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Abstract Suppose that � 2 L!1;!.L/ is such that all equations occurring in �
are positive, have the same set of variables on each side of the equality symbol,
and have at least one function symbol on each side of the equality symbol. We
show that � satisfies Vaught’s conjecture. In particular, this proves Vaught’s
conjecture for sentences of L!1;!.L/ without equality.

1 Introduction

Vaught’s conjecture is one of the oldest open problems in model theory. It says (in
its modern form) that for any countable language L and any sentence � 2 L!1;!.L/,
either � has a perfect set of countable models or � has countably many countable
models. Vaught’s conjecture is known to hold in many situations, such as for !-stable
theories (see Shelah, Harrington, and Makkai [7]), for o-minimal theories (see Mayer
[4]), as well as many others. In this paper we add a new collection of sentences for
which Vaught’s conjecture is known to hold.

Call an equation t0.x1; : : : ; xn/ D t1.y1; : : : ; ym/ uniform if the sets of variables
¹x1; : : : ; xnº and ¹y1; : : : ; ymº are equal (as sets), and both t0 and t1 contain at least
one function symbol. We will show (see Theorem 4.1) that if � 2 L!1;!.L/ is any
sentence in which all equations are uniform and occur positively, then � satisfies
Vaught’s conjecture. As an immediate consequence we will see that Vaught’s con-
jecture holds for any sentence of L!1;!.L/ which does not contain equations. This
will answer a question in Sági and Sziráki [6]. Our proof will also show that Martin’s
conjecture holds for sentences of this form.
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Our proof will proceed in three parts. First, in Section 2, we show that for each
model there is a maximal equivalence relation whose quotient map is a homomor-
phism which reflects all non-equality relations. We then study these equivalence
relations along with their quotients, which we call cores. In Section 3 we show that
under certain conditions cores can be blown up to produce a perfect set of models
all of which satisfy some of the same sentence of L!1;!.L/. Finally, in Section 4,
we use the results of Section 3 to show that both Vaught’s conjecture and Martin’s
conjecture hold for any sentence which only contains equalities that occur positively
and are uniform.

1.1 Background In this paper we will not treat equality as a logical symbol but
rather as a relation which is in any language and which has a special interpreta-
tion in any structure. We will fix a countable language L along with a countable
collection of variables, from which all variables will be drawn. In this paper �
and its variants will be elements of L!1;!.L/. We let Atomic.L/ be the collec-
tion all formulas which are either atomic or the negation of atomic formulas. If
F � L!1;!.L/, then we let Lc

!1;!.F / be the smallest subset of L!1;!.L/ containing
F and closed under

V
;
W
; 9, and 8. We will mainly be concerned with Lc

!1;!.F /

whenF � Atomic.L/. In particular, there are several subsets of Atomic.L/which
will be important later and which we collect now:

� Rel D ¹Q.x/ W Q does not contain Dº.
� Uni D Rel [ ¹t0.x/ D t1.y/: a uniform equationº.
� Func D Rel [ ¹t0.x/ D t1.y/ W t0; t1 any terms each of which contains at

least one function symbolº.
� Pos D Rel [ ¹t0.x/ D t1.y/ W t0; t1 any termsº.
� Neg D Rel [ ¹t0.x/ ¤ t1.y/ W t0; t1 any termsº.

Note that any sentence of � 2 L!1;!.L/ is equivalent to one where negation only
occurs in front of atomic formulas. Hence if � is any sentence in which all equations
are positive and uniform, then � is equivalent to a sentence in Lc

!1;!.Uni/.
In this paper all models will be countable, and we let M and N (and their variants)

be L-structures with underlying sets M and N , respectively. We say that a map
˛ W M ! N is a strong homomorphism if for any j -ary relation R 2 L � ¹Dº,

.8m1; : : : ; mj 2 M/ M ˆ R.m1; : : : ; mj / , N ˆ R
�
˛.m1/; : : : ; ˛.mj /

�
and for any j -ary function f ,

.8m1; : : : ; mj 2 M/ N ˆ ˛
�
f .m1; : : : ; mj /

�
D f

�
˛.m1/; : : : ; ˛.mj /

�
(we will consider constants as 0-ary functions). Note that ˛ is a strong homomor-
phism exactly when it preserves all formulas in Pos.

