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Abstract. In this article, we study Toeplitz operators with nonnegative sym-
bols on the A2-weighted harmonic Bergman space. We characterize the bound-
edness, compactness, and invertibility of Toeplitz operators with nonnegative
symbols on this space.

1. Introduction and preliminaries

For 1 ≤ p < ∞, a nonnegative integrable function ω on the unit disk D, let
Lp(ω) denote the Banach space with norm

‖f‖Lp(ω) :=
(∫

D

∣∣f(z)∣∣pω(z) dA(z)) 1
p
.

The weighted harmonic (resp., analytic) Bergman space Lp
h(ω) (resp., L

p
a(ω)) is

the subspace of Lp(ω) which consists of harmonic (resp., analytic) functions on
D. The goal of this article is to provide a framework to study operator proper-
ties (boundedness, compactness, Schatten classes, and invertibility) of Toeplitz
operators with nonnegative symbols on L2

h(ω).
Weighted analytic function spaces and their Toeplitz operators have captured

people’s attention for a long time. It is now well known (see [25]) that several
results on unweighted Bergman spaces can be extended to the standard weighted
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Bergman space L2
a(ωα), where ωα(z) = (1 + α)(1 − |z|2)α and −1 < α < ∞.

Peláez and Rättyä [20], [21] recently characterized the bounded and Schatten-
class Toeplitz operators (induced by a positive Borel measure) on a weighted
Bergman space, where the weight is a radial function satisfying the doubling prop-
erty

∫ 1

r
ω(s) ds ≤ C

∫ 1
1+r
2

ω(s) ds. The first results of nonradial weighted Bergman

spaces are due to Luecking [15], who investigated the structure of weighted
Bergman spaces with Békollé–Bonami weights. Based on Luecking’s representa-
tion and duality theorems in [15], Chacón [2] and Constantin [5], [6] studied the
boundedness and compactness of Toeplitz operators on certain weighted Bergman
spaces. In [18], Mitkovski and Wick established a reproducing kernel thesis for
operators on Bergman-type spaces, and their definitions include weighted versions
of Bergman spaces on more complicated domains.

We will be primarily interested in the weighted harmonic Bergman space L2
h(ω).

Our choice of the weight ω is motivated by the characterization of the bound-
edness of Ph acting on L2(ω), where Ph is the unweighted harmonic Bergman
(orthogonal) projection from L2(dA) to L2

h(dA). It is well known that L2
h(dA) is

a reproducing kernel Hilbert space and that

Phf(z) =

∫
D
f(λ)

[ 1

(1− λz)2
+

1

(1− zλ)2
− 1

]
dA(λ).

The harmonic Bergman projection Ph is a Calderón–Zygmund operator on the
homogeneous space (D, d, dA), where d is the Euclidean distance and dA is the
Lebesgue measure on D, normalized so that the measure of D is 1. (For the
definitions of Calderón–Zygmund operators and homogeneous spaces, we refer
the reader to [1].)

The most successful understanding of the (one) weight theory for Calderón–
Zygmund operators was spurred by Muckenhoupt’s work in the 1970s (see [19]),
which led to the Ap weight and developments of the weighted inequality. We will
restrict our attention to the A2 weight on (D, d, dA).

Let 0 < ω ∈ L1(D, dA). It is called a Muckenhoupt A2 weight if

[ω]A2 := sup
a∈D,0<r<1

|B(a, r)|ω|B(a, r)|ω−1

|B(a, r)|2
< +∞,

where

B(a, r) =
{
z ∈ D : d(a, z) = |z − a| < r

}
,∣∣B(a, r)

∣∣
ω
=

∫
B(a,r)

ω(z) dA(z),

and | · | is the normalized Lebesgue measure on D.
It follows from the remarkableA2 theorem (see [1], [10]) that Ph is bounded from

L2(ω) to L2
h(ω) provided ω is a Muckenhoupt A2 weight. As mentioned above, we

will focus on the weighted harmonic Bergman space L2
h(ω) with ω ∈ A2. Little is

known about this natural function space. However, we will show in Section 2 that
L2
h(ω) is a reproducing kernel Hilbert space with the reproducing kernel Kω

z (λ);
that is, f(z) = 〈f,Kω

z 〉L2(ω) for all f in L2
h(ω).
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For a positive finite Borel measure ν on D, we densely define the Toeplitz
operator Tν on L2

h(ω) by

Tνf(z) = 〈Tνf,K
ω
z 〉L2(ω) =

∫
D
f(λ)Kω

z (λ) dν(λ) (z ∈ D).

For a bounded function ϕ, using the integral representation for the projection
operator (from L2(ω) to L2

h(ω)), we can express the Toeplitz operator Tϕ (on
L2
h(ω)) as follows:

Tϕf(z) =

∫
D
f(λ)Kω

z (λ)ϕ(λ)ω(λ) dA(λ) (z ∈ D).

Although we follow Luecking’s methods in [15] and [14] for weighted Bergman
spaces, some new difficulties have arisen in the study of the space L2

h(ω) and its
operators. For instance, harmonic functions do not share many powerful proper-
ties with analytic functions. One can easily use the Cauchy formula to estimate
the local values of analytic functions. However, because of the tedious remain-
der, the harmonic version of Cauchy’s formula (known as the Cauchy–Pompeiu
formula) is not valid now. We instead must rely on some known estimates of har-
monic functions. In addition, just as with weighted Bergman spaces, one cannot
write down an explicit formula for the reproducing kernel of L2

h(ω). To overcome
this obstacle, we will use the reproducing kernel for the unweighted space L2

h to
help us study the representation theory of L2

h(ω). However, the properties of the
reproducing kernel for L2

h are much more complicated than those of the Bergman
space L2

a.
Using some properties of harmonic functions and A2 weights, we establish two

different atomic decompositions for functions in L2
h(ω) (Theorems 2.6 and 2.13),

which extend the representation theorems in [15] to the harmonic case.
In Section 3, we characterize the boundedness, compactness, and Schatten p

class of Toeplitz operators Tν on L2
h(ω) by means of the Berezin transform and

Carleson measures. We are pleased to mention here that Miao [16] has obtained
characterizations for Toeplitz operators with nonnegative symbols to be bounded,
compact, and in Schatten classes on the unweighted harmonic Bergman space L2

h.
Section 4 of this article is devoted to studying the invertibility of Toeplitz

operators on the standard weighted harmonic Bergman space L2
h(ωα). Somewhat

surprising to us were the results, which illustrate that the invertibility of Toeplitz
operators on L2

a can imply a reverse Carleson inequality for L2
h(ωα) (see Theo-

rems 4.2 and 4.4). Based on this inequality, we generalize the result on the invert-
ibility of Bergman–Toeplitz operators with nonnegative symbols (see [24]) to the
case of L2

h(ωα). As a consequence, we obtain a relationship of the invertibility
between Toeplitz operators on L2

a(ωα) and L2
h(ωα) (see Corollary 4.7).

Finally, in Section 5 we establish a reverse Carleson inequality for L2
h(ω) with

ω ∈ A2. Indeed, we obtain a sufficient condition for χG dA to be a reverse Carleson
measure for L2

h(ω), where G is a measurable set in D (see Theorem 5.1), which
extends Theorem 3.9 for the weighted (analytic) Bergman space in [15] to the
harmonic setting.
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Throughout the article, positive constants will be denoted by C,C0, C1, . . .,
which may depend on some fixed numbers and change at each occurrence.

2. The space L2
h(ω) and its representation

In this section, we present some elementary structures of L2
h(ω) with ω ∈ A2. To

study the harmonic Bergman spaces, we need the following important properties
of harmonic functions.

Lemma 2.1 ([11, Theorem 1]). Suppose that f is a harmonic function on the
disk D and 0 < p < ∞. There exists a positive constant C = C(p) such that for
every ball B(a, r) = {z ∈ D : |z − a| < r} in D,∣∣f(a)∣∣p ≤ C

|B(a, r)|

∫
B(a,r)

∣∣f(z)∣∣p dA(z).
In particular, if p ≥ 1, then the constant C ≡ 1. Using this result one can get the
following useful inequalities easily. Given 0 < p < ∞ and 0 < r < 1, there exist
positive constants C1 = C1(p) and C2 = C2(p) such that∣∣f(a)∣∣p ≤ C1

(1− r)2
· 1

|D(a, r)|

∫
D(a,r)

∣∣f(z)∣∣p dA(z) (a ∈ D)

and ∣∣∂f(a)∣∣p ≤ C2

(1− r)2+p
· 1

|D(a, r)| p+2
2

∫
D(a,r)

∣∣f(z)∣∣p dA(z) (a ∈ D)

for all f harmonic on D, where ∂f = ∂f
∂z
.

Remark 2.2. From the above inequalities, it is easy to show that point evaluations
are bounded linear functionals on L2

h(ω) with ω ∈ A2. As a consequence, L2
h(ω)

is a reproducing kernel Hilbert space.

Remark 2.3. It is not clear whether L2
h(ω) is complete for a general weight. How-

ever, if p is an analytic polynomial on D and ω(z) = |p(z)|2, Douglas and Wang
[8] showed that L2

a(ω) is complete, and their proof heavily depends on some par-
ticular properties of polynomials.

It is clear that L2
h(ω) coincides with its dual space with respect to the L2(ω)

inner product. The next result illustrates that the dual space of L2
h(ω) can be iden-

tified with L2
h(ω

−1) via the unweighted inner product, which generalizes Lueck-
ing’s result for L2

a(ω) (see [15, Theorem 2.1]) to L2
h(ω).

Lemma 2.4. Suppose that ω is an A2 weight. Then the dual space of L2
h(ω) can

be identified with L2
h(ω

−1). The pairing is given by

〈f, g〉 =
∫
D
f(z)g(z) dA(z).

Consequently, there exists a bounded, bijective, and linear operator F :
L2
h(ω

−1) → (L2
h(ω))

∗ such that

F (f)(g) = 〈g, f〉L2(dA)

for f ∈ L2
h(ω

−1) and g ∈ L2
h(ω).
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Proof. Let ω be an A2 weight. Recall that the orthogonal projection Ph :
L2(dA) → L2

h(dA) is a Calderón–Zygmund operator on (D, d, dA). Then Ph is
bounded on both L2(ω) and L2(ω−1). Thus for each f ∈ L2(ω) and g ∈ L2(ω−1),
we have

〈Phf, g〉 = 〈f, Phg〉.

