 4.24] proved that if X is a reflexive Banach space, Y is a smooth,
strictly convex Banach space, T,A ∈ K(X,Y), and MT is either connected or
MT = {±u} for some unit vector u ∈ X, then T ‖ A if and only if there exists
a vector x ∈ MT ∩MA such that Tx ‖ Ax. Here, we substantially improve upon
this result to show that there is no need to place additional restrictions on the
norm attainment set MT and the codomain space Y. We next give a complete
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characterization of norm-parallelism of bounded linear operators defined between
any two normed linear spaces.

We further study and completely characterize norm-parallelism in the space
of bounded linear operators on a Hilbert space H. We also obtain a necessary
condition for approximate parallelism in B(H), and we provide an example to
illustrate the subtle difference between norm-parallelism of operators (T ‖ A)
and approximate operator parallelism (T ‖ε A, with ε = 0).

In Section 3, we explore Birkhoff–James orthogonality in the space of bounded
linear operators by classifying them into two exclusive and exhaustive categories.
We first study the case T ⊥SB A and obtain a characterization of strong Birkhoff–
James orthogonality in the space of bounded linear operators between finite-
dimensional normed linear spaces. We next study the case T ⊥B A but T 6⊥SB A
and obtain a necessary condition for the same.

Motivated by the operator-theoretic results involving Birkhoff–James orthog-
onality and strong Birkhoff–James orthogonality, we introduce a new geometric
notion, that of a semirotund point, defined in the following way.

Definition 1.1. Let X be a normed linear space. An element θ 6= x ∈ X is said to
be a semirotund point of X if there exists y ∈ X such that x ⊥SB y.

Definition 1.2. A normed linear space X is considered a semirotund space if for
each nonzero x ∈ X, x is a semirotund point.

Clearly, every exposed point of the unit ball of a normed linear space is a
semirotund point. However, it is interesting to observe that the converse is not
true if the dimension of the space is greater than 2. In `3∞, the point (1, 1, 0) is a
semirotund point but not an exposed point of the unit ball. It is also immediate
that a strictly convex space is a semirotund space but the converse is not necessar-
ily true. For example, consider the space X, where SX = {(x, y, z) ∈ R3 : x2+y2 =
1, |z| ≤ 1} ∪ {(x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1, 1 ≤ z ≤ 2} ∪ {(x, y, z) ∈
R3 : x2 + y2 + (z + 1)2 = 1,−2 ≤ z ≤ −1}. In this case, it is easy to verify that
every nonzero element in X is a semirotund point but not every point of SX is
an exposed point of BX. We note that the notions of exposed point (strictly con-
vex space) and semirotund point (semirotund space) are equivalent if the space
is two-dimensional. Continuing our study of semirotund points, we prove that
every nonzero compact linear operator from a reflexive Banach space to a strictly
convex Banach space is a semirotund point of the corresponding operator space.
Finally, we show that B(X,Y) is a semirotund space which is not strictly convex
if X and Y are finite-dimensional Banach spaces and, in addition, Y is strictly
convex. In particular, this illustrates that the concept of semirotundity is a proper
generalization of the concept of strict convexity. It is well known that several con-
vexity conditions such as uniform convexity and local uniform rotundity, strictly
stronger than that of strict convexity, are of great importance in the study of
the geometry of normed linear spaces. We would like to end this section with the
remark that, to the best of our knowledge, this is the first instance of a convexity
property in normed linear spaces which is strictly weaker than strict convexity.
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2. Norm-parallelism of bounded linear operators

We begin this section with an easy proposition on approximate parallelism.

Proposition 2.1. Let X, Y be two normed linear spaces. Let T ∈ B(X,Y) and let
x ∈ MT . Then for any ε ∈ [0, 1) and any y ∈ X, we have x ‖ε y =⇒ Tx ‖ε Ty.

Proof. Let x ‖ε y. Then inf{‖x+ λy‖ : λ ∈ K} ≤ ε‖x‖. Thus we have

inf
{
‖Tx+ λTy‖ : λ ∈ K

}
≤ ‖T‖ inf

{
‖x+ λy‖ : λ ∈ K

}
≤ ε‖T‖‖x‖
= ε‖Tx‖.

Therefore, Tx ‖ε Ty. �

James [11, Theorem 2.1] characterized Birkhoff–James orthogonality in terms
of linear functionals. We next state a lemma that characterizes approximate par-
allelism in terms of linear functionals. We would like to remark that the lemma
follows from a slight variation of [8, Corollary 6.8], and therefore its proof is
omitted.

Lemma 2.2. Let X be a normed linear space. Let x, y ∈ X and let d = inf{‖x+
λy‖ : λ ∈ K}. Then for any ε ∈ [0, 1), x ‖ε y if and only if there exists a linear
functional f ∈ SX∗ such that f(x) = d ≤ ε‖x‖ and f(y) = 0.

Now, we obtain complete characterization of norm-parallelism of compact linear
operators defined on a reflexive Banach space, which substantially improves on
[6, Theorem 4.24].

Theorem 2.3. Let X be a reflexive Banach space, and let Y be any normed linear
space. Let T,A ∈ K(X,Y). Then T ‖ A if and only if there exists x ∈ MT ∩MA

such that Tx ‖ Ax.

Proof. First we prove the necessary part of the theorem. Let T ‖ A. Then there
exists λ ∈ T such that ‖T + λA‖ = ‖T‖ + ‖A‖. The operator T + λA, being a
compact operator on a reflexive Banach space, attains its norm. Therefore, there
exists x ∈ SX such that ‖T + λA‖ = ‖(T + λA)x‖. Thus,

‖T‖+ ‖A‖ = ‖T + λA‖
=

∥∥(T + λA)x
∥∥

≤ ‖Tx‖+ ‖Ax‖
≤ ‖Tx‖+ ‖A‖
≤ ‖T‖+ ‖A‖.

This implies that ‖Tx+ λAx‖ = ‖Tx‖+ ‖Ax‖ and that ‖Tx‖ = ‖T‖. Similarly,
‖Ax‖ = ‖A‖. Therefore, x ∈ MT ∩MA and Tx ‖ Ax. This completes the proof
of the necessary part of the theorem.

For the sufficient part, suppose that there exists x ∈ MT ∩ MA such that
Tx ‖ Ax. Then there exists λ ∈ T such that ‖Tx + λAx‖ = ‖Tx‖ + ‖Ax‖.
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Therefore,

‖T‖+ ‖A‖ ≥ ‖T + λA‖
≥

∥∥(T + λA)x
∥∥

= ‖Tx‖+ ‖Ax‖
= ‖T‖+ ‖A‖.