We will assume that we are working in a background model Set of Zermelo–
Frankel set theory. However, all of our statements about specific � are †1

2.�/, and
so they hold of � in Set if and only if they hold of � in LŒ��. But, as LŒ�� always
satisfies the axiom of choice, we can assume without loss of generality that Set does
as well.

For any definitions or results not in this paper, we refer the reader to such standard
texts as Barwise [1] for infinitary logic, Hodges [2] for model theory, and Jech [3]
for set theory.
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2 Preserving and Reflecting Formulas

In this section we study equivalence relations whose quotients preserve and reflect
formulas we care about.

Definition 2.1 If ˛ W M ! N is a strong homomorphism, let Pres.˛/ be the
collection of formulas ' 2 L!1;!.L/ such that

.8m1; : : : ; mj / M ˆ '.m1; : : : ; mj / ) N ˆ '
�
˛.m1/; : : : ; ˛.mj /

�
;

that is, the collection of formulas which are preserved by ˛. Also, let Refl.˛/ be the
collection of formulas ' 2 L!1;!.L/ such that

.8m1; : : : ; mj / N ˆ '
�
˛.m1/; : : : ; ˛.mj /

�
) M ˆ '.m1; : : : ; mj /;

that is, the collection of formulas which are reflected by ˛.

Lemma 2.2 Suppose that ˛ W M ! N is a surjective strong homomorphism.
Then

� Lc
!1;!.Pres.˛// D Pres.˛/,

� Lc
!1;!.Refl.˛// D Refl.˛/,

that is, Pres.˛/ and Refl.˛/ are both closed under
V
;
W
; 9;8.

Proof For any strong homomorphism it is immediate that both Pres.˛/ and Refl.˛/
are closed under

V
and

W
. It is also immediate that Pres.˛/ is closed under 9 and

Refl.˛/ is closed under 8.
That Pres.˛/ is closed under 8 and that Refl.˛/ is closed under 9 follow from the

surjectivity of ˛.

The following is then immediate.

Corollary 2.3 If ˛ W M ! N is a surjective strong homomorphism, then both
Lc

!1;!.Pos/ � Pres.˛/ and Lc
!1;!.Neg/ � Refl.˛/.

Every surjective map ˛ W M ! N induces an equivalence relation �˛ on M given
by a �˛ b if and only if ˛.a/ D ˛.b/. Further, if ˛ is a strong homomorphism,
then N Š M=�˛ . Given an equivalence relation � on M , and a 2 M , we define
Œa�� WD ¹b 2 M W b � aº.

Definition 2.4 An equivalence relation � on M is said to respect L if there is
a (necessarily unique) L-structure with underlying set M=� such that the quotient
map e� W M ! M=� is a strong homomorphism.

As it turns out, on any structure there is a unique maximal equivalence relation which
respects the language. This equivalence relation will play a significant role in what
follows.

Definition 2.5 Let
� .y0; y1/

WD

^®
.8x1; : : : ; xj /Q.y0; x1; : : : ; xj / $ Q.y1; x1; : : : ; xj / W Q 2 Rel

¯
:

We will write � .y0; y1/ as y0 � y1.

It is immediate from the definition that �M is always an equivalence relation on M.
We will abbreviate the quotient map e�M W M ! M=�M by eM. We now show
several important properties which always hold of �M for any L-structure M.
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Proposition 2.6

(1) �M respects L.
Suppose that � is an equivalence relation on M which respects L.

(2) ���M.
(3) If � is definable by a formula in Lc

!1;!.Rel/, then �MD�M.

Proof (1):
We will define an L-structure N with underlying setM=�M such that eM W M !