Noting that each f ∈ L2
h(ω) (or f ∈ L2

h(ω
−1)) has the form

f(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnzn,

we obtain

Phf(z) =

∫
D
f(λ)Rz(λ) dA(λ)

= lim
s→1−

∫
sD

f(λ)
[ 1

(1− zλ)2
+

1

(1− λz)2
− 1

]
dA(λ)

= f(z)

for z ∈ D. Then the rest of this proof is exactly the same as the proof of Theo-
rem 2.1 in [15]. We omit the details. �

Let a ∈ D and 0 < r < 1. A pseudohyperbolic disk D(a, r) is defined by

D(a, r) =
{
z ∈ D : ρ(z, a) =

∣∣∣ z − a

1− az

∣∣∣ < r
}
.

We will frequently use the following property ofA2 weights on pseudohyperbolic
disks. For the sake of completeness, we include a proof of this fact as follows.

Lemma 2.5. Let 0 < r ≤ 1
4
and z ∈ D. If ξ ∈ D(z, r), then we have∣∣D(z, r)

∣∣
ω
< 8[ω]A2

∣∣D(ξ, r)
∣∣
ω
.

Proof. Observe that D(z, r) ⊂ D(ξ, 2r). Now it suffices to show the following
doubling inequality:∣∣D(ξ, 2r)

∣∣
ω
< 8[ω]A2

∣∣D(ξ, r)
∣∣
ω

(ξ ∈ D).

Since ω is an A2 weight, we have

|D(ξ, 2r)|ω|D(ξ, 2r)|ω−1

|D(ξ, 2r)|2
≤ [ω]A2 .

Recall that a pseudohyperbolic disk D(z, r) is a Euclidean disk with center and
radius given by

C =
1− r2

1− r2|z|2
z, R =

1− |z|2

1− r2|z|2
r.
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Combining the above with the Cauchy–Schwarz inequality gives∣∣D(ξ, 2r)
∣∣
ω
≤ [ω]A2

|D(ξ, 2r)|2

|D(ξ, 2r)|ω−1

≤ [ω]A2

|D(ξ, r)|2

|D(ξ, r)|ω−1

· |D(ξ, 2r)|2

|D(ξ, r)|2

≤ 4[ω]A2

∣∣D(ξ, r)
∣∣
ω
·
( 1− r2|ξ|2

1− 4r2|ξ|2
)2

< 8[ω]A2

∣∣D(ξ, r)
∣∣
ω
,

where the last inequality follows from r ≤ 1
4
. This completes the proof. �

We now turn to the representation theory of the space L2
h(ω). These results

and their proof strategies are motivated by Luecking’s work on weighted Bergman
spaces (see [15], [14]).

Before studying the representation theory of L2
h(ω), we need to recall the con-

cept of an ε-lattice in the unit disk. Let ε ∈ (0, 1). A sequence {an}∞n=1 in the unit
disk is called an ε-lattice in the pseudohyperbolic metric if

• D =
⋃∞

n=1D(an, ε) and
• infn6=m | an−am

1−anam
| ≥ ε

2
.

Now we are ready to state the atomic decomposition for L2
h(ω).

Theorem 2.6. Let ω be an A2 weight. Then there is an ε-lattice {an}∞n=1 such
that for each f ∈ L2

h(ω) we have

f(z) =
∞∑
n=1

cn
(
1− |an|2

)2∣∣D(an, ε)
∣∣− 1

2

ω
Ran(z)

for some sequence {cn} in `2(N), where

Rλ(z) =
1

(1− zλ)2
+

1

(1− λz)2
− 1

is the reproducing kernel for L2
h at λ ∈ D.

Remark 2.7. Lemma 2.2 in [4] gives the following estimate of the module of Rλ:
there exists an r0 ∈ (0, 1

4
] such that if 0 < r ≤ r0, then

1
2

(1− |λ|)2
≤

∣∣Rλ(z)
∣∣ ≤ 3

(1− |λ|)2

for all z ∈ D(λ, r). In the rest of this paper, we will use r0 to denote the constant
in this remark.

To prove Theorem 2.6, we need to establish harmonic versions of Luecking’s
Theorem 4.1 in [15] and Theorem 3.12 in [14].
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Theorem 2.8. Let ω be an A2 weight. Then there exists an ε-lattice {an}∞n=1 for
some 0 < ε < 1

16
such that

∞∑
n=1

∣∣f(an)∣∣2∣∣D(an, ε)
∣∣
ω
≈ ‖f‖2L2(ω)

for all f in L2
h(ω). That is, there exist two positive constants C1 and C2 such that

C1‖f‖2L2(ω) ≤
∞∑
n=1

∣∣f(an)∣∣2∣∣D(an, ε)
∣∣
ω
≤ C2‖f‖2L2(ω)

for all f in L2
h(ω).

Once Theorem 2.8 is established, we can quickly present the proof of Theo-
rem 2.6 as follows.

Proof of Theorem 2.6. Since both ω and ω−1 are A2 weights, it follows from The-
orem 2.8 that we can choose ε ∈ (0, 1

16
) and an ε-lattice {an}∞n=1 such that

‖g‖2L2(ω−1) ≈
∞∑
n=1

∣∣g(an)∣∣2∣∣D(an, ε)
∣∣
ω−1 .

By the Cauchy–Schwarz inequality and the definition of A2 weight,∣∣D(an, ε)
∣∣2 ≤ ∣∣D(an, ε)

∣∣
ω
· |D(an, ε)|ω−1 ≤ [ω]A2

∣∣D(an, ε)
∣∣2.

Therefore,

‖g‖2L2(ω−1) ≈
∞∑
n=1

∣∣g(an)∣∣2(1− |an|2
)4∣∣D(an, ε)

∣∣−1

ω
.

This implies that the linear operator L : L2
h(ω

−1) → `2(Z) defined by

L (g) :=
{
g(an)

(
1− |an|2

)2∣∣D(an, ε)
∣∣− 1

2

ω

}∞
n=1

is bounded below, and its range is closed. It follows from the closed range theorem
that L ∗ is surjective.

From the proof of Lemma 2.4, we have

g(an) = 〈g,Ran〉L2(dA) (∗)

for each g ∈ L2
h(ω

−1) and every n ≥ 1. Let {cn}∞n=1 ∈ `2(N). Using (∗), we obtain

L ∗({cn})(z) = ∞∑
n=1

cnRan(z)
(
1− |an|2

)2∣∣D(an, ε)
∣∣− 1

2

ω
,

which gives the desired result. This completes the proof of Theorem 2.6. �

We now turn to the proof of Theorem 2.8. Let 0 < ε < 1
16
, and let {an}∞n=1 ⊂ D

be an ε-lattice. Define a measure µ = µε on D by

µ(z) =
∞∑
n=1

δan(z)
∣∣∣D(

an,
ε

4

)∣∣∣
ω
, (2.1)
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where δan is the Dirac measure concentrated at an. Indeed, the conclusion of
Theorem 2.6 tells us that µ is both a Carleson and reverse Carleson measure for
L2
h(ω). First, we establish a sufficient condition for a general (positive) measure

to be the Lp
h(ω)-Carleson measure, where 0 < p < ∞.

Proposition 2.9. Suppose that ν is a positive Borel measure on D. If there exist
an 0 < r ≤ r0 and a constant C > 0 independent of z ∈ D such that

ν
(
D(z, r)

)
≤ C

∣∣D(z, r)
∣∣
ω

for all z ∈ D, then ν is a Carleson measure for Lp
h(ω) (0 < p < ∞); that is, there

is a positive constant Cp such that∫
D

∣∣f(z)∣∣p dν(z) ≤ Cp‖f‖pLp(ω)

for f ∈ Lp
h(ω). Consequently, µ is a Carleson measure for L2

h(ω), that is; there is
an absolute constant C > 0 such that∫

D

∣∣f(z)∣∣2 dµ(z) = ∞∑
n=1

∣∣f(an)∣∣2∣∣∣D(
an,

ε

4

)∣∣∣
ω
≤ C‖f‖2L2(ω)

for all f in L2
h(ω).

Proof. Fix an r ≤ r0. By Lemma 2.1, we obtain∣∣f(z)∣∣ p2 ≤ C

|D(z, r)|

∫
D(z,r)

∣∣f(ξ)∣∣ p2 dA(ξ) (z ∈ D),

where 0 < p < ∞ and C = C(p, r). The Cauchy–Schwarz inequality and the A2

condition give us that

∣∣f(z)∣∣p ≤ C2[ω]A2

∫
D(z,r)

|f(ξ)|pω(ξ) dA(ξ)
|D(z, r)|ω

.

Integrating the above over the unit disk gives∫
D

∣∣f(z)∣∣p dν(z) ≤ C

∫
D

∫
D

∣∣D(z, r)
∣∣−1

ω

∣∣f(ξ)∣∣pω(ξ)χD(ξ,r)(z) dA(ξ) dν(z),

where the constant C depends only on p and r. Noting that ξ ∈ D(z, r), we have
by Lemma 2.5 that ∣∣D(z, r)

∣∣
ω
≥ C

∣∣D(ξ, r)
∣∣
ω

for some absolute constant C. Therefore,∫
D

∣∣f(z)∣∣2 dν(z) ≤ C

∫
D

∫
D

∣∣D(z, r)
∣∣−1

ω

∣∣f(ξ)∣∣pω(ξ)χD(ξ,r)(z) dA(ξ) dν(z)

≤ C

∫
D

∫
D

∣∣D(ξ, r)
∣∣−1

ω

∣∣f(ξ)∣∣pω(ξ)χD(ξ,r)(z) dν(z) dA(ξ).
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Now our hypothesis on ν gives∫
D

∣∣f(z)∣∣p dν(z) ≤ C

∫
D

∣∣D(ξ, r)
∣∣−1

ω
ν
(
D(ξ, r)

)∣∣f(ξ)∣∣pω(ξ) dA(ξ)
≤ C1

∫
D

∣∣f(ξ)∣∣pω(ξ) dA(ξ),
where the constant C1 > 0 is independent of f ∈ Lp

h(ω).
For the second conclusion of this proposition, it is sufficient to show that the

inequality

µ
(
D
(
a,

1

4

))
≤ C

∫
D(a, 1

4
)

ω(z) dA(z) (a ∈ D)

holds for some absolute constant C > 0. Indeed, by the definition of µ, we have

µ
(
D
(
a,

1

4

))
=

∑
ρ(an,a)<

1
4

∫
D(an,

ε
4
)

ω dA =
∑

ρ(an,a)<
1
4

∣∣∣D(
an,

ε

4

)∣∣∣
ω
.

