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Independence of the Dual Axiom in Modal K with
Primitive ˘

Richmond Thomason

Abstract Explicit axioms relating ˘� and � appear to be needed if ˘ is
taken to be primitive. We prove that such axioms are in fact indispensable.

1 Introduction

Blackburn, de Rijke, and Venema [1] formulated systems of propositional modal
logic with ˘ as primitive, and with p defined as :˘:p. In axiomatizing these
logics, the authors resorted to an axiom that is not needed when is the modal
primitive. This is the dual axiom:

˘p $ : :p:

The purpose of this article is to show that such an axiom is indispensable: in fact,
both ˘p ! ˘::p and ˘::p ! ˘p can be invalidated in a modal logic with
˘ as primitive and with the usual Boolean axioms, the necessitation rule, and the K
axiom. Of course, these axioms cannot be invalidated in Kripke frames, or even in
Boolean propositional logic. So the models used in this article are somewhat exotic.

2 Eight-Valued Models for Modality

We will use many-valued models with eight values. It is best to think of these values
as made up out of two 4-element Boolean algebras B and B0. See Figure 1 for a
picture.

The units of the two Boolean algebras, _ and _0, are the only designated values: a
formula is valid if it only receives values in ¹_;_0º. Negation is nonstandard. Within
B, it is as expected, but the “complement” of an element of B0 is the complement
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Figure 1 An 8-valued model.

of its twin in B. The conditional ! is the “union” or least upper bound of the
complement of the antecedent with the twin of the consequent.

We now spell these ideas out explicitly in the following definition of the functions
f: and f! that serve to interpret negation and the conditional.

Definition 1 f:, f!

f:.^/ D _; f:._/ D ^; f:.1/ D 2; f:.2/ D 1;

f:.^
0/ D _; f:._

0/ D ^; f:.1
0/ D 2; f:.2

0/ D 1;

Twin.x/ D f:

�
f:.x/

�
D x if x 2 B; f:

�
f:.x/

�
if x 2 B0;

For x; y 2 B W f!.^; x/ D _; f!.x;^/ D f:.x/; f!._; x/ D x;

f!.1; 2/ D 2; f!.2; 1/ D 1;

For x; y 2 B0
W f!.x; y/ D f!

�
Twin.x/;Twin.y/

�
:

These conditions overlap in places, but the overlaps are consistent.
We will postpone the definition of f˘.

3 Axioms

The system in which we are interested has the following four axioms, together with
the rules of modus ponens, necessitation, and substitution:

(1) p !� q ! p,
(2) .p !� q ! r/ !� .p ! q/ !� p ! r ,
(3) .:p ! :q/ !� q ! p,
(4) :˘:.p ! q/ !� :˘:p ! :˘:q.
Axioms (1)–(3) are complete for Boolean propositional logic. Axiom (4) is the

modal axiom K, with ˘ primitive. Together, these axioms partially axiomatize the
modal system K, including all the usual axioms, but not the dual axiom.

4 Preliminaries

The relation x � y over B [ B0 is given by the least upper bound in Figure 1. It is
the transitive closure of®

h^; 1i; h^; 2i; h1;_i; h2;_i; h^0; 10
i; h^0; 20

i; h10;_0
i; h20;_0

i
¯
:
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We begin with some easily verifiable claims, stated without proof.

Claim 1 We have f!.x; y/ 2 ¹_;_0º iff f!.x; y/ D _.

Claim 2 We have f!.x; y/ D _ iff x � y iff Twin.x/ � Twin.y/.

Claim 3 We have f:.x/ � f:.y/ iff y � x iff Twin.y/ � Twin.x/.

Claim 4 Where lub is the least-upper-bound operator in B [ B0,

f!.x; y/ D lub
�
f:.x/;Twin.y/

�
:

Claim 5 Where glb is the greatest-lower-bound (GLB) operator in B [ B0,
f!.x; f!.y; z// D ^ iff

glb
�
Twin.x/;Twin.y/

�
� Twin.z/:

Claim 6 We have f!.w; f!.x; f!.y; z/// D _ iff glb.Twin.w/;Twin.x/;
Twin.y// � Twin.z/.

5 Nonmodal Soundness

Let V be a mapping of propositional variables to values in B [ B0. The mapping V
is extended to nonmodal formulas in the usual way, interpreting : with f: and !

with f!.
The validity of Axioms (1)–(3) and the rules of substitution and modus ponens

follows from the fact that V.�/ D V 0.�/ if V 0.�/ D V.Twin.�//. But we will also
provide direct arguments.

Validity of the substitution rule. Substitution is valid in any many-valued matrix.
Validity of modus ponens. Suppose that V.� !  /; V .�/ 2 ¹_;_0º, and let

Twin.V . // D x. By Claims 1 and 2, _ � x, so x D _, so V. / 2 ¹_;_0º.
Validity of Axiom (1). Suppose that V.p !� q ! p/ … ¹_;_0º. By Claims 1

and 5, glb.x; y/ � x, where x D Twin.V .p//; y D Twin.V .q//. But this is impos-
sible.