N is a strong homomorphism.
For any a�

i ; a1; : : : ; aj 2 M with a�
i �M ai and any Q 2 Rel we have

M ˆ Q.a1; : : : ; ai�1; ai ; aiC1; : : : ; aj /

$ Q.a1; : : : ; ai�1; a
�
i ; aiC1; : : : ; aj /: (1)

Hence, by repeated use of (1), we have that whenever b1; : : : ; bj 2 M withV
i�j ai �M bi , that M ˆ Q.a1; : : : ; aj / $ Q.b1; : : : ; bj /. Therefore for

any j -ary relation R, whether or not M ˆ R.a1; : : : ; aj / holds depends only
on the �-equivalence classes of a1; : : : ; aj , and so it is consistent to define
N ˆ R.Œa1��; : : : ; Œaj ��/ if and only if M ˆ R.a1; : : : ; aj /. It is then clear
that the map eM preserves and reflects R.x1; : : : ; xj /.

Now suppose that f is any j -ary function symbol in L, a1; : : : ; aj ; b1; : : : ;

bj 2 M and
V

i�j ai �M bi . For any Q 2 Rel, let Q0.x1; : : : ; xk ; y1; : : : ; yj / be
the formula Q.x1; : : : ; xk ; f .y1; : : : ; yj //. By the argument of the previous para-
graph, if c1; : : : ; ck 2 M , we have M ˆ Q0.c1; : : : ; ck ; a1; : : : ; aj / $ Q0.c1; : : : ;

ck ; b1; : : : ; bj /. Hence, as Q was arbitrary, f M.a1; : : : ; aj / �M f M.b1; : : : ; bj /.
This means that the �-equivalence class of f M.a1; : : : ; aj / depends only on the
�-equivalence classes of a1; : : : ; aj . Hence it is consistent to define N ˆ f .Œa1��;

: : : ; Œaj ��/ D Œf .a1; : : : ; aj /��, which we do. It is then clear that N is an L-structure
and eM W M ! N is a strong homomorphism.

(2):
Suppose that a1; : : : ; aj ; b; c 2 M , b � c, and Q 2 Rel. We then have the

following equivalences: M ˆ Q.b; a1; : : : ; aj / if and only if M=�ˆ Q.e�.b/;

e�.a1/; : : : ; e�.aj // if and only if M=�ˆ Q.e�.c/; e�.a1/; : : : ; e�.aj // if and
only if M ˆ Q.c; a1; : : : ; aj /. Hence M ˆ .8x1; : : : ; xj /Q.b; x1; : : : ; xj / $

Q.c; x1; : : : ; xj /. But, as Q was arbitrary, this implies b �M c.
(3):
By (2) we have ���M. Suppose that x � y is definable by a formula

 .x; y/ 2 Lc
!1;!.Rel/ and that a; b 2 M with a 6� b. As Lc

!1;!.Rel/ is
closed (up to equivalence) under negation, we have that : .x; y/ is equivalent
to a formula in Lc

!1;!.Rel/. But eM preserves all formulas of Lc
!1;!.Rel/ and

so M= �Mˆ : .eM.a/; eM.b//. However this implies eM.a/ 6�M=�M
eM.b/

(as M ˆ .8x/ .x; x/, and so M=�Mˆ .8x/ .x; x/). Because eM reflects all
formulas of Lc

!1;!.Rel/, including �, we have a 6�M b. In particular, this implies
�M�� and hence �MD�.

Because � respects L the following notion is well defined.

Definition 2.7 The core of M, denoted C.M/, is the unique L-structure with
underlying set M=�M such that eM W M ! M=�M is a strong homomorphism.
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It is immediate that C.C.M// Š C.M/, and so we say that M is a core if
C.M/ Š M. In particular, M is a core if and only if �M is DM. The following is a
quintessential example of a core.

Example 2.8 Suppose that �2 L is a binary relation and that M ˆ “� is a partial
order”. Then M is a core. To see this, observe that the formula “x � y ^ y � x” is
an equivalence relation definable in Lc

!1;!.Rel/ and hence must be equivalent (over
M) to �. But as � is a partial order, x � y ^ y � x implies that x D y.

The following is an easy corollary of Corollary 2.3 and Proposition 2.6.

Corollary 2.9 If � 2 Lc
!1;!.Pos/ and M ˆ � , then C.M/ ˆ � .

3 Properties of Cores

In this section we discuss what can be said about a sentence just knowing that it is
satisfied by a core.