If ρ(a, an) <
1
4
, then for each z ∈ D(an,

ε
4
), we have

ρ(z, a) ≤ ρ(z, an) + ρ(an, a) <
ε

4
+

1

4
<

1

2
,

to obtain

D
(
an,

ε

4

)
⊂ D

(
a,

1

2

)
for every n ≥ 1 provided that ρ(a, an) <

1
4
.

Since D(an,
ε
4
) ∩D(am,

ε
4
) = ∅ for n 6= m, we obtain⋃

ρ(an,a)<
1
4

D
(
an,

ε

4

)
⊂ D

(
a,

1

2

)
and

µ
(
D
(
a,

1

4

))
≤

∣∣∣D(
a,

1

2

)∣∣∣
ω
≤ C

∣∣∣D(
a,

1

4

)∣∣∣
ω

for every a ∈ D, where the constant C > 0 (independent of a) comes from
Lemma 2.5. This completes the proof of Proposition 2.9. �

In order to finish the proof of Theorem 2.8, we need to show that there is
an ε ∈ (0, 1

16
) such that µ = µε is a reverse Carleson measure for L2

h(ω). More
precisely, we will prove the following proposition.

Proposition 2.10. There exists an ε ∈ (0, 1
16
) such that∫

D

∣∣f(z)∣∣2 dµ(z) = ∞∑
n=1

∣∣f(an)∣∣2∣∣D(an, ε)
∣∣
ω
≥ C‖f‖2L2(ω)

for all f in L2
h(ω), where C > 0 is an absolute constant.
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The rest of this section is devoted to the proof of the above reverse Carleson
inequality. To do so, we need to prove the following two lemmas related to har-
monic functions, which extend the results in [15] and [14] for weighted Bergman
spaces to the present situation.

Lemma 2.11. Let f be a harmonic function on D, and let ε ∈ (0, 1
16
). Then there

exists a constant C1 > 0 (independent of z, ε, and f) such that∣∣f(z)− f(0)
∣∣ ≤ C1ε

∫
D(0, 1

4
)

∣∣f(λ)∣∣ dA(λ)
when |z| < ε. As a consequence, there exists a constant C2 > 0 (independent of
z, ε, and f) such that∣∣f(w)− f(ξ)

∣∣2 ≤ C2ε
2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣2ω(λ) dA(λ)
when ξ ∈ D(w, ε).

Proof. Observe that

f(z)− f(0) =

∫ 1

0

∂

∂t

[
f(tz)

]
dt =

∫ 1

0

[
∇f(tz) · z

]
dt

for |z| < ε < 1
16
. Thus we have∣∣f(z)− f(0)

∣∣ ≤ sup
|ξ|≤ε

∣∣∇f(ξ)
∣∣ · |z|.

Recall that

|∇f |2 = 2
(
|∂f |2 + |∂f |2

)
= 2

(
|∂f |2 + |∂f |2

)
≤

[√
2
(
|∂f |+ |∂f |

)]2
,

where ∂f = ∂f
∂z
. By Lemma 2.1, there is an absolute constant C > 0 such that∣∣∇f(ξ)

∣∣ ≤ 2
√
2C

(1− 1
16
)3

·
(1− ( 1

16
)2|ξ|2

1
16
(1− |ξ|2)

)3
∫
D(ξ, 1

16
)

∣∣f(λ)∣∣ dA(λ).
Note that |ξ| ≤ ε < 1

16
. If λ ∈ D(ξ, 1

16
), then

|λ| < |ξ|+ 1

16
|1− λξ| < 1

4
,

to get D(ξ, 1
16
) ⊂ D(0, 1

4
) and∣∣∇f(ξ)

∣∣ ≤ C1

∫
D(0, 1

4
)

∣∣f(λ)∣∣ dA(λ)
for all |ξ| ≤ ε, where the constant C1 is independent of z, ξ, and ε. Therefore,∣∣f(z)− f(0)

∣∣ ≤ sup
|ξ|≤ε

∣∣∇f(ξ)
∣∣ · |z| ≤ C1|z|

∫
D(0, 1

4
)

∣∣f(λ)∣∣ dA(λ)
for |z| < ε with ε ∈ (0, 1

16
). This proves the first part of the lemma.
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Let ϕξ be the Möbius map. Then f◦ϕξ is harmonic on D. By changing variables,
we have that ∣∣f(ϕξ(z)

)
− f(ξ)

∣∣ ≤ C3ε

|D(ξ, 1
4
)|

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣ dA(λ)
for some absolute constant C3 > 0. The Cauchy–Schwarz inequality gives∣∣f(ϕξ(z)

)
− f(ξ)

∣∣2 ≤ C2
3 [ω]A2ε

2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣2ω(λ) dA(λ).
Let w = ϕξ(z). We have |ϕξ(w)| = |z| < ε and∣∣f(w)− f(ξ)

∣∣2 ≤ C2ε
2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣2ω(λ) dA(λ)
if ξ ∈ D(w, ε), as desired. �

Lemma 2.12. Let f be a harmonic function, and let ε ∈ (0, 1
16
). Let µ be the

measure defined in (2.1). Then there exists a constant C > 0 (independent of ε)
such that∫

D

∫
D
χε(z, ξ)

∣∣D(ξ, ε)
∣∣−1

ω

∣∣f(z)− f(ξ)
∣∣2ω(z) dA(z) dµ(ξ) ≤ Cε2‖f‖2L2(ω)

for all f ∈ L2
h(ω), where

χε(z, ξ) =

{
1 if z ∈ D(ξ, ε),

0 otherwise.

Proof. By Lemma 2.11, we have

χε(z, ξ)
∣∣f(z)− f(ξ)

∣∣2 ω(z)

|D(ξ, ε)|ω

≤
( Cε2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣2ω(λ) dA(λ))χε(z, ξ)ω(z)

|D(ξ, ε)|ω
.

Integrating over z ∈ D on both sides gives∫
D
χε(z, ξ)

∣∣f(z)− f(ξ)
∣∣2 ω(z)

|D(ξ, ε)|ω
dA(z) ≤ Cε2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

|f |2ω dA.

Now integrating with respect to dµ(ξ) and noting that

χD(ξ, 1
4
)(λ) = χD(λ, 1

4
)(ξ),

we have ∫
D

Cε2

|D(ξ, 1
4
)|ω

∫
D(ξ, 1

4
)

∣∣f(λ)∣∣2ω(λ) dA(λ) dµ(ξ)
= Cε2

∫
D

(∫
D

χD(λ, 1
4
)(ξ)

|D(ξ, 1
4
)|ω

dµ(ξ)
)∣∣f(λ)∣∣2ω(λ) dA(λ).
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Since λ ∈ D(ξ, 1
4
), Lemma 2.5 tells us that there is an absolute constant C

such that ∣∣∣D(
ξ,

1

4

)∣∣∣
ω
≥ C

∣∣∣D(
λ,

1

4

)∣∣∣
ω
.

Thus we obtain ∫
D

χD(λ, 1
4
)(ξ)

|D(ξ, 1
4
)|ω

dµ(ξ) ≤ C−1µ(D(λ, 1
4
))

|D(λ, 1
4
)|ω

.

By Lemma 2.9, we have

µ
(
D
(
λ,

1

4

))
·
∣∣∣D(

λ,
1

4

)∣∣∣−1

ω
≤ C1

for some constant C1 > 0 (independent of ε), completing the proof. �

Now we are ready to prove the reverse Carleson inequality in Proposition 2.10.

Proof of Proposition 2.10. Recall that µ satisfies the condition

µ
(
D
(
a,

1

4

))
≤ C

∣∣∣D(
a,

1

4

)∣∣∣
ω

for all a ∈ D. Applying Lemma 2.12 to ε ∈ (0, 1
16
), we have[∫

D

∫
D

χε(z, ξ)

|D(ξ, ε)|ω
∣∣f(z)− f(ξ)

∣∣2ω(z) dA(z) dµ(ξ)] 1
2 ≤ Cε‖f‖L2(ω).

The triangle inequality gives

I − J ≤ Cε‖f‖L2(ω),

where

I :=
[∫

D

∫
D

χε(z, ξ)

|D(ξ, ε)|ω
∣∣f(z)∣∣2ω(z) dA(z) dµ(ξ)] 1

2

and

J :=
[∫

D

∫
D

χε(z, ξ)

|D(ξ, ε)|ω
∣∣f(ξ)∣∣2ω(z) dA(z) dµ(ξ)] 1

2
.

For the first integral I, we note that for each z ∈ D,∫
D

χε(z, ξ)

|D(ξ, ε)|ω
dµ(ξ) =

∫
D(z,ε)

dµ(ξ)

|D(ξ, ε)|ω
≥ C1

µ(D(z, ε))

|D(z, ε)|ω
,

where C1 is an absolute constant.
Since D =

⋃∞
n=1D(an, ε), we can select D(aj, ε) such that z ∈ D(aj, ε) for each

z ∈ D. Applying Lemma 2.5, we get

µ
(
D(z, ε)

)
=

∞∑
n=1

δan
(
D(z, ε)

) ∫
D(an,

ε
4
)

ω dA

≥
∣∣∣D(

aj,
ε

4

)∣∣∣
ω
≥ C2

∣∣D(aj, ε)
∣∣
ω
≥ C3

∣∣D(z, ε)
∣∣
ω
,

where C2 and C3 are absolute positive constants. Therefore, we have∫
D

χε(z, ξ)

|D(ξ, ε)|ω
dµ(ξ) ≥ C̃
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for some absolute constant C̃ > 0, to obtain

I ≥ C̃‖f‖L2(ω).

For the second integral J , we observe that∫
D
χε(z, ξ)ω(z) dA(z) =

∣∣D(ξ, ε)
∣∣
ω
,

to get

J =
(∫

D

∣∣f(ξ)∣∣2 dµ(ξ)) 1
2
.

Thus we have

C̃‖f‖L2(ω) −
(∫

D

∣∣f(ξ)∣∣2 dµ(ξ)) 1
2 ≤ I − J ≤ Cε‖f‖L2(ω).