Thus, ‖T + λA‖ = ‖T‖ + ‖A‖, that is, T ‖ A. This completes the proof of the
theorem. �

We make note of the following remark that will be needed later in Theorem 3.6.

Remark 2.4. From the proof of Theorem 2.3, it is clear that ‖T+λA‖ = ‖T‖+‖A‖
for λ ∈ T if and only if there exists x ∈ MT ∩ MA such that ‖Tx + λAx‖ =
‖Tx‖+ ‖Ax‖.

We next give an example to show that the compactness of T , A in Theorem 2.3
is essential.

Example 2.5. Consider the right shift operator T : `2 −→ `2 defined by T (x1, x2,
x3, . . .) = (0, x1, x2, x3, . . .). Let I be the identity operator on `2. Then ‖T‖ =
‖I‖ = 1. Consider yn = 1√

n
(1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . .) ∈ S`2 for each n ∈ N. Then

‖(T + I)yn‖2 = 1
n
‖(1, 2, 2, . . . , 2, 1, 0, 0, . . .)‖2 = 1

n
[2 + 4(n − 1)] −→ 4. Thus,

2 ≤ ‖T + I‖ ≤ ‖T‖+ ‖I‖ = 2 ⇒ ‖T + I‖ = ‖T‖+ ‖I‖; that is, T ‖ I. We claim
that there does not exist any x ∈ MT ∩MI such that Tx ‖ Ix. For, if Tx ‖ Ix
for some x = (x1, x2, x3, . . .) ∈ MT ∩ MI , then there exists λ ∈ T such that
‖Tx+ λIx‖ = ‖Tx‖+ ‖Ix‖ and so ‖Tx‖‖Ix‖ = Re{λ〈Tx, Ix〉} ≤ |λ〈Tx, Ix〉| =
|〈Tx, Ix〉| ≤ ‖Tx‖‖Ix‖. Then |〈Tx, Ix〉| = ‖Tx‖‖Ix‖ = ‖T‖‖I‖, since x ∈ MT .

Then |0x1 + x1x2 + x2x3 + · · · | = 1 = (02 + |x1|2 + |x2|2 + · · · ) 1
2 (|x1|2 + |x2|2 +

|x3|2 + · · · ) 1
2 . Thus, by the equality condition of the Cauchy–Schwarz inequality,

we have (0, x1, x2, x3, . . .) = λ(x1, x2, x3, . . .) for some λ ∈ K, which implies that
x = 0, a contradiction.

In the next theorem, we characterize norm-parallelism of bounded linear oper-
ators between any two normed linear spaces.

Theorem 2.6. Let X, Y be two normed linear spaces, and let T,A ∈ B(X,Y).
Then T ‖ A if and only if there exists a sequence {xn} in SX such that

lim
n→∞

‖Txn‖ = ‖T‖, lim
n→∞

‖Axn‖ = ‖A‖

and

lim
n→∞

‖Txn + λAxn‖ = ‖T‖+ ‖A‖

for some λ ∈ T.

Proof. First we prove the necessary part of the theorem. Let T ‖ A. Then there
exists λ ∈ T such that ‖T + λA‖ = ‖T‖ + ‖A‖. Now, there exists a sequence
{xn} in SX such that limn→∞ ‖(T + λA)xn‖ = ‖T + λA‖. Since {‖Txn‖} and
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{‖Axn‖} are bounded sequences of real numbers, without loss of generality (if
necessary, passing onto a subsequence) we can assume that limn→∞ ‖Txn‖ and
limn→∞ ‖Axn‖ exist. Therefore,

‖T‖+ ‖A‖ = ‖T + λA‖
= lim

n→∞

∥∥(T + λA)xn

∥∥
≤ lim

n→∞
‖Txn‖+ lim

n→∞
‖Axn‖

≤ lim
n→∞

‖Txn‖+ ‖A‖

≤ ‖T‖+ ‖A‖.

This implies that limn→∞ ‖Txn + λAxn‖ = limn→∞ ‖Txn‖ + limn→∞ ‖Axn‖ and
that limn→∞ ‖Txn‖ = ‖T‖. Similarly, limn→∞ ‖Axn‖ = ‖A‖. This completes the
proof of the necessary part of the theorem.

For the sufficient part of the theorem, assume that there exists a sequence {xn}
in SX such that limn→∞ ‖Txn‖ = ‖T‖, limn→∞ ‖Axn‖ = ‖A‖, and limn→∞ ‖Txn+
λAxn‖ = ‖T‖+ ‖A‖ for some λ ∈ T. Therefore,

‖T‖+ ‖A‖ ≥ ‖T + λA‖
≥ lim

n→∞

∥∥(T + λA)xn

∥∥
= ‖T‖+ ‖A‖.

Thus, ‖T + λA‖ = ‖T‖ + ‖A‖; that is, T ‖ A. This completes the proof of the
theorem. �

Remark 2.7. We note that norm-parallelism in operator space can also be char-
acterized by [21, Theorem 2.4] using the notion of Birkhoff–James orthogonality.

We next give an easy characterization of strictly convex spaces in terms of
norm-parallelism.

Theorem 2.8. A normed linear space X is strictly convex if and only if for any
x, y ∈ X, x ‖ y ⇔ {x, y} is linearly dependent.

Proof. Let X be strictly convex. Let {x, y} be linearly dependent. Let y = αx. If
α = 0, then clearly, ‖x+ y‖ = ‖x‖+‖y‖. Let α 6= 0. Let λ = α

|α| . Then λ ∈ T and

‖x+λy‖ = ‖x+ α
|α|αx‖ = ‖x+|α|x‖ = ‖x‖+‖y‖. Thus, x ‖ y. On the other hand,

let x ‖ y. Then there exists λ ∈ T such that ‖x+λy‖ = ‖x‖+ ‖y‖ = ‖x‖+ ‖λy‖.
Since X is strictly convex, {x, y} is linearly dependent.

Conversely, suppose that X is not strictly convex. Then there exist two linearly
independent vectors x, y ∈ SX and t ∈ (0, 1) such that ‖(1− t)x+ ty‖ = 1 = ‖(1−
t)x‖ + ‖ty‖. Therefore, it follows from the homogeneity property of parallelism
that x ‖ y. This completes the proof of the theorem. �

In [6, Theorem 4.14], the authors proved that, if X is a locally uniformly convex
Banach space and A ∈ K(X) is such that Am−1 6= 0 and Am = 0 for some m ∈ N,
then Ak 6‖ Aj for every 1 ≤ k < j < m. It turns out that the condition “X is a
locally uniformly convex Banach space” is redundant and as a matter of fact, we
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prove the theorem under the weaker assumption of strict convexity. We further
show that strict convexity is essential for the result to hold true.