Validity of Axiom (2). Consider .p !� q ! r/ !� .p ! q/ !� p ! r , and let
x D Twin.V .p//; y D Twin.V .q//; z D Twin.V .r//.

Suppose now that V..p !� q ! r/ !� .p ! q/ !� p ! r/ … ¹_;_0º. Then,
by Claims 1 and 6 and the definition of f!, glb.f!.x; f!.y; z//; f!.x; y/; x/ � z.
Let GLB be glb.f!.x; f!.y; z//; f!.x; y/; x/. Then either

(i) z D ^ and GLB 2 ¹_; 1; 2º, or
(ii) z D 1 and GLB 2 ¹_; 2º, or
(iii) z D 2 and GLB 2 ¹_; 1º.
In case (i), GLB D glb.f!.x; f:.y//; f!.x; y/; x/ D ^, and we have a contra-

diction, because ^ � z and, by hypothesis, GLB � z.
In case (ii), in view of the definition of f!, either

(ii.1) f!.y; 1/ D 1, or
(ii.2) f!.y; 1/ D ^.

In case (ii.1), GLB D glb.f!.x; 1/; f!.x; y/; x/ and y 2 ¹^; 2º. If y D ^, then
GLB D glb.f!.x; 1/; f:.x/; x/ 2 ¹^; 1º, and we have a contradiction. If y D 2,
then GLB D glb.f!.x; 1/; f!.x; 2/; x/ D ^, and again we have a contradiction.

In case (ii.2), GLB D glb.f!.x;^/; f!.x; y/; x/ D glb.f!.x; y/; x/ and
y 2 ¹1;^º. If y D 1, then GLB D glb.f!.x; 1/; x/ and y 2 ¹1;^º. If y D 1, then
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Figure 2 Regions of the 8-valued model.

GLB D glb.f!.x; 1/; x/ 2 ¹1;^º, and we have a contradiction. If y D ^, then
GLB D glb.f:.x/; x/ D ^, and again we have a contradiction.

The reasoning in case (iii) is like that in case (ii).
Validity of Axiom (3). By Claim 4, f!.f:.x/; f:.y// D lub.f:.f:.x//;

Twin.f:.y/// D lub.Twin.x/; f:.y//. But f!.y; x/ D lub.f:.y/;Twin.x//.
Therefore V.:p ! :q/ D V.q ! p/, so that V.:p ! :q/ ! .q ! p/ D _.

This completes the detailed proof of soundness for the Boolean axioms.

6 Interpreting ˘

To interpret ˘, we revert to the picture of our model in Figure 2 and elaborate it
by including two regions of B and B0. These are shown by the dashed lines in the
elaborated picture.

The interpretation of ˘ is sensitive to whether you are working in B or in B0. In
the former case, the value is _ for arguments in the area ¹1;_º. Otherwise it is ^.
In the latter case, the value is _ for arguments in the circled area ¹20;_0º. Otherwise
it is ^. Here is the official definition.

For x 2 B, f˘.x/ D _ if x 2 ¹1;_º and f˘.x/ D ^ if x … ¹1;_º.
For x 2 B0, f˘.x/ D _ if x 2 ¹20;_0º and f˘.x/ D ^ if x … ¹20;_0º.

7 Modal Soundness

Let f .x/ D f:.f˘.f:.x///. We state two more easily verified claims.

Claim 7 For all x, f .x/ 2 ¹_;_0º.

Claim 8 For all x, f .x/ D _ iff Twin.x/ 2 ¹_; 1º.

We now check the validity of the necessitation rule. Suppose that, for all V ,
V.�/ 2 ¹_;_0º. Then, in view of Claim 8, f .x/ D _, where x D Twin.V .�//.
So V.:˘:�/ D _, for all V .

Now consider Axiom (4): :˘:.p ! q/ !� :˘:p ! :˘:q. Let
Twin.V .p// D x and Twin.V .q// D y, and suppose that lub.f .f!.x; y//;

f .x// � f .y/. Then, in view of Claim 7, f .f!.x; y// D _, f .x/ D _,
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f .y/ D ^. By Claim 8, f!.x; y/ 2 ¹_; 1º, f .x/ D ¹_; 1º, and f .y/ D

¹^; 2º. But this is impossible.
This completes the proof of the soundness of the Boolean and modal axioms and

rules for this interpretation. It remains to show that the dual axiom is invalid.

8 Invalidity of the Dual Axiom

Recall that the dual axiom is ˘p ! : :p. Since with ˘ primitive, p is defined
as :˘:p, and f:.f:.x// D x, this axiom amounts to ˘p ! ˘::p.

To invalidate ˘p ! ˘::p (and hence, the dual axiom), let V.p/ D 20. Then
V.˘p/ D _. But V.::p/ D 1, so V.˘::p/ D ^. So V.˘p ! ˘::p/ D ^.

To invalidate the converse formula ˘::p ! ˘p, let V.p/ D 10. Then
V.˘p/ D ^ and V.::p/ D 2, so V.˘::p ! ˘p/ D ^.

This completes the proof of the independence of the dual axiom from the other
axioms.

9 Conclusion

It would be nice if the models used in this proof were useful for some other purpose,
but none has yet occurred to me.
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