Equivalently,

(C̃ − Cε)‖f‖L2(ω) ≤
(∫

D

∣∣f(ξ)∣∣2 dµ(ξ)) 1
2

for each 0 < ε < 1
16
.

Since C, C̃ are both independent of ε, we can choose

0 < ε < min
{ 1

16
,
C̃

2C
, r0

}
such that

‖f‖2L2(ω) ≤
1

(C̃ − Cε)2

∫
D

∣∣f(ξ)∣∣2 dµ(ξ).
Recalling the definition of µ, we conclude that

‖f‖2L2(ω) ≤
4

C̃2

∞∑
n=1

∣∣f(an)∣∣2∣∣∣D(
an,

ε

4

)∣∣∣
ω
≤ 4

C̃2

∞∑
n=1

∣∣f(an)∣∣2∣∣D(an, ε)
∣∣
ω
.

This completes the proof. �

The proof of Theorem 2.6 implies the following result immediately.

Theorem 2.13. Suppose that ω satisfies the A2 condition. Then there is an
ε-lattice {an}∞n=1 ⊂ D such that each f ∈ L2

h(ω) has the form

f(z) =
∞∑
n=1

cnK
ω
an(z)

∣∣D(an, ε)
∣∣ 12
ω

for some sequence {cn} in `2(N), where Kω
an is the reproducing kernel for L2

h(ω).
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Proof. We consider the linear map S : L2
h(ω) → `2(N):

S f =
{
f(an)

∣∣D(an, ε)
∣∣ 12
ω

}∞
n=1

.

Propositions 2.9 and 2.10 imply that S ∗ : `2(N) → L2
h(ω) is surjective and that

〈
S ∗({cn}), f〉L2(ω)

=
〈 ∞∑
n=1

cnK
ω
an(z)

∣∣D(an, ε)
∣∣ 12
ω
, f

〉
L2(ω)

for {cn} ∈ `2(N) and f ∈ L2
h(ω). Therefore,

S ∗({cn})(z) = ∞∑
n=1

cnK
ω
an(z)

∣∣D(an, ε)
∣∣ 12
ω
.

This completes the proof of this theorem. �

3. Boundedness and compactness of Tν on L2
h(ω)

Recall that the Toeplitz operator Tν initially defined on a dense subspace of
L2
h(ω) is given by

Tνf(z) =

∫
D
f(λ)Kω

z (λ) dν(λ) (z ∈ D).

In this section, we will characterize the boundedness and compactness of Tν on
L2
h(ω) via the Berezin transform and Carleson measures for L2

h(ω). First, we define
the Berezin transform ν̃ of ν as

ν̃(z) =
1

‖Rz‖2L2(ω)

∫
D

∣∣Rz(λ)
∣∣2 dν(λ),

where

Rz(λ) =
1

(1− λz)2
+

1

(1− zλ)2
− 1

is the reproducing kernel for L2
h. The first main result of this section is Theo-

rem 3.1.

Theorem 3.1. Let ν be a positive finite Borel measure on D, and let ω be an A2

weight. The following conditions are equivalent:
(1) Tν extends to a bounded linear operator on L2

h(ω);
(2) ν is a Carleson measure for L2

h(ω);
(3) there exist an 0 < r ≤ r0 and a constant C > 0 independent of z ∈ D such

that

ν
(
D(z, r)

)
≤ C

∣∣D(z, r)
∣∣
ω

for all z ∈ D;
(4) the Berezin transform ν̃ is bounded.

To prove Theorem 3.1, we need the following useful lemma.
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Lemma 3.2. Let ω ∈ A2. If 0 < r ≤ r0, then there is a constant C = C(r) such
that

|D(λ, r)|ω
2(1− |λ|)4

≤ ‖Rλ‖2L2(ω) ≤ C
|D(λ, r)|ω
(1− |λ|)4

for all λ ∈ D.

Proof. Let λ ∈ D. By Remark 2.7, there exists an r0 ∈ (0, 1
4
] such that if

0 < r ≤ r0. Then
1
2

(1− |λ|)2
≤

∣∣Rλ(z)
∣∣ ≤ 3

(1− |λ|)2

for all z ∈ D(λ, r). It follows that for each r ∈ (0, r0], we have

‖Rλ‖2L2(ω) ≥
∫
D(λ,r)

∣∣Rλ(z)
∣∣2ω(z) dA(z)

≥ 1

4

∫
D(λ,r)

ω(z)

(1− |λ|)4
dA(z) =

|D(λ, r)|ω
4(1− |λ|)4

.

Now we turn to the proof of the other inequality. Using

|z − λ| < r
(
1− |λ|

)
< r|1− zλ| (z, λ ∈ D),

we have

S(λ, r) :=
{
z ∈ D : |z − λ| < r

(
1− |λ|

)}
⊂ D(λ, r).

Thus, we have by Lemma 2.1 in [6] that

C1
|S(λ, r)|ω
(1− |λ|)4

≤ ‖Kλ‖2L2(ω) ≤ C2
|S(λ, r)|ω
(1− |λ|)4

≤ C2
|D(λ, r)|ω
(1− |λ|)4

for some positive constants C1 = C1(r) and C2 = C2(r), where Kλ(z) =
1

(1−λz)2

is the reproducing kernel for L2
a at λ. Recalling that

Rλ(z) = 2Re
(
Kλ(z)

)
− 1,

we have

‖Rλ‖2L2(ω) ≤
4C|D(λ, r)|ω
(1− |λ|)4

+ 2‖ω‖L1 .

Consequently, to complete the proof we only need to show that there is a
constant C3 depending only on r such that

‖ω‖L1 ≤ C3
|D(λ, r)|ω
(1− |λ|)4

for every λ ∈ D. Indeed, we may assume that ‖ω‖L1 = 1. Then it is easy to see
that

C
(
1− |λ|

)2 ≤ ∣∣D(λ, r)
∣∣

for some constant C = C(r). Thus we have

C
(
1− |λ|

)2 ≤ ∣∣D(λ, r)
∣∣ ≤ ∣∣D(λ, r)

∣∣ 12
ω
· ‖ω−1‖

1
2

L1 ,
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to get

|D(λ, r)|ω
(1− |λ|)4

≥ C3,

which completes the proof of Lemma 3.2. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will show that (4) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4).
(4) ⇒ (3): Note that there exists an r ∈ (0, r0] such that

1
2

(1− |z|)2
≤

∣∣Rz(λ)
∣∣ ≤ 3

(1− |z|)2

for λ ∈ D(z, r). From the definition of ν̃, there is a constant C > 0 such that

1

‖Rz‖2L2(ω)

∫
D(z,r)

∣∣Rz(λ)
∣∣2 dν(λ) ≤ ν̃(z) ≤ C

for all z ∈ D. Combining these with Lemma 3.2 gives us that

ν
(
D(z, r)

)
≤ C

∣∣D(z, r)
∣∣
ω

(z ∈ D)

for some positive constant C = C(r).
Proposition 2.9 gives (3) ⇒ (2), so we only need to show that (2) ⇒ (1).

Assume that ν is a Carleson measure. By condition (2) and Lemma 3.2, we obtain
condition (3). Now Proposition 2.9 implies that ν is also a Carleson measure for
L1
h(ω). Then for f, g—two functions harmonic on a neighborhood of D (which,

by Theorem 2.6, are dense in L2
h(ω))—we have∣∣〈Tνf, g〉

∣∣ ≤ ∫
D

∣∣f(z)g(z)∣∣ dν(z) ≤ C‖fg‖L1(ω) ≤ C‖f‖L2(ω)‖g‖L2(ω),

to get that Tν is bounded.
(1) ⇒ (4): Suppose that Tν is bounded on L2

h(ω). We consider the partial sum

σN =
∑N

n=1 tnK
ω
an , where N ≥ 1, {tn} are complex numbers, and {an} ⊂ D.

Direct calculations show that

‖σN‖L2(ν) ≤ C‖σN‖L2(ω)

for some constant C > 0. This implies that if limN→∞ ‖σN − g‖L2(ω) = 0 for some
g ∈ L2

h(ω), then

lim
N→∞

〈f, σN〉L2(ν) = 〈f, g〉L2(ν)

for every f ∈ L2
h(ω). Applying Theorem 2.13, we obtain

〈Tνf, g〉L2(ω) = 〈f, g〉L2(ν)

for every f, g ∈ L2
h(ω). In particular, we have

〈TνRz, Rz〉L2(ω) = 〈Rz, Rz〉L2(ν) = ν̃(z)‖Rz‖2L2(ω)

to get ν̃(z) ≤ ‖Tν‖ for all z ∈ D. The proof of Theorem 3.1 is now complete. �
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From the above theorem, it is natural to characterize the compactness of Tν

via the vanishing Carleson measure. In fact, we will characterize the compact
Toeplitz operator with positive measure as the symbol via not only the vanishing
Carleson measure (for the A2-weighted harmonic Bergman space) but also the
Berezin transform.

Theorem 3.3. Let ν be a positive finite Borel measure on D, and let ω ∈ A2.
The following conditions are equivalent:

(1) Tν is compact on L2
h(ω).

(2) ν is a vanishing Carleson measure for L2
h(ω); that is,

lim
|z|→1−

ν(D(z, r))

|D(z, r)|ω
= 0

for some r ∈ (0, 1).
(3) The Berezin transform satisfies that lim|z|→1− ν̃(z) = 0.

Proof. We will show that (2) ⇒ (1) ⇒ (3) ⇒ (2).
(2) ⇒ (1): To prove (1), we only need to show that the inclusion operator

i : L2
h(ω) → L2(ν) is compact; that is,

lim
n→∞

∫
D

∣∣fn(z)∣∣2 dν(z) = 0

whenever ‖fn‖L2(ω) → 0 (n → ∞), where {fn}∞n=1 is a bounded sequence in L2
h(ω)

which converges to zero uniformly on each compact subset of D.
From the proof of Proposition 2.9, there exists a positive constant C = C(r)

such that∫
D

∣∣fn(z)∣∣2 dν(z) ≤ C

∫
D

∣∣D(ξ, r)
∣∣−1

ω
ν
(
D(ξ, r)

)∣∣fn(ξ)∣∣2ω(ξ) dA(ξ)
= C

(∫
|ξ|≤s

+

∫
|ξ|>s

)ν(D(ξ, r))

|D(ξ, r)|ω
∣∣fn(ξ)∣∣2ω(ξ) dA(ξ),

where s ∈ (0, 1). Using the assumption in condition (2), we can choose an s0 ∈
(0, 1) to make the second integral as small as we like. Fix s0. It is easy to show
that the first integral converges to zero, since fn → 0 (n → ∞) uniformly on
compact subsets. This proves (2) ⇒ (1).