Theorem 2.9. Let X be a strictly convex Banach space. Let A ∈ K(X) be such
that Am = 0 and Aj 6= 0 for all 1 ≤ j < m. Then Ak ∦ Aj for every 1 ≤ k < j <
m.

Proof. Let 1 ≤ k < j < m. If possible, suppose that Ak ‖ Aj. Then from
Theorem 2.6, we have that there exists {xn} in SX such that

lim
n→∞

‖Akxn‖ = ‖Ak‖, lim
n→∞

‖Ajxn‖ = ‖Aj‖

and

lim
n→∞

‖Akxn + λAjxn‖ = ‖Ak‖+ ‖Aj‖,

for some λ ∈ T. Since A ∈ K(X), it follows that Ak, Aj ∈ K(X). Therefore,
{Akxn} has a convergent subsequence, say, {Akxni

}, converging to y ∈ X. Hence
‖Akxni

‖ converges to ‖y‖. Thus, ‖y‖ = ‖Ak‖. Again, limn→∞(Akxni
) = y implies

that Ajxni
= Aj−k(Akxni

) converges to Aj−ky. Therefore, ‖Ajxni
‖ converges

to ‖Aj−ky‖ and hence ‖Aj−ky‖ = ‖Aj‖. Now, Akxni
+ λAjxni

converges to
y + λAj−ky, which implies that ‖Akxni

+ λAjxni
‖ converges to ‖y + λAj−ky‖.

Therefore, ‖y + λAj−ky‖ = ‖Ak‖ + ‖Aj‖ = ‖y‖ + ‖Aj−ky‖. Hence y ‖ Aj−ky.
Since X is strictly convex, Aj−ky = αy for some α ∈ K. This implies that
Am(j−k)y = αmy. Thus, αmy = 0, since Am = 0. Therefore, either y = 0 or
α = 0. Now, y = 0 gives that Ak = 0 and α = 0 gives that Aj−ky = 0; that is,
Aj = 0. Thus, in any case, we reach a contradiction to the hypothesis. Therefore,
Ak ∦ Aj. This completes the proof of the theorem. �

We now give an example to show that in Theorem 2.9, strict convexity of X is
essential.

Example 2.10. Let X = `31. Define A ∈ B(X) by

A(1, 0, 0) = −(0, 1, 0),

A(0, 1, 0) = −(0, 0, 1),

A(0, 0, 1) = (0, 0, 0).

Clearly, A 6= 0, A2 6= 0, and A3 = 0. It is easy to observe that (1, 0, 0) ∈ MA∩MA2

and that A(1, 0, 0) ‖ A2(1, 0, 0). Therefore, by Theorem 2.3, we have A ‖ A2.

Bottazzi, Conde, Moslehian, Wójcik, and Zamani [6, Theorem 4.15] investi-
gated norm-parallelism of idempotent operators defined on a locally uniformly
convex Banach space. In the next theorem, we study the problem when the under-
lying space is strictly convex.

Theorem 2.11. Let X be a strictly convex normed linear space. Let A,B ∈ K(X)
be such that A 6= 0, B 6= 0, A2 = A, and B2 = B. If A ‖ B, then A(X)∩B(X) 6=
{0}.
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Proof. Suppose that A ‖ B. Then from Theorem 2.6, we have that there exists
a sequence {xn} in SX such that limn→∞ ‖Axn‖ = ‖A‖, limn→∞ ‖Bxn‖ = ‖B‖,
and limn→∞ ‖Axn + λBxn‖ = ‖A‖ + ‖B‖ for some λ ∈ T. Since A and B are
compact operators, {Axn} and {Bxn} have convergent subsequences. We assume
without loss of generality that Axn −→ y and Bxn −→ z. Therefore, A2xn −→
Ay. Since A2 = A, we have Ay = y. Similarly, Bz = z. Again, Axn −→ y
and ‖Axn‖ −→ ‖A‖ implies that ‖A‖ = ‖y‖. Similarly, ‖B‖ = ‖z‖. Clearly,
Axn + λBxn −→ y + λz. Therefore, ‖y + λz‖ = ‖A‖ + ‖B‖ = ‖y‖ + ‖z‖. Thus,
y ‖ z. Since X is strictly convex, z = αy for some α ∈ K. Now, Ay = y,
Bz = z, and z = αy gives that z ∈ A(X) ∩ B(X). Clearly, z 6= 0; otherwise
‖z‖ = ‖B‖ = 0 implies that B = 0, which is a contradiction to the hypothesis.
Therefore, A(X) ∩B(X) 6= {0}. This completes the proof of the theorem. �

The following example shows that in Theorem 2.11, strict convexity of X is
essential.

Example 2.12. Let X = `31, and let A,B ∈ B(`31) be given by the following matrices
(with respect to the standard ordered basis of R3)1 0 0

0 0 0
0 0 0

 ,

0 0 0
0 1 0
1 0 1

 ,

respectively. Clearly, A2 = A and B2 = B. It is easy to verify that (1, 0, 0) ∈
MA ∩ MB and that A(1, 0, 0) ‖ B(1, 0, 0). Therefore, by Theorem 2.3, we have
A ‖ B. Clearly, in this case, A(X) ∩B(X) = {(0, 0, 0)}.

Next, we study approximate parallelism in the space of bounded linear opera-
tors on an infinite-dimensional Hilbert space.

Theorem 2.13. Let H be an infinite-dimensional Hilbert space. Let ε ∈ [0, 1)
and T ∈ B(H). Then (i)⇒(ii), where

(i) for any A ∈ B(H), T ‖ε A ⇔ there exists x ∈ MT ∩ MA such that
Tx ‖ε Ax;

(ii) there exists a finite-dimensional subspace H0 of H such that MT = SH0

and ‖T‖H⊥
0
< ‖T‖.

Proof. Assume without loss of generality that ‖T‖ = 1. From [16, Theorem 2.2],
we have MT = SH0 , where H0 is a subspace of H. We first show that H0 is
finite-dimensional. If possible, suppose thatH0 is infinite-dimensional. Then there
exists a sequence {en : n ∈ N} of orthonormal vectors in H0. Extend this sequence
to a complete orthonormal basis B = {eα : α ∈ Λ ⊇ N} ofH. For each eα ∈ H0∩B,
we have ‖T ∗T‖ = ‖T‖2 = ‖Teα‖2 = 〈T ∗Teα, eα〉 ≤ ‖T ∗Teα‖‖eα‖ ≤ ‖T ∗T‖, so
that by the equality condition of Schwarz’s inequality, we get T ∗Teα = λαeα for
some scalar λα. Thus, {Teα : eα ∈ H0 ∩ B} is a set of orthonormal vectors in H.
Define A : B −→ H as follows:

Aen =
1

n2
Ten, ∀n ∈ N,

Aeα = 0, ∀eα ∈ B \ {en : n ∈ N.}
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Since {Teα : α ∈ H0 ∩B} is orthonormal, A can be extended to a bounded linear
operator on H. Now, for any λ ∈ K, ‖T +λA‖ ≥ ‖(T +λA)en‖ = |1+ λ

n2 |‖Ten‖ =

|1 + λ
n2 | −→ 1. Therefore, infλ∈K ‖T + λA‖ ≥ 1 > ε. This implies that T 6‖ε A.