(1) ⇒ (3): Observe that

ν̃(z) =
〈
Tν

Rz

‖Rz‖L2(ω)

,
Rz

‖Rz‖L2(ω)

〉
L2(ω)

≤
∥∥∥Tν

( Rz

‖Rz‖L2(ω)

)∥∥∥
L2(ω)

.

So, it is sufficient to show that Rz

‖Rz‖L2(ω)
converges to zero weakly in L2

h(ω) as

|z| → 1−. Noting that Rz

‖Rz‖L2(ω)
is a unit vector in L2

h(ω), we only need to show

that it converges to zero uniformly on compact subsets of D as |z| → 1−. Observe
that Lemma 3.2 implies that there exists a positive constant C = C(r0) such that∣∣∣ Rz(λ)

‖Rz‖L2(ω)

∣∣∣2 ≤ C
∣∣Rz(λ)

∣∣2 ∫
D(z,r0)

ω−1 dA.



TOEPLITZ OPERATORS ON WEIGHTED HARMONIC BERGMAN SPACES 825

Now we conclude that Rz

‖Rz‖L2(ω)
converges to zero uniformly (as |z| → 1−) on each

disk |λ| ≤ s < 1, since |D(z, r0)| → 0 as |z| → 1−, and that ω−1 ∈ L1(dA).
(3) ⇒ (2): By the definition of ν̃ and Lemma 3.2, there exists a constant

C = C(r0) > 0 such that

ν̃(z) =
1

‖Rz‖2L2(ω)

∫
D

∣∣Rz(λ)
∣∣2 dν(λ) ≥ C

4

ν(D(z, r0))

|D(z, r0)|ω
.

Thus we have lim|z|→1−
ν(D(z,r0))
|D(z,r0)|ω = 0 if lim|z|→1− ν̃(z) = 0, to complete the proof.

�

In the rest of this section, we will consider the special class of compact Toeplitz
operators. We will give a characterization of ν for Tν to be in the Schatten class
Sp (p ≥ 1). The following theorem is the third main result in Section 3.

Theorem 3.4. Let ν be a positive finite Borel measure on D, and let ω ∈ A2.
Then for 1 ≤ p < ∞, Tν ∈ Sp if and only if

∞∑
n=1

(ν(D(an, ε))

|D(an, ε)|ω

)p

< +∞,

where ({an}∞n=1, ε) is the ε-lattice obtained by Theorem 2.6.

In order to prove the above result, we need one more lemma, which is a straight-
forward consequence of Lemmas 2.1 and 3.2.

Lemma 3.5. Let ω ∈ A2 and 0 < r ≤ r0. There exists a constant C = C(r) > 0
such that

C−1 ≤ Kω
z (z) ·

∣∣D(z, r)
∣∣
ω
≤ C

for z ∈ D, where Kω
z is the reproducing kernel for L2

h(ω).

Proof. Note that Kω
λ (λ) = ‖Kω

λ ‖2L2(ω) for each λ ∈ D. Applying Lemma 2.1 to the

function Kω
λ (z), we get a constant C depending only on r such that

∣∣Kω
λ (z)

∣∣2 ≤ C‖Kω
λ ‖2L2(ω)

|D(z, r)|ω
=

CKω
λ (λ)

|D(z, r)|ω
.

Taking λ = z, we get the inequality on the right-hand side in Lemma 3.5.
For the reverse inequality, note that for each z ∈ D,

1

(1− |z|)2
≤ 2

(1− |z|2)2
− 1 = Rz(z) = 〈Rz, K

ω
z 〉L2(ω)

≤ ‖Rz‖L2(ω) · ‖Kω
z ‖L2(ω) ≤ C

|D(z, r)|
1
2
ω

(1− |z|)2
·
√
Kω

z (z),

where the constant C comes from Lemma 3.2. This finishes the proof. �

We are ready to prove Theorem 3.4. The method of its proof is quite standard.
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Proof of Theorem 3.4. Suppose that
∑∞

n=1(
ν(D(an,ε))
|D(an,ε)|ω )

p < +∞. We consider the

ε-lattice {an}∞n=1 given by Theorem 2.6. Recall that ε < r0 (see the proof of
Proposition 2.10). For an arbitrary orthonormal basis {en}∞n=1 of L2

h(ω), we have

∞∑
n=1

〈Tνen, en〉 =
∞∑
n=1

∫
D

∣∣en(z)∣∣2 dν(z) = ∫
D
Kω

z (z) dν(z)

≤
∞∑
n=1

∫
D(an,ε)

Kω
z (z) dν(z)

≤ C
∞∑
n=1

∫
D(an,ε)

∣∣D(z, ε)
∣∣−1

ω
dν(z),

where the constant C comes from Lemma 3.5. Note that ρ(z, an) < ε for every
n ≥ 1. By Lemma 2.5 and its proof, we can choose a constant C1 = C1(ε) such
that

∞∑
n=1

〈Tνen, en〉 ≤ C1

∞∑
n=1

ν(D(an, ε))

|D(an, ε)|ω
.

This shows that Tν ∈ S1.
On the other hand, if supn≥1

ν(D(an,ε))
|D(an,ε)|ω < +∞, then by the proof Theorem 7.4

in [25] (or the proof of (3) ⇒ (2) in Theorem 3.1), we deduce that Tν is bounded
on L2

h(ω); that is, Tν ∈ S∞. Now applying the interpolation theorem for the
Schatten classes (see [25, Theorem 2.6] if needed), we obtain that Tν ∈ Sp for
each p ∈ (1,+∞) if

∞∑
n=1

(ν(D(an, ε))

|D(an, ε)|ω

)p

< +∞.

Conversely, we assume that Tν ∈ Sp for 1 ≤ p < ∞. We recall by Theorem 2.6
that each f ∈ L2

h(ω) has the form

f(z) =
∞∑
n=1

cn
(
1− |an|

)2
Ran(z)

∣∣D(an, ε)
∣∣− 1

2

ω

:=
∞∑
n=1

cnhn(z),

where {cn}∞n=1 ∈ `2(N). The Cauchy–Schwarz inequality shows that

‖f‖2L2(ω) ≤
( ∞∑
n=1

|cn|2
)
·
( ∞∑
n=1

(1− |an|)4

|D(an, ε)|ω
‖Ran‖2L2(ω)

)
.

Since ε < r0, we have by Lemma 3.2 that

‖f‖2L2(ω) ≤ C
∞∑
n=1

|cn|2,

where the constant C > 0 depends only on ε.
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Fix an orthonormal basis {en}∞n=1 for L2
h(ω), and define a linear operator A

on L2
h(ω) by

A
( ∞∑
n=1

cnen

)
=

∞∑
n=1

cnhn.

Then A is a bounded surjective linear operator on L2
h(ω). Thus A ∗ is well defined

on L2
h(ω) and A ∗TνA ∈ Sp, so that

∞∑
n=1

∣∣〈A ∗TνA en, en〉L2(ω)

∣∣p < +∞.

On the other hand,

∞∑
n=1

∣∣〈A ∗TνA en, en〉L2(ω)

∣∣p = ∞∑
n=1

∣∣〈TνA en,A en〉L2(ω)

∣∣p
=

∞∑
n=1

∣∣〈Tνhn, hn〉L2(ω)

∣∣p (by the definition of A )

=
∞∑
n=1

(∫
D

∣∣hn(z)
∣∣2 dν(z))p

≥
∞∑
n=1

(∫
D(an,ε)

∣∣hn(z)
∣∣2 dν(z))p

.

Recalling that ∣∣hn(z)
∣∣2 = (1− |an|)4|Ran(z)|2

|D(an, ε)|ω
,

we have by Lemma 3.2 that ∣∣hn(z)
∣∣2 ≥ 1

4|D(an, ε)|ω
for each n ≥ 1 if ρ(z, an) < ε < r0. Therefore,

∞∑
n=1

∣∣〈A ∗TνA en, en〉L2(ω)

∣∣p ≥ 4−p

∞∑
n=1

(ν(D(an, ε))

|D(an, ε)|ω

)p

.

This completes the proof of Theorem 3.4. �

4. Invertibility of Toeplitz operators on L2
h(ωα)

A fundamental and interesting problem is to determine when a Toeplitz oper-
ator is invertible on the Hardy or Bergman space (see [7]). In this section, we
study the invertibility problem of Toeplitz operators on the standard weighted
harmonic Bergman space L2

h(ωα) with ωα = (1 + α)(1 − |z|2)α, α > −1. Recall
that the reproducing kernel for L2

h(ωα) is given by

Rα
z (λ) = Kα

z (λ) +Kα
z (λ)− 1 (z, λ ∈ D),
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where

Kα
z (λ) =

1

(1− zλ)2+α

is the reproducing kernel for the weighted Bergman space L2
a(ωα) (see [22] if

needed).
For the (unweighted) Bergman space setting, the second author and Zheng

provided a necessary and sufficient condition for the Toeplitz operators with non-
negative symbols to be invertible on L2

a (see [24]). The main tool used in [24] is
Luecking’s result in [12, Main Theorem] on the reverse Carleson measure for the
Bergman space, which also holds for the harmonic Bergman space. More precisely,
Luecking established the following results.

Lemma 4.1 ([13, Theorem 1]). Suppose that G is a measurable subset of D. Then
the following are equivalent.

(i) There exists a δ ∈ (0, 1) such that

|G ∩K| ≥ δ|D ∩K|
for every ball K whose center lies on ∂D.

(ii) χG dA is a reverse Carleson measure for L2
h(ωα). That is, there is a constant

C > 0 such that ∫
D

∣∣f(z)∣∣2ωα(z) dA(z) ≤ C

∫
G

∣∣f(z)∣∣2ωα(z) dA(z)

for all f ∈ L2
h(ωα).

Motivated by the ideas and techniques used in [24], we are able to characterize
the invertibility of the Toeplitz operator Tϕ (ϕ ≥ 0) on L2

h(ωα) in terms of the
reverse Carleson measure and the Berezin transform.

Theorem 4.2. Let ϕ ≥ 0 be in L∞(ωα). The following conditions are equivalent.
(1) The Toeplitz operator Tϕ is invertible on L2

h(ωα).
(2) The Berezin transform ϕ̃ is invertible in L∞(ωα), where

ϕ̃(z) :=
1

‖Rα
z ‖2L2(ωα)

∫
D
ϕ(λ)

∣∣Rα(z, λ)
∣∣2ωα(λ) dA(λ)

and

‖Rα
z ‖2L2(ωα)

= Rα
z (z) =

2

(1− |z|2)2+α
− 1.

(3) There exists r > 0 such that χG dA is a reverse Carleson measure for
L2
h(ωα), where G := {z ∈ D : ϕ(z) > r}.
(4) There exists a constant C > 0 such that∫

D

∣∣f(z)∣∣2ϕ(z)ωα(z) dA(z) ≥ C

∫
D

∣∣f(z)∣∣2ωα(z) dA(z)

for f ∈ L2
h(ωα).

Before giving the proof of the main theorem of this section, we need another
lemma, which was proved in [13, Lemma 3], [17, Theorem 9], and [23, Theorem C].
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Lemma 4.3. Suppose that the ball K has radius 0 < t < 1 and center u =
(1, 0) ∈ R2. Let f be the harmonic function

f(λ) = fs(λ) :=
√
1 + αRα

z0
(λ)

(
1− |z0|2

) 2+α
2 ,

where z0 = (1− st)u, 0 < s < 1. Then for each ε > 0, there exist s = s(ε) and a
positive constant C = C(ε) (independent of K) such that∫

B\K

∣∣f(λ)∣∣2(1− |λ|
)α

dA(λ) < ε

and ∫
G∩K

∣∣f(λ)∣∣2(1− |λ|
)α

dA(λ) ≤ C
( |G ∩K|
|D ∩K|

)β

,

where

β =

{
1 if 0 ≤ α < ∞,

1− 1
γ

if − 1 < α < 0,

and γ is a number in (1,− 1
α
) if −1 < α < 0.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). Without
loss of generality, we may assume that 0 ≤ ϕ ≤ 1.

(1) ⇒ (2): This is trivial.
(2) ⇒ (3): Suppose that ϕ̃ is bounded below by some positive constant δ. By

Lemma 4.1, it is sufficient to show that there exists a δ′ ∈ (0, 1) such that

|G ∩K| ≥ δ′|D ∩K|

for all balls K whose centers lie on ∂D.
Since ωα dA is a rotation-invariant measure, we may assume without loss of

generality that K has its center at the point (1, 0). It is also clear that we only
need to prove the inequality for a sufficiently small radius t, say, t < 1. Now we
consider the subset

G =
{
λ ∈ D : ϕ(λ) >

δ

4

}
.

For each z ∈ D,

δ ≤ ϕ̃(z) =
1

‖Rα
z ‖2L2(ωα)

∫
D
ϕ(λ)

∣∣Rα
z (λ)

∣∣2ωα(λ) dA(λ)

=
1

‖Rα
z ‖2L2(ωα)

(∫
G

+

∫
D\G

)
ϕ(λ)

∣∣Rα
z (λ)

∣∣2ωα(λ) dA(λ)

≤
(
1− |z|2

)2+α
∫
G

ϕ(λ)
∣∣Rα

z (λ)
∣∣2ωα(λ) dA(λ) +

δ

4
.

Let Lz be the following integral:

Lz =
1

‖Rα
z ‖2L2(ωα)

∫
G∩K

ϕ(λ)
∣∣Rα

z (λ)
∣∣2ωα(λ) dA(λ).
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Then for each z ∈ D, we have

Lz =
1

‖Rα
z ‖2L2(ωα)

(∫
G

−
∫
G\K

)
ϕ(λ)

∣∣Rα
z (λ)

∣∣2ωα(λ) dA(λ)

≥ 1

2

(
1− |z|2

)2+α
(∫

G

−
∫
G\K

)
ϕ(λ)

∣∣Rα
z (λ)

∣∣2ωα(λ) dA(λ)

≥ 3δ

8
− 1

2

(
1− |z|2

)2+α
∫
G\K

ϕ(λ)
∣∣Rα

z (λ)
∣∣2ωα(λ) dA(λ)

≥ 3δ

8
− 1

2

(
1− |z|2

)2+α
∫
G\K

∣∣Rα
z (λ)

∣∣2ωα(λ) dA(λ) (using 0 ≤ ϕ ≤ 1).

For the δ above, Lemma 4.3 guarantees that we can select z0 ∈ D to define a
function f (as the one in Lemma 4.3), which satisfies the following three inequal-
ities:

Lz0 ≥
3δ

8
− 1

2

(
1− |z0|2

)2+α
∫
G\K

∣∣Rα
z0
(λ)

∣∣2ωα(λ) dA(λ)

=
3δ

8
− 1

2

∫
G\K

∣∣f(λ)∣∣2(1− |λ|2
)α

dA(λ),∫
G\K

∣∣f(λ)∣∣2(1− |λ|2
)α

dA(λ) <
δ

4
,

and ∫
G∩K

∣∣f(λ)∣∣2(1− |λ|
)α

dA(λ) ≤ C
( |G ∩K|
|D ∩K|

)β

,

where the constant C depends only on δ and α. Therefore,

δ

4
≤ Lz0 ≤

(
1− |z0|2

)2+α
∫
K∩G

∣∣Rα
z0
(λ)

∣∣2ωα(λ) dA(λ)

=

∫
G∩K

∣∣f(λ)∣∣2(1− |λ|2
)α

dA(λ)

≤ C
( |G ∩K|
|D ∩K|

)β

.

Now we get (3) by Lemma 4.1.
(3) ⇒ (4): Observe that∫

D
|f |2ϕωα dA > r

∫
G

|f |2ωα dA ≥ r

C

∫
D
|f |2ωα dA,

where the last inequality follows from the definition of the reverse Carleson mea-
sure.

(4) ⇒ (1): Using the same arguments as in the proof of Corollary 3 in [12], we
obtain that ‖I − Tϕ‖ < 1, which implies that Tϕ is invertible on L2

h(ωα). This
completes the whole proof of Theorem 4.2. �
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Let Tϕ denote the Toeplitz operator with symbol ϕ on the weighted Bergman
space L2

a(ωα). Combining the main result in [12] and the techniques used in the
proof of Theorem 4.2, we can generalize Theorem 3.2 in [24] to the case of standard
weighted Bergman spaces.

Theorem 4.4. Let ϕ ≥ 0 be in L∞(ωα). Then the following are equivalent.
(1) The Toeplitz operator Tϕ is invertible on L2

a(ωα).
(2) The Berezin transform ϕ̂ is invertible in L∞(ωα), where

ϕ̂(z) :=
1

‖Kα
z ‖2L2(ωα)

∫
D
ϕ(λ)

∣∣Kα
z (λ)

∣∣2ωα(λ) dA(λ).

(3) There exists r > 0 such that χG dA is a reverse Carleson measure for
L2
a(ωα), where G := {z ∈ D : ϕ(z) > r}.
(4) There exists a δ ∈ (0, 1) such that

|G ∩K| ≥ δ|D ∩K|

for every ball K whose center lies on ∂D.
(5) There exists a constant C > 0 such that∫

D

∣∣f(z)∣∣2ϕ(z)ωα(z) dA(z) ≥ C

∫
D

∣∣f(z)∣∣2ωα(z) dA(z)

for f ∈ L2
a(ωα).

Proof. From the proof of Theorem 4.2, it is sufficient to show that one can replace
the harmonic function f defined in Lemma 4.3 by a suitable analytic function g.
Indeed, we construct the desired function g as follows. Suppose that K has radius
0 < t < 1 and center u = (1, 0) ∈ R2. Define

g(λ) =
√
α + 1Kα

z0
(λ)

(
1− |z0|2

) 2+α
2 ,

where z0 = (1− st)u, 0 < s < 1. Then it is not hard to check that both inequal-
ities in Lemma 4.3 hold for g. Now the rest of the proof follows exactly that of
Theorem 4.2. �

Note that Tϕ ≥ 0 on L2
a(ωα) does not imply that ϕ ≥ 0. In view of this fact

and the above theorem, it is natural to ask the following question.

Question 4.5. Is Tϕ invertible on the weighted Bergman space L2
a(ωα) if Tϕ ≥ 0

and the Berezin transform ϕ̂ is invertible in L∞(ωα)?

To study the above question, we only need to consider the case of α = 0 in
L2
a(ωα), that is, the classical Bergman space L2

a. We give a negative answer to
Question 4.5 by the following proposition.

Proposition 4.6. Let ϕ(z) = |z|2+a|z|+b (z ∈ D). There exist a and b such that
the Bergman Toeplitz operator Tϕ ≥ 0 and the Berezin transform ϕ̂ is invertible
in L∞(D), but Tϕ is not invertible on L2

a.
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Proof. Let a = −1.51 and b = 381
700

. By Proposition 3.4 in [24], the eigenvalues of
Tϕ are given by

λn =
2n+ 2

2n+ 4
+ a

2n+ 2

2n+ 3
+ b (n ≥ 0).

Then it is easy to check that λ2 = 0, and so Tϕ is not invertible on L2
a. Moreover,

one can show that Tϕ is positive since

min
n≥0

λn = λ2 = 0.

It remains only to prove that ϕ̂ is bounded below. Using the calculations in
Proposition 3.4 of [24] again, we obtain

ϕ̂(z) =
[
2− 1

x2
− (1− x2)2

x4
log(1− x2)

]
− 151

200

[
3− 1

x2
+

(1− x2)2

2x3
log

1 + x

1− x

]
+

381

700

:= F (x)
(
x = |z| ∈ [0, 1]

)
.

Now one can show

inf
z∈D

ϕ̂(z) ≥ min
x∈[0,1]

F (x) ≥ 9

1000
> 0

by adopting some techniques from the proof of Proposition 3.4 in [24]. However,
this inequality implies that ϕ̂ is invertible in L∞(D). �

Based on Theorem 4.4, we can establish a relationship of the invertibility
between Toeplitz operators (with nonnegative symbols) on L2

a(ωα) and L2
h(ωα).

Corollary 4.7. Let ϕ be a nonnegative bounded measurable function on D. The
following four conditions are equivalent:

(1) Tϕ is invertible on L2
a(ωα);

(2) Tϕ is invertible on L2
h(ωα);

(3) ϕ̂ is invertible in L∞(ωα);
(4) ϕ̃ is invertible in L∞(ωα).