But e1 ∈ MT ∩MA and clearly Te1 ‖ε Ae1. However, this clearly contradicts the
hypothesis. Therefore, H0 must be finite-dimensional.

Next, we show that ‖T‖H⊥
0

< 1. If possible, suppose that ‖T‖H⊥
0

= 1. Then

there exists a sequence {xn} in SH⊥
0
such that ‖Txn‖ −→ 1. Define A : H −→ H

by Az = Tx, where z = x + y, x ∈ H0, y ∈ H⊥
0 . It is easy to verify that

A ∈ B(H). Now, for any λ ∈ K, ‖T + λA‖ ≥ ‖(T + λA)xn‖ = ‖Txn‖ −→ 1.
Therefore, infλ∈K ‖T + λA‖ ≥ 1 > ε. This shows that T 6‖ε A but clearly, for any
x ∈ MT ∩MA, Tx ‖ε Ax. Once again, this contradicts the hypothesis. Therefore,
we must have ‖T‖H⊥

0
< 1. This establishes the theorem. �

The following example shows that Theorem 2.13(ii) does not imply Theo-
rem 2.13(i); that is, there exist T,A ∈ B(H) and a finite-dimensional subspace
H0 of H such that MT = SH0 and ‖T‖H⊥

0
< ‖T‖, but T ‖ε A ⇔ Tx ‖ε Ax for

some x ∈ MT ∩MA does not hold.

Example 2.14. Consider T,A ∈ B(`2) defined by

T (x1, x2, x3, . . . , xn, . . .) =
(
x1,

x2

2
,
x3

2
, . . . ,

xn

2
, . . .

)
,

A(x1, x2, x3, . . . , xn, . . .) = (x1, 0, 0, . . . , 0, . . .),

respectively, where (x1, x2, x3, . . . , xn, . . .) ∈ `2. It is easy to verify thatMT = SH0 ,
where H0 = span{(1, 0, 0, . . .)} and ‖T‖H⊥

0
= 1

2
< ‖T‖. Let ε ∈ [0, 1

2
). Clearly,

(1, 0, 0, . . .) ∈ MT ∩MA and T (1, 0, 0, . . .) ‖ε A(1, 0, 0, . . .). Now, since〈
A(0, 1, 0, 0, . . . , 0, . . .), (0, 1, 0, 0, . . . , 0, . . .)

〉
= 0

and 〈
T (0, 1, 0, 0, . . . , 0, . . .), (0, 1, 0, 0, . . . , 0, . . .)

〉
=

1

2
,

we have sup{|〈Tξ, η〉| : ‖ξ‖ = ‖η‖ = 1, 〈Aξ, η〉 = 0} ≥ 1
2
> ε. Therefore, by [20,

Theorem 3.7], we have T 6‖ε A.

However, if we consider T ‖ A instead of T ‖ε A(ε ∈ [0, 1)), then we have the
following characterization.

Theorem 2.15. Let H be an infinite-dimensional Hilbert space. Let T ∈ B(H).
Then the following two conditions are equivalent.

(i) For any A ∈ B(H), T ‖ A ⇔ there exists x ∈ MT ∩MA such that Tx ‖ Ax.
(ii) There exists a finite-dimensional subspace H0 of H such that MT = SH0

and ‖T‖H⊥
0
< ‖T‖.

Proof. The implication (ii)⇒(i) follows from [21, Theorem 2.18].
We only prove (i)⇒(ii). Assume without loss of generality that ‖T‖ = 1. From

[16, Theorem 2.2], we have MT = SH0 , where H0 is a subspace of H. We first show
that H0 is finite-dimensional. If possible, suppose that H0 is infinite-dimensional.
Then there exists a sequence {en : n ∈ N} of orthonormal vectors in H0. Extend



ON SOME GEOMETRIC PROPERTIES OF OPERATOR SPACES 183

this sequence to a complete orthonormal basis B = {eα : α ∈ Λ ⊇ N} of H.
For each eα ∈ H0 ∩ B we have ‖T ∗T‖ = ‖T‖2 = ‖Teα‖2 = 〈T ∗Teα, eα〉 ≤
‖T ∗Teα‖‖eα‖ ≤ ‖T ∗T‖, so that by the equality condition of Schwarz’s inequality
we get T ∗Teα = λαeα for some scalar λα. Thus, {Teα : eα ∈ H0 ∩ B} is a set of
orthonormal vectors in H. Let

Λ1 =
{
α ∈ Λ : eα ∈ (H0 ∩ B) \ {en : n ∈ N}

}
, Λ2 = {α ∈ Λ : eα ∈ B \H0}.

If Λ1 6= ∅, then Λ1 can be well ordered. Let α0 be the least element of Λ1, and for
any α ∈ Λ1, let s(α) be the successor of α. If Λ1 has a greatest element, say, β,
then define s(β) = α0. Now, define A : B −→ H as follows:

Aen = Ten+1, ∀n ∈ N,
Aeα = Tes(α), ∀α ∈ Λ1,

Aeα = 0, ∀α ∈ Λ2.

Since {Teα : eα ∈ H0 ∩ B} is a set of orthonormal vectors, A can be extended to
a bounded linear operator on H.

Next, we show that T ‖ A but there does not exist any x ∈ MT ∩MA such that
Tx ‖ Ax. Let x =

∑
n∈N〈x, en〉en+

∑
α∈Λ1

〈x, eα〉eα+
∑

α∈Λ2
〈x, eα〉eα. Then Ax =∑

n∈N〈x, en〉Ten+1 +
∑

α∈Λ1
〈x, eα〉Tes(α). Therefore, ‖Ax‖2 =

∑
n∈N |〈x, en〉|2 +∑

α∈Λ1
|〈x, eα〉|2 ≤ ‖x‖2. Thus, ‖A‖ ≤ 1. Again, ‖Aen‖ = ‖Ten+1‖ = 1 gives that

‖A‖ = 1. Now, let xn = 1√
n
(e1 + e2 + · · · + en). Then xn ∈ SH for all n ∈ N.

Now, (T + A)xn = 1√
n
(Te1 + 2Te2 + 2Te3 + · · · + 2Ten + Ten+1). Therefore,

‖(T + A)xn‖2 = 1
n
[2 + 4(n − 1)] =⇒ ‖(T + A)xn‖ −→ 2. Thus, we have 2 ≤

‖T + A‖ ≤ ‖T‖+ ‖A‖ = 2 =⇒ ‖T + A‖ = ‖T‖+ ‖A‖. This gives that T ‖ A.
Next, let x ∈ MT ∩MA. Let x =

∑
n∈N〈x, en〉en+

∑
α∈Λ1

〈x, eα〉eα. Let n0 be the

least positive integer such that 〈x, en0〉 6= 0. Then ‖x‖ = 1 =⇒
∑∞

n=n0
|〈x, en〉|2+∑

α∈Λ1
|〈x, eα〉|2 = 1. Now,∣∣〈Tx,Ax〉∣∣

=
∣∣∣〈 ∞∑

n=n0

〈x, en〉Ten +
∑
α∈Λ1

〈x, eα〉Teα,
∞∑

n=n0

〈x, en〉Ten+1 +
∑
α∈Λ1

〈x, eα〉Tes(α)
〉∣∣∣

=
∣∣∣ ∞∑
n=n0

〈x, en〉〈x, en+1〉+
∑
α∈Λ1

〈x, eα〉〈x, es(α)〉
∣∣∣

≤
{ ∞∑

n=n0

∣∣〈x, en〉∣∣2 + ∑
α∈Λ1

∣∣〈x, eα〉∣∣2} 1
2
{ ∞∑

n=n0+1

∣∣〈x, en〉∣∣2 + ∑
α∈Λ1

∣∣〈x, es(α)〉∣∣2} 1
2

< 1 = ‖Tx‖‖Ax‖.

Thus, T ‖ A but there exists no x ∈ MT ∩MA such that Tx ‖ Ax.
If Λ1 = ∅, then define A : B −→ H as follows:

Aen = Ten+1, ∀n ∈ N,
Aeα = 0, ∀α ∈ Λ2.
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Proceeding as before, we can show that T ‖ A but there exists no x ∈ MT ∩MA

such that Tx ‖ Ax. Therefore, H0 must be a finite-dimensional subspace of H.
Next, we show that ‖T‖H⊥

0
< 1. If possible, suppose that ‖T‖H⊥

0
= 1. Then

there exists a sequence {xn} in SH⊥
0
such that ‖Txn‖ −→ 1. Define A : H −→ H

by Az = Ty, where z = x + y, x ∈ H0, y ∈ H⊥
0 . Now, ‖z‖ = ‖x + y‖ = 1 =⇒

‖y‖ ≤ 1. Thus, ‖Az‖ = ‖Ty‖ ≤ 1. Again, ‖Axn‖ = ‖Txn‖ −→ 1 gives that
‖A‖ = 1. Now, ‖(T + A)xn‖ = 2‖Txn‖ −→ 2. Therefore, 2 ≤ ‖T + A‖ ≤ ‖T‖ +
‖A‖ = 2 and so ‖T +A‖ = ‖T‖+‖A‖; that is, T ‖ A. From the construction of A
it follows that Ax = 0, if x ∈ MT . Since A is nonzero, it follows that MT ∩MA = ∅
and so there does not exist any x ∈ MT ∩MA such that Tx ‖ Ax. This is in clear
contradiction with the hypothesis. Therefore, we must have ‖T‖H⊥

0
< 1. This

establishes the theorem. �

Remark 2.16. We note that T ‖ A does not imply T ‖ε A with ε = 0. This
difference between T ‖ A and T ‖ε A with ε = 0 justifies the fact that conditions
(i) and (ii) in Theorem 2.13 are not equivalent for ε = 0, whereas conditions (i)
and (ii) in Theorem 2.15 are equivalent.

3. Birkhoff–James orthogonality of bounded linear operators

We begin this section with an easy proposition on approximate Birkhoff–James
orthogonality (⊥ε

D).

Proposition 3.1. Let X, Y be two normed linear spaces. Let T ∈ B(X,Y) and let
x ∈ MT . Then for any ε ∈ [0, 1) and y ∈ X, Tx ⊥ε

D Ty =⇒ x ⊥ε
D y.

Proof. Let Tx ⊥ε
D Ty. Then for any λ ∈ K, ‖Tx + λTy‖ ≥

√
1− ε2‖Tx‖.

Therefore, for any λ ∈ K, ‖T‖‖x + λy‖ ≥ ‖Tx + λTy‖ ≥
√
1− ε2‖Tx‖ =√

1− ε2‖T‖‖x‖. Thus, for any λ ∈ K, ‖x + λy‖ ≥
√
1− ε2‖x‖. Therefore,

x ⊥ε
D y. �

James [11, Theorem 2.1] characterized Birkhoff–James orthogonality in terms
of linear functionals. In the next lemma, we characterize approximate Birkhoff–
James orthogonality (⊥ε

D) in terms of linear functionals.

Lemma 3.2. Let X be a normed linear space, and let x, y ∈ X. Then for any
ε ∈ [0, 1), x ⊥ε

D y if and only if there exists a linear functional f ∈ SX∗ such that
f(x) ≥

√
1− ε2‖x‖ and f(y) = 0.

Proof. The necessary part follows from a slight variation of [8, Corollary 6.8].
Let us prove the sufficient part of the lemma. Suppose that there exists a linear
functional f ∈ SX∗ such that f(x) ≥

√
1− ε2‖x‖ and f(y) = 0. Then for any

λ ∈ K,
√
1− ε2‖x‖ ≤ f(x) = f(x + λy) ≤ ‖f‖‖x + λy‖ = ‖x + λy‖. Therefore,

x ⊥ε
D y. �

The idea of the following theorem is adapted from [11, Theorem 2.1]. However,
for the sake of completeness, we present a complete proof of the result.

Theorem 3.3. Let X be a normed linear space. Let x be a nonzero element in X,
and let H be a hyperspace in X. Then for ε ∈ [0, 1), x ⊥ε

D H if and only if there
exists f ∈ SX∗ such that f(x) ≥

√
1− ε2‖x‖, where H = ker(f).
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Proof. First suppose that there exists f ∈ SX∗ such that f(x) ≥
√
1− ε2‖x‖,

where H = ker(f). Then for any h ∈ H and for any λ ∈ K,
√
1− ε2‖x‖ ≤ f(x)

= f(x+ λh)

≤ ‖f‖‖x+ λh‖
= ‖x+ λh‖.