5. A reverse Carleson inequality for L2
h(ω)

In the previous section, we studied the invertibility problem of Toeplitz opera-
tors via reverse Carleson measures for the standard weighted harmonic Bergman
spaces. In this section, we establish a sufficient condition for χG dA to be a reverse
Carleson measure for L2

h(ω), where ω ∈ A2 and G is a measurable subset in D.
For a ∈ D, 0 < r < 1, recall that

S(a, r) =
{
z ∈ D : |z − a| < r

(
1− |a|

)}
.

The main result in this section is Theorem 5.1, which is a harmonic version of
Theorem 3.9 in [15].
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Theorem 5.1. Suppose that G ⊂ D and that ω satisfies the A2 condition. If
there exist δ ∈ (0, 1) and r ∈ (0, 1) such that for all a ∈ D,∣∣G ∩ S(a, r)

∣∣ ≥ δ
∣∣S(a, r)∣∣,

then there exists a positive constant C = C(r, δ) such that∫
D
|f(z)|2ω(z) dA(z) ≤ C

∫
G

|f(z)|2ω(z) dA(z)

for all f ∈ L2
h(ω).

To prove the above theorem, we will adopt some ideas and techniques from
[15]. First, we need to introduce a new (weight) function ω∗ and discuss some
properties of ω∗. In the rest of this section, we use r and δ to denote the numbers
provided in Theorem 5.1.

Now we define a positive function ω∗ on the open unit disk as follows:

ω∗(z) = ω∗
r(z) :=

|S(z, r)|ω
|S(z, r)|

.

It is clear that ω∗ ∈ L1(dA), and so ω∗ is a weight. Moreover, ω∗ has the following
important property.

Lemma 5.2. Let z ∈ D. Then there exist constants C1 and C2 depending only
on r such that

C1ω
∗(a) ≤ ω∗(z) ≤ C2ω

∗(a)

for all a ∈ S(z, r). Consequently, we have∫
D

ω∗(a)

|S(a, r)|
χS(a,r)(z) dA(a) ≤ C3ω

∗(z) (z ∈ D),

where C3 = C3(r) is a constant.

Proof. By Lemma 2.2 in [6], there exists a positive constant C depending only
on r such that

C−1
∣∣S(a, r)∣∣

ω
≤

∣∣S(z, r)∣∣
ω
≤ C

∣∣S(a, r)∣∣
ω
.

Moreover, it is well known that |S(z, r)| is equivalent to |S(a, r)| (with constants
independent of a and z) if a ∈ S(z, r). This gives the first conclusion of the
lemma. Based on this result, we have∫

D

ω∗(a)

|S(a, r)|
χS(a,r)(z) dA(a) ≤ C

∫
D

ω∗(z)

|S(a, r)|
χS(a,r)(z) dA(a)

(
using z ∈ S(a, r)

)
≤ C

∫
D

ω∗(z)

|S(a, r)|
χD(a,r)(z) dA(a)

= C

∫
D

ω∗(z)

|S(a, r)|
χD(z,r)(a) dA(a)

= C

∫
D(z,r)

ω∗(z)

|S(a, r)|
dA(a)

≤ C3ω
∗(z),
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where the second inequality follows from S(a, r) ⊂ D(a, r), and C3 depends only
on r, as desired. �

Another property of ω∗ is given by the following inequality, which will be used
to estimate the integral of |f |2ω over the subset G.

Lemma 5.3. Let ω be an A2 weight. Then there exists a constant C > 0 depend-
ing only on r such that

‖f‖2L2(ω) ≤ C‖f‖2L2(ω∗)

for all f ∈ L2
h(ω).

Proof. Using the definition of ω∗, we have

‖f‖2L2(ω∗) =

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z)

=

∫
D
ω(ξ)

(∫
D

∣∣f(z)∣∣2χS(z,r)(ξ)

|S(z, r)|
dA(z)

)
dA(ξ).

We next deal with the bracketed expression. Observing that

S
(
ξ,

r

2(1 + r)

)
⊂

{
z ∈ D : |z − ξ| < r

(
1− |z|

)}
,

we obtain∫
D

∣∣f(z)∣∣2χS(z,r)(ξ)

|S(z, r)|
dA(z) =

∫
{z∈D:|z−ξ|<r(1−|z|}

|f(z)|2

|S(z, r)|
dA(z)

≥
∫
S(ξ, r

2(1+r)
)

|f(z)|2

|S(z, r)|
dA(z)

≥ C

|S(ξ, r)|

∫
S(ξ, r

2(1+r)
)

∣∣f(z)∣∣2 dA(z)
= C

[ 1

|S(ξ, r
2(1+r)

)|

∫
S(ξ, r

2(1+r)
)

|f |2 dA
]
·
|S(ξ, r

2(1+r)
)|

|S(ξ, r)|

≥ C

16

∣∣f(ξ)∣∣2,
where the second inequality follows from z ∈ S(ξ, r

2(1+r)
) and the last inequality

follows form the subharmonicity of |f |2 (see Lemma 2.1). Thus we get

‖f‖2L2(ω∗) ≥
C

16

∫
D

∣∣f(ξ)∣∣2ω(ξ) dA(ξ) = C

16
‖f‖2L2(ω)

to complete the proof of Lemma 5.3. �

In order to finish the proof of the main theorem in this section, the following
two key lemmas are also needed.
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Proposition 5.4. Let G be the subset which satisfies the assumption in Theo-
rem 5.1. For η ∈ (0, 1), we define a subset F as the following:

F :=
{
z ∈ D : ω(z) ≥ ηω∗(z)

}
.

Then one can choose η (depending only on δ and r) sufficiently small such that∣∣F ∩ S(a, r)
∣∣ ≥ (

1− δ

2

)∣∣S(a, r)∣∣
and ∣∣G ∩ S(a, r) ∩ F

∣∣ ≥ δ

2

∣∣S(a, r)∣∣
for all a ∈ D.

Proof. First, we claim that for each δ′ ∈ (0, 1), there exists η′ = η′(δ′) > 0 such
that ∣∣{z ∈ S(a, r) : ω(z) < η′ω∗(a)

}∣∣ < δ′
∣∣S(a, r)∣∣

for all a ∈ D.
Indeed, for each κ ∈ (0, 1) and a ∈ D, we have∣∣{z ∈ S(a, r) : ω(z) < κω∗(a)

}∣∣ · 1

κω∗(a)

<

∫
{z∈S(a,r):ω(z)<κω∗(a)}

1

ω(z)
dA(z)

≤
∣∣S(a, r)∣∣

ω−1 ≤ [ω]A2

∣∣S(a, r)∣∣2 · ∣∣S(a, r)∣∣−1

ω
,

to obtain ∣∣{z ∈ S(a, r) : ω(z) < κω∗(a)
}∣∣ < (

[ω]A2κ
)∣∣S(a, r)∣∣

for all a ∈ D and κ ∈ (0, 1). By this inequality, we can choose any 0 < η′ ≤ δ′

[ω]A2

to finish the proof of the claim.
Lemma 5.2 guarantees that there is a constant C = C(r) such that{
z ∈ S(a, r) : ω(z) < Cτω∗(z)

}
⊂

{
z ∈ S(a, r) : ω(z) < τω∗(a)

}
(a ∈ D)

for every τ ∈ (0, 1). By the claim and its proof, there exists a τ = τ(δ) < 1
C
such

that ∣∣{z ∈ S(a, r) : ω(z) < τω∗(a)
}∣∣ < δ

2

∣∣S(a, r)∣∣ (a ∈ D).

Therefore, we can take η = η(δ, r) = Cτ < 1 such that∣∣{z ∈ S(a, r) : ω(z) < ηω∗(z)
}∣∣ < δ

2

∣∣S(a, r)∣∣ (a ∈ D).

We define the subset F by the η chosen above, so that∣∣F ∩ S(a, r)
∣∣ = ∣∣{z ∈ S(a, r) : ω(z) ≥ ηω∗(z)

}∣∣ ≥ (
1− δ

2

)∣∣S(a, r)∣∣
for all a ∈ D.

By the assumption ∣∣G ∩ S(a, r)
∣∣ ≥ δ

∣∣S(a, r)∣∣,
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we have

δ|S(a, r)| ≤
∣∣G ∩ S(a, r)

∣∣
=

∣∣[G ∩ S(a, r) ∩ F
]
∪
[
G ∩ S(a, r) ∩ (D \ F )

]∣∣
≤

∣∣G ∩ S(a, r) ∩ F
∣∣+ ∣∣S(a, r) ∩ (D \ F )

∣∣
=

∣∣G ∩ S(a, r) ∩ F
∣∣+ ∣∣S(a, r)∣∣− ∣∣S(a, r) ∩ F

∣∣
≤

∣∣G ∩ S(a, r) ∩ F
∣∣+ ∣∣S(a, r)∣∣− (

1− δ

2

)∣∣S(a, r)∣∣,
to obtain ∣∣G ∩ S(a, r) ∩ F

∣∣ ≥ δ

2

∣∣S(a, r)∣∣
for all a ∈ D, as desired. �

Lemma 5.5. If G0 is a measurable subset of D that satisfies∣∣G0 ∩ S(a, r)
∣∣ ≥ δ0

∣∣S(a, r)∣∣ (a ∈ D)

for some δ0 > 0, then there exists a constant C = C(δ0, r) > 0 such that∫
D

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ C

∫
G0

∣∣f(z)∣∣2ω∗(z) dA(z)

for all f ∈ L2
h(ω

∗).

Because the proof of the above lemma is long and requires a number of technical
lemmas, we will prove it at the end of this section. With this lemma, we are going
to prove Theorem 5.1.

Proof of Theorem 5.1. By Proposition 5.4 and Lemma 5.5, we have∫
D

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ C1

∫
G∩F

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ C1η
−1

∫
G

|f |2ω dA

for all f ∈ L2
h(ω

∗), where C1 is a constant depending only on r and where η =
η(δ, r) < 1 is chosen by Proposition 5.4.

From Lemma 5.3, it is clear that∫
D

∣∣f(z)∣∣2ω(z) dA(z) ≤ C1η
−1

∫
G

∣∣f(z)∣∣2ω(z) dA(z)
for all f ∈ L2

h(ω), which gives the desired inequality in Theorem 5.1. �

Now we turn to the proof of Lemma 5.5. Before giving the proof, we need to
introduce some notation and prove three technical lemmas.