This implies that
√
1− ε2‖x‖ ≤ ‖x + λh‖ for any h ∈ H and for any λ ∈ K.

Thus, x ⊥ε
D H.

Conversely, suppose that x ⊥ε
D H. Then it is easy to check that X = span{x,

H}. Define g : X −→ K by g(ax + h) = a, where a ∈ K and h ∈ H. Clearly,

g is linear and ker(g) = H. Now, |g(ax + h)| = |a| ≤ ‖ax+h‖√
1−ε2‖x‖ , since x ⊥ε

D h.

Thus, ‖g‖ ≤ 1√
1−ε2‖x‖ ⇒

√
1− ε2‖g‖‖x‖ ≤ 1 = g(x). Let f = 1

‖g‖g. Then clearly,

f ∈ SX∗ , f(x) ≥
√
1− ε2‖x‖ and H = ker(g) = ker(f). This establishes the

theorem. �

Our next objective is to study Birkhoff–James orthogonality in the space of
bounded linear operators by classifying them into two different cases: T ⊥B A
but T 6⊥SB A and T ⊥SB A. Sain and Paul [16, Theorem 2.1] proved that if T
is a bounded linear operator on a finite-dimensional real Banach space X and D
is a nonempty connected subset of SX such that MT = D ∪ (−D), then for any
A ∈ B(X), T ⊥B A if and only if there exists x ∈ D such that Tx ⊥B Ax. Note
that if there exists x ∈ D such that Tx ⊥SB Ax, then for any λ ∈ K \ {0},
‖T + λA‖ ≥ ‖(T + λA)x‖ > ‖Tx‖ = ‖T‖; that is, T ⊥SB A. However, the
following example illustrates that if T ⊥SB A, then there may not exist any
x ∈ D such that Tx ⊥SB Ax.

Example 3.4. Consider the two-dimensional real normed linear space X such that
SX = {(x, y) ∈ R2 : |x| = 1, |y| ≤ 1} ∪ {(x, y) ∈ R2 : x2 + (y − 1)2 = 1, 1 ≤ y ≤
2} ∪ {(x, y) ∈ R2 : x2 + (y + 1)2 = 1,−2 ≤ y ≤ −1}. Define T,A ∈ B(X) by
T (1, 1) = (1, 1), T (0, 2) = (0, 0), and A(1, 1) = (0, 2), A(0, 2) = (1,−1). Now, it
is easy to observe that ‖T‖ = 1 and MT = D ∪ (−D), where D = {(1, y) : −1 ≤
y ≤ 1}. Let λ > 0. Then ‖T +λA‖ ≥ ‖(T +λA)(1, 1)‖ = ‖(1, 1+2λ)‖ > 1 = ‖T‖.
Next, let λ < 0. Then ‖T + λA‖ ≥ ‖(T + λA)(1, 0)‖ = ‖(1 − λ

2
, 1 + 5λ

2
)‖ > 1 =

‖T‖. Therefore, T ⊥SB A. Now, let (1, y) ∈ D. Then T (1, y) = (1, 1). Clearly,
there does not exist any (x1, y1) ∈ X such that (1, 1) ⊥SB (x1, y1). Therefore,
T (1, y) 6⊥SB A(1, y) for any (1, y) ∈ D.

In the following theorem, we characterize strong Birkhoff–James orthogonality
(T ⊥SB A) in the space of all bounded linear operators between finite-dimensional
Banach spaces.

Theorem 3.5. Let X, Y be finite-dimensional Banach spaces. Let T,A ∈ B(X,Y).
Then T ⊥SB A if and only if, for any ε > 0, there exists λε > 0 such that for each
|λ| < λε, there exists yλ ∈ (

⋃
x∈MT

B(x, ε)) ∩ SX such that ‖Tyλ + λAyλ‖ > ‖T‖.
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Proof. First, we prove the (easier) sufficient part of the theorem.
Let ε > 0 be given. Then there exists λε > 0 such that, for each |λ| < λε,

there exists yλ ∈ (
⋃

x∈MT
B(x, ε))∩SX such that ‖Tyλ+λAyλ‖ > ‖T‖. Therefore,

‖T + λA‖ ≥ ‖Tyλ + λAyλ‖ > ‖T‖. Now, by the convexity of the norm function,
it is easy to observe that T ⊥SB A.

For the necessary part, suppose that T ⊥SB A. Let ε > 0 be given. Now,
using the compactness of SX, it is easy to observe that sup{‖Tz‖ : z ∈ SX \
(
⋃

x∈MT
B(x, ε))} < ‖T‖ − δ for some δ > 0. Let z ∈ SX \ (

⋃
x∈MT

B(x, ε)). Then
‖Tz‖ < ‖T‖ − δ. Therefore,

‖Tz + λAz‖ ≤ ‖Tz‖+ |λ|‖Az‖
< ‖T‖ − δ + |λ|‖A‖
< ‖T‖ for some |λ| < λε.

Now, since ‖T+λA‖ > ‖T‖, (T+λA) does not attain norm in SX\(
⋃

x∈MT
B(x, ε)

for each |λ| < λε. Hence there exists yλ ∈ SX ∩ (
⋃

x∈MT
B(x, ε)) such that ‖Tyλ +

λAyλ‖ = ‖T + λA‖ > ‖T‖. This completes the proof of the theorem. �

Now, we study the case when T ⊥B A but T 6⊥SB A, where T and A are
compact linear operators defined from a reflexive Banach space to any normed
linear space.

Theorem 3.6. Let X be a reflexive Banach space, and let Y be any normed linear
space. Let T,A ∈ K(X,Y) be such that T ⊥B A but T 6⊥SB A. Then there exists
x ∈ MT such that Tx ⊥B Ax.

Proof. Without loss of generality, we may and do assume that ‖T‖ = 1. Since
T ⊥B A but T 6⊥SB A, there exists µ ∈ K \ {0} such that ‖T + µA‖ = ‖T‖ = 1.
Let B = −µA − T . Then ‖B‖ = 1. Now, T ⊥B A gives that T ⊥B (B + T ).
Therefore, from [11, Theorem 2.1], we have that there exists F ∈ K(X,Y)∗ such
that ‖F‖ = 1, F (T ) = ‖T‖, and F (T + B) = 0. Clearly, F (−B) = ‖T‖ = 1 =
‖−B‖. Therefore, ‖T‖+ ‖−B‖ = F (T ) +F (−B) = F (T −B) ≤ ‖F‖‖T −B‖ =
‖T − B‖ ≤ ‖T‖ + ‖−B‖. Thus, ‖T − B‖ = ‖T‖ + ‖−B‖. Now, by Remark 2.4,
we have that there exists x ∈ MT ∩MB such that ‖Tx−Bx‖ = ‖Tx‖ + ‖−Bx‖.
We note that there exists g ∈ SX∗ such that g(Tx−Bx) = ‖Tx−Bx‖. Therefore,
g(Tx) + g(−Bx) = g(Tx−Bx) = ‖Tx−Bx‖ ≤ ‖Tx‖ + ‖−Bx‖. Again, g(Tx) ≤
‖Tx‖ and g(−Bx) ≤ ‖−Bx‖ gives that g(Tx) = ‖Tx‖ = 1 and g(−Bx) =
‖−Bx‖ = 1. This implies that g(Tx+Bx) = 0. Therefore, by [11, Theorem 2.1],
we have Tx ⊥B (Tx + Bx); that is, Tx ⊥B (−µAx). Hence Tx ⊥B Ax. This
completes the proof of the theorem. �

Remark 3.7. From the above theorem and [13, Theorem 2.1], it is clear that for
T,A ∈ K(X,Y), where X is a reflexive Banach space and Y is any normed linear
space, T ⊥B A implies that there exists x ∈ MT such that Tx ⊥B Ax if either
T 6⊥SB A or MT = D∪ (−D)(D is a nonempty compact connected subset of SX).

Combining Theorem 3.6 and [17, Theorem 2.3], we obtain the following corol-
lary.
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Corollary 3.8. Let X be a two-dimensional real normed linear space. Let T ∈
B(X). If, for any A ∈ B(X), T ⊥B A implies that T 6⊥SB A, then MT cannot
have more than two components.

Proof. Let T ∈ B(X). Suppose that for any A ∈ B(X), T ⊥B A implies that
T 6⊥SB A. If possible, suppose that MT has more than two components. Then by
[17, Theorem 2.3], we have that there exists A ∈ B(X) such that T ⊥B A but
Tx 6⊥B Ax for any x ∈ MT . Therefore, by Theorem 3.6, we have T ⊥SB A, which
contradicts the hypothesis of the corollary. Thus, MT cannot have more than two
components. �

The following example shows that the converse of Corollary 3.8 is not true.

Example 3.9. Consider T,A ∈ B(`2∞) defined by T (x, y) = (x, x) and A(x, y) =
(−x, x), respectively. Clearly, MT has only two components but T ⊥SB A, since
‖T + λA‖ ≥ ‖(T + λA)(1, 1)‖ > ‖T (1, 1)‖ = ‖T‖ for all λ ∈ R \ {0}.

We further study the case T ⊥B A but T 6⊥SB A, where T and A are bounded
linear operators defined between any two normed linear spaces. For this, we need
the following lemma.

Lemma 3.10. Let X be a normed linear space. Suppose that {xn}, {yn} are two
bounded sequences of X such that

lim
n→∞

‖xn + yn‖ = lim
n→∞

‖xn‖+ lim
n→∞

‖yn‖.

Then for each k ∈ N, there exists fnk
∈ SX∗ such that

lim
k→∞

fnk
(xnk

) = lim
k→∞

‖xnk
‖

and

lim
k→∞

fnk
(ynk

) = lim
k→∞

‖ynk
‖.

Proof. By the Hahn–Banach theorem, we have that for each n ∈ N, there exists
fn ∈ SX∗ such that fn(xn + yn) = ‖xn + yn‖. Therefore, limn→∞ fn(xn + yn) =
limn→∞ ‖xn + yn‖. Since {xn}, {yn} are bounded sequences of X, {fn(xn)},
{fn(yn)} are bounded sequences of R. This proves that {fn(xn)}, {fn(yn)} have
convergent subsequences. Let limk→∞ fnk

(xnk
) and limk→∞ fnk

(ynk
) exist. Then

lim
k→∞

fnk
(xnk

) + lim
k→∞

fnk
(ynk

) = lim
k→∞

fnk
(xnk

+ ynk
)

= lim
k→∞

‖xnk
+ ynk

‖

= lim
k→∞

‖xnk
‖+ lim

k→∞
‖ynk

‖.

Again, since limk→∞ fnk
(xnk

) ≤ limk→∞ ‖xnk
‖ and limk→∞ fnk

(ynk
) ≤

limk→∞ ‖ynk
‖, we have

lim
k→∞

fnk
(xnk

) = lim
k→∞

‖xnk
‖

and

lim
k→∞

fnk
(ynk

) = lim
k→∞

‖ynk
‖.

This completes the proof of the lemma. �
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Let us now obtain the desired necessary condition for T ⊥B A but T 6⊥SB A
by applying the preceding lemma.

Theorem 3.11. Let X, Y be two normed linear spaces, and let T,A ∈ B(X,Y).
Suppose that T ⊥B A but that T 6⊥SB A. Then either there exists a sequence {xn}
in SX such that ‖Txn‖ −→ ‖T‖, Axn −→ 0 or there exists a sequence {xn} in SX
and a sequence {εn} in R+ such that ‖Txn‖ −→ ‖T‖, εn −→ 0, and Txn ⊥εn

D Axn.

Proof. Assume without loss of generality that ‖T‖ = 1. Since T ⊥B A but T 6⊥SB

A, there exists µ ∈ K \ {0} such that ‖T + µA‖ = ‖T‖ = 1. Let B = −µA− T .
Then ‖B‖ = 1. Now, T ⊥B A gives that T ⊥B (B + T ). Therefore, from [11,
Theorem 2.1], we have that there exists F ∈ B(X,Y)∗ such that ‖F‖ = 1, F (T ) =
‖T‖, and F (T + B) = 0. Clearly, F (−B) = ‖T‖ = 1 = ‖−B‖. Therefore,
‖T‖ + ‖−B‖ = F (T ) + F (−B) = F (T − B) ≤ ‖F‖‖T − B‖ = ‖T − B‖ ≤
‖T‖+ ‖−B‖. Thus, ‖T −B‖ = ‖T‖+ ‖−B‖. Now, from Theorem 2.6, it is easy
to observe that there exists a sequence {xn} in SX such that

lim
n→∞

‖Txn‖ = ‖T‖, lim
n→∞

‖Bxn‖ = ‖B‖

and

lim
n→∞

‖Txn −Bxn‖ = lim
n→∞

‖Txn‖+ lim
n→∞

‖−Bxn‖.

Now, by Lemma 3.10, without loss of generality, we may assume that for each
n ∈ N there exists fn ∈ SY∗ such that

lim
n→∞

fn(Txn) = lim
n→∞

‖Txn‖ = ‖T‖ = 1

and

lim
n→∞

fn(−Bxn) = lim
n→∞

‖−Bxn‖ = ‖B‖ = 1.