Let 0 < θ < 1
2
. We define the subset

Eθ(a) = Eθ(f, a) :=
{
z ∈ S(a, r) :

∣∣f(z)∣∣ > θ
∣∣f(a)∣∣}

and the operator

Bθf(a) :=
1

|Eθ(a)|

∫
Eθ(a)

∣∣f(z)∣∣2 dA(z) (a ∈ D).
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Clearly,

1

|S(a, r)\Eθ(a)|

∫
S(a,r)\Eθ(a)

|f |2 dA ≤ θ2
∣∣f(a)∣∣2 < 1

|Eθ(a)|

∫
Eθ(a)

|f |2 dA,

and thus we have

Bθf(a) ≥
1

|S(a, r)|

∫
S(a,r)

∣∣f(z)∣∣2 dA(z) (a ∈ D).

For ε ∈ (0, 1), we consider the following two subsets, which will be very useful
in establishing our main result. Define

A = Aε :=
{
a ∈ D :

∣∣f(a)∣∣2 ≤ ε

|S(a, r)|

∫
S(a,r)

∣∣f(z)∣∣2 dA(z)}
and

B = Bε :=
{
a ∈ D :

∣∣f(a)∣∣2 ≤ ε2Bθf(a)
}
.

The following inequality gives a useful estimate for the Lebesgue measure of
the set {z ∈ S(a, r) : |f(z)| > θ|f(a)|}, where f is a harmonic function.

Lemma 5.6. Fix ε ∈ (0, 1). For any δ′ ∈ (0, 1), there exists θ ∈ (0, 1
2
) such that∣∣{z ∈ S(a, r) :

∣∣f(z)∣∣ > θ
∣∣f(a)∣∣}∣∣ > (

1− δ′

2

)∣∣S(a, r)∣∣
for every f harmonic on D, satisfying∣∣f(a)∣∣2 > ε2

|S(a, r)|

∫
S(a,r)

∣∣f(z)∣∣2 dA(z) (a ∈ D).

Proof. See the proof of Lemma 2 in [13]. �

The next lemma provides an estimate for the integral of |f |2ω∗ over the set
A, which can be proved easily by combining the definition of A and the second
conclusion of Lemma 5.2.

Lemma 5.7. Let ε ∈ (0, 1). Then there exists a constant C (independent of ε)
such that ∫

A

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ Cε

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z)

for all f ∈ L2
h(ω

∗).

The proof of Lemma 5.5 requires the following inequality.

Lemma 5.8. Let ε ∈ (0, 1). Then there exists a constant C = C(r) such that∫
B

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ Cε

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z)

for all f ∈ L2
h(ω

∗).
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Proof. Observe that∫
B

∣∣f(z)∣∣2ω∗(z) dA(z) =

∫
B∩A

∣∣f(z)∣∣2ω∗(z) dA(z) +

∫
B\A

∣∣f(z)∣∣2ω∗(z) dA(z)

≤
∫
A

∣∣f(z)∣∣2ω∗(z) dA(z) +

∫
B\A

∣∣f(z)∣∣2ω∗(z) dA(z).

Based on Lemma 5.7, it is sufficient to show that the following inequality holds
for some constant C = C(r):

J :=

∫
B\A

∣∣f(z)∣∣2ω∗(z) dA(z) ≤ Cε

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z).

Recall that for each a ∈ B, we have∣∣f(a)∣∣2 ≤ ε2

|Eθ(a)|

∫
Eθ(a)

∣∣f(z)∣∣2 dA(z).
From the above inequality, we have

J =

∫
B\A

∣∣f(a)∣∣2ω∗(a) dA(a)

≤ ε2
∫
D

(∫
B\A

ω∗(a)

|Eθ(a)|
χEθ(a)(z) dA(a)

)∣∣f(z)∣∣2 dA(z)
≤ ε2

∫
D

∣∣f(z)∣∣2(∫
B\A

ω∗(a)
χS(a,r)(z)

|Eθ(a)|
dA(a)

)
dA(z).

The last inequality follows from the fact that Eθ(a) ⊂ S(a, r).
To finish the proof of this lemma, we need to verify the following claim.

Claim. There is a positive constant C = C(r) such that∣∣Eθ(a)
∣∣ ≥ Cε

∣∣S(a, r)∣∣ or
∣∣Eθ(a)

∣∣ ≥ C
∣∣S(a, r)∣∣

for each a /∈ A.
If the above claim is true, then we get∫

B\A
ω∗(a)

χS(a,r)(z)

|Eθ(a)|
dA(a) ≤ C−1ε

∫
B\A

ω∗(a)
χS(a,r)(z)

|S(a, r)|
dA(a).

Using Lemma 5.2 again, we have∫
B\A

ω∗(a)
χS(a,r)(z)

|S(a, r)|
dA(a) ≤ C1ω

∗(z),

where the constant C1 depends only on r. From the definition of J , we obtain

J ≤ Cε

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z)

for some positive constant C = C(r).
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Now we verify the claim. For each a /∈ A, we have∣∣f(a)∣∣2 > ε

|S(a, r)|

∫
S(a,r)

∣∣f(z)∣∣2 dA(z)
=

ε

r2(1− |a|)2

∫
S(a,r)

∣∣f(z)∣∣2 dA(z).
Using a change of variables, z = a+ r(1− |a|)λ, gives∣∣f(a)∣∣2 > ε

∫
D

∣∣f(a+ r
(
1− |a|

)
λ
)∣∣2 dA(λ).

Let g(λ) = f(a+ r(1− |a|)λ). Then g is also harmonic on D and∣∣g(0)∣∣2 > ε

∫
D

∣∣g(λ)∣∣2 dA(λ).
Applying Lemma 2.11 to g, we get a constant C0 = C0(r) such that∣∣g(z)− g(0)

∣∣ ≤ C0|z|
∫
D(0, r

4
)

∣∣g(λ)∣∣ dA(λ) ≤ C0|z|
∫
D
|g| dA

whenever |z| ≤ r
16
. The Cauchy–Schwarz inequality gives that

∣∣g(z)− g(0)
∣∣ ≤ C0|z|

(∫
D

∣∣g(λ)∣∣2 dA(λ)) 1
2 ≤ C0ε

− 1
2

∣∣g(0)∣∣ · |z|
provided that |z| ≤ r

16
.

If

|z| < min
{ r

16
,
ε
1
2

2C0

}
,

then ∣∣g(z)∣∣ ≥ ∣∣g(0)∣∣− ∣∣g(z)− g(0)
∣∣ ≥ |g(0)|

2
.

Since 0 < θ < 1
2
, we have

∣∣g(z)∣∣ > θ
∣∣g(0)∣∣ for |z| < min

{ r

16
,
ε
1
2

2C0

}
.

This means that

B
(
0,

r

16

)
⊂

{
z ∈ D :

∣∣g(z)∣∣ > θ
∣∣g(0)∣∣}

or

B
(
0,

ε
1
2

2C0

)
⊂

{
z ∈ D :

∣∣g(z)∣∣ > θ
∣∣g(0)∣∣}.
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On the other hand, observe that∣∣Eθ(a)
∣∣ = ∫

{z∈S(a,r):|f(z)|>θ|f(a)|}
dA(z)

=

∫
{| z−a

r(1−|a|) |<1:|f(z)|>θ|f(a)|}
dA(z)

=
∣∣S(a, r)∣∣ ∫

{|λ|<1:|f(a+r(1−|a|)λ)|>θ|f(a)|}
dA(λ)

=
∣∣S(a, r)∣∣ ∫

{|λ|<1:|g(λ)|>θ|g(0)|}
dA(λ)

=
∣∣S(a, r)∣∣ · ∣∣{λ ∈ D :

∣∣g(λ)∣∣ > θ
∣∣g(0)∣∣}∣∣,

to obtain ∣∣Eθ(a)
∣∣ ≥ ( r

16

)2∣∣S(a, r)∣∣
or ∣∣Eθ(a)

∣∣ ≥ ε

4C2
0

∣∣S(a, r)∣∣.
This gives the proof of the claim, and the proof of Lemma 5.8 is completed.

�

We are now ready to prove Lemma 5.5.

Proof of Lemma 5.5. Suppose that |G0∩S(a, r)| ≥ δ0|S(a, r)|. From Lemmas 5.7
and 5.8, we can choose ε small enough so that∫

D

∣∣f(z)∣∣2ω∗(z) dA(z) < 2

∫
D\B

∣∣f(z)∣∣2ω∗(z) dA(z).

On the other hand, if a /∈ B, then∣∣f(a)∣∣2 > ε2Bθf(a) ≥
ε2

|S(a, r)|

∫
S(a,r)

∣∣f(z)∣∣2 dA(z).
For the δ0 above, we apply Lemma 5.6 to choose a θ ∈ (0, 1

2
) such that∣∣{z ∈ S(a, r) :

∣∣f(z)∣∣ > θ
∣∣f(a)∣∣}∣∣ > (

1− δ0
2

)∣∣S(a, r)∣∣.
Since |G0 ∩ S(a, r)| ≥ δ0|S(a, r)|, we have∣∣{z ∈ S(a, r) ∩G0 :

∣∣f(z)∣∣ > θ
∣∣f(a)∣∣}∣∣ > δ0

2

∣∣S(a, r)∣∣
to get

1

|S(a, r)|

∫
S(a,r)∩G0

∣∣f(z)∣∣2 dA(z) > θ2δ0
2

∣∣f(a)∣∣2 (a /∈ B).
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Multiplying the above inequality by ω∗(a) and integrating over D\B gives

θ2δ0
2

∫
D\B

ω∗(a)
∣∣f(a)∣∣2 dA(a) < ∫

D\B

ω∗(a)

|S(a, r)|

∫
S(a,r)∩G0

|f |2 dAdA(a)

=

∫
G0

|f |2
(∫

D\B

ω∗(a)χS(a,r)(z)

|S(a, r)|
dA(a)

)
dA

≤ C

∫
G0

∣∣f(z)∣∣2ω∗(z) dA(z),

where the last inequality follows from Lemma 5.2 and where C depends only on r.
Therefore, ∫

G0

∣∣f(z)∣∣2ω∗(z) dA(z) >
δ0θ

2

4C

∫
D

∣∣f(z)∣∣2ω∗(z) dA(z)

for all f ∈ L2
h(ω

∗), to complete the proof of Lemma 5.5. �
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