Clearly, fn(Txn) = rn and fn(−Bxn) = sn, where |rn| ≤ 1, |sn| ≤ 1, rn −→ 1
and sn −→ 1. Therefore, fn(Txn + Bxn) = rn − sn, which converges to zero
as n → ∞. If {Axn} has a subsequence converging to zero, then we are done.
So assume that {Axn} has no subsequence converging to zero. Without loss of
generality, we may assume that infn ‖Axn‖ = c > 0. Now, it is easy to observe
that 1 > 1−(|rn|− 2

c|µ| |rn−sn|)2 ≥ 0, since |rn| → 1, |rn| ≤ 1 and |rn−sn| → 0. For

each n ∈ N, let ε2n = 1−(|rn|− 2
c|µ| |rn−sn|)2. Then clearly εn ∈ [0, 1) for each n ∈ N

and εn → 0. We show that Txn ⊥εn
D Axn. First, let |λ| ≥ 2

c
‖Txn‖ ≥ 2

‖Axn‖‖Txn‖.
Then ‖Txn + λAxn‖ ≥ |λ|‖Axn‖ − ‖Txn‖ ≥ ‖Txn‖ ≥

√
1− ε2n‖Txn‖. Let |λ| <

2
c
‖Txn‖ ≤ 2

c
. Then

‖Txn + λAxn‖ =
∥∥∥Txn −

λ

µ
(Txn +Bxn)

∥∥∥
≥

∣∣∣fn(Txn −
λ

µ
(Txn +Bxn)

)∣∣∣
=

∣∣∣rn − λ

µ
(rn − sn)

∣∣∣
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≥ |rn| −
|λ|
|µ|

|rn − sn|

> |rn| −
2

c|µ|
|rn − sn|

=
√
1− ε2n

≥
√
1− ε2n‖Txn‖.

Hence Txn ⊥εn
D Axn. This completes the proof of the theorem. �

In the following example, we show that the conditions given in Theorem 3.11
are not sufficient to ensure that T ⊥B A but T 6⊥SB A.

Example 3.12. Let X = `∞(R). Define linear operators T , A : `∞ −→ `∞ as
follows:

T (x1, x2, x3, . . .) = (x1, x1, x1, . . .),

A(x1, x2, x3, . . .) = (−x2, x2, x2, . . .)

Then it is easy to check that T,A ∈ B(`∞) with ‖T‖ = ‖A‖ = 1. Clearly for
λ 6= 0, ‖T + λA‖ ≥ ‖(T + λA)(1, 1, 0, 0, 0, . . .)‖ = ‖(1 − λ, 1 + λ, 1 + λ, . . .)‖ =
1 + |λ| > 1 = ‖T‖. Therefore, T ⊥SB A. But (1, 0, 0, . . .) ∈ MT and choosing
yn = (1, 0, 0, . . .), we get ‖Tyn‖ → ‖T‖, ‖Ayn‖ → 0. Similarly, defining B :
`∞ −→ `∞ by B(x1, x2, x3, . . .) = (−x1, x1, x1, . . .), we can check that T ⊥SB A
although there exists yn = (1, 0, 0, . . .) ∈ MT , εn = 0 such that ‖Tyn‖ → ‖T‖ and
Tyn ⊥εn

D Byn.

Now, we turn our attention to the newly introduced notion of semirotundity of
a normed linear space. As mentioned earlier, every exposed point (strictly convex
space) is a semirotund point (semirotund space) but not conversely, if dimension
of the space is greater than two. The notions are equivalent if the dimension of
the space is two. In this context, we first prove the following proposition which
states that every isometry defined between finite-dimensional Banach spaces is a
semirotund point in the operator space.

Proposition 3.13. Let X, Y be finite-dimensional Banach spaces. Then every isom-
etry from X to Y is a semirotund point in B(X,Y).

Proof. Let T ∈ B(X,Y) be an isometry, where X, Y are finite-dimensional Banach
spaces. Clearly, T is invertible. Let y be an exposed point of BY. Then there
exists x ∈ SX such that Tx = y. Since y is an exposed point of B(Y), there exists
z ∈ Y such that y ⊥SB z. Define A ∈ B(X,Y) by Ax = z and Aw = 0 for all
w ∈ H, where H is a hyperspace such that x ⊥B H. Then Tx ⊥SB Ax. We also
observe that x ∈ MT , since T is an isometry. Therefore, T ⊥SB A. Hence, T is a
semirotund point of B(X,Y). �

In the following theorem, we prove that every nonzero compact linear operator
from a reflexive Banach space to a strictly convex Banach space is semirotund.

Theorem 3.14. Let X be a reflexive Banach space, and let Y be a strictly convex
Banach space. Then every nonzero T ∈ K(X,Y) is a semirotund point.
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Proof. Since X is reflexive and T is compact, T attains its norm. Let x ∈ MT .
By [11, Corollary 2.2], there exists y ∈ SY such that Tx ⊥B y. Now, since Y
is strictly convex and T is nonzero, we must have Tx ⊥SB y. Define a linear
operator A from X to Y by Ax = y and Az = 0 for all z ∈ H, where H is a
hyperspace such that x ⊥B H. Clearly, A ∈ K(X,Y). Now, for any λ ∈ K \ {0},
‖T +λA‖ ≥ ‖(T +λA)x‖ = ‖Tx+λy‖ > ‖Tx‖ = ‖T‖. Therefore, T ⊥SB A. This
proves that T is a semirotund point and completes the proof of the theorem. �

Finally, using Theorem 3.14, we obtain the following corollary that illustrates
that semirotundity is a strictly weaker property compared to strict convexity.

Corollary 3.15. Let X, Y be finite-dimensional Banach spaces, and in addition,
let Y be strictly convex. Then B(X,Y) is not strictly convex but semirotund.

Proof. Let x ∈ SX. Define T ∈ B(X,Y) by Tx = x and Ty = 0 for all y ∈ H, where
H is a hyperspace such that x ⊥B H. Then clearly ‖T‖ = 1. Now, 2 = ‖I‖+‖T‖ ≥
‖I+T‖ ≥ ‖Ix+Tx‖ = 2. This shows that ‖T‖+‖I‖ = ‖T + I‖, although T and
I are linearly independent. Therefore, B(X,Y) is not strictly convex. Now, being
finite-dimensional, X is reflexive. Since Y is finite-dimensional, it follows that
B(X,Y) = K(X,Y). Therefore, by Theorem 3.14, we have that every T ∈ B(X,Y)
is a semirotund point. This completes the proof of the corollary. �
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