Proposition 3.1 Suppose that there is a j -ary function symbol g 2 L with j > 0,
� 2 Lc

!1;!.Uni[ Neg/ and that there is a core M such that M ˆ � . Then there is
a perfect set of countable L-structures all of which satisfy � .

Proof Suppose that C.N/ D M and that eN W N ! C.N/ reflects all for-
mulas in Uni. Then by Lemma 2.2 and Corollary 2.3 eN reflects all formulas in
Lc

!1;!.Uni[Neg/. In particular, eN reflects � and as C.N/ D M, we have N ˆ �

as well.
It therefore suffices to construct, for each S � N � ¹0º, a countable model MS

such that C.MS / D M, eMS
reflects all formulas in Uni, and if S0 ¤ S1, then

MS0
© MS1

. We will define MS in three stages.
Stage 1:
Let AS D

S
n2S ¹nº � n. The underlying set of MS is MS D M � AS .

Stage 2:
For any j -ary relation R 2 L and any hm1; n1; a1i; : : : ; hmj ; nj ; aj i 2 MS ,

MS ˆ R
�
hm1; n1; a1i; : : : ; hmj ; nj ; aj i

�
, M ˆ R.m1; : : : ; mj /:

Stage 3:
For any j -ary function f 2 L and any hm1; n1; a1i; : : : ; hmj ; nj ; aj i 2 MS ,

MS ˆ f
�
hm1; n1; a1i; : : : ; hmj ; nj ; aj i

�
D hm�; n�; a�

i

if and only if
� M ˆ f .m1; : : : ; mj / D m�,
� n� D min¹n1; : : : ; nj º,
� a� D 0.

Let .m1; n1; a1/ � .m2; n2; a2/ if and only if m1 D m2. It is then immediate
that � is an equivalence relation which respects L and hence ���MS . Further, as
M Š MS=� and M is a core, � must be the maximal equivalence relation which
respects L. Hence by Proposition 2.6 we have �D�MS and C.MS / Š M.

If t .x1; : : : ; xn/ is an arbitrary term containing at least one function symbol, then

MS ˆ t
�
hm1; n1; a1i; : : : ; hmj ; nj ; aj i

�
D

˝
tM.m1; : : : ; mj /;min¹n1; : : : ; nj º; 0

˛
:
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So, if M ˆ t0.m1; : : : ; mj / D t1.m1; : : : ; mj /, with t0.x1; : : : ; xj / D t1.x1; : : : ;

xj / a uniform equation, then for all hn1; a1i; : : : ; hnj ; aj i 2 AS we have

MS ˆ t0
�
hm1; n1; a1i; : : : ; hmj ; nj ; aj i

�
D t1

�
hm1; n1; a1i; : : : ; hmj ; nj ; aj i

�
(2)

and hence eMS
reflects t0.x1; : : : ; xj / D t1.x1; : : : ; xj /. Notice that (2) hinges on

the fact that each ni occurs on each side of the equality.
Now suppose that S0; S1 � N�¹0º but that S0 ¤ S1. Let h.x/ D g.x; x; : : : ; x/.

For any L-structure N let W.N/ D ¹j.hN/�1.a/ \ Œb��N j W a; b 2 N º, that is, the
possible sizes of the inverse images (under h) of an element in an �N-equivalence
class. It is immediate from Definition 2.5 that whenever N0 Š N1, W.N0/ D

W.N1/. But it is also immediate from the construction that W.MS / D S [ ¹0º. So
W.MS0

/ ¤ W.MS1
/ and hence MS0

© MS1
and we are done.

Proposition 3.2 Suppose that � 2 Lc
!1;!.Func [ Neg/ and that there is an

infinite core M such that M ˆ � . Then there is a perfect set of L-structures all of
which satisfy � .

Proof It suffices to construct, for each S � N � ¹0º, a model MS such that
C.MS / D M, eMS

reflects all formulas of Func, and where S0 ¤ S1 implies
that MS0

© MS1
. We will define MS in three stages.

Stage 1:
Let i W M ! S be a surjective map (which must exist as M is infinite). Then the

underlying set of MS is MS D
S

m2M ¹mº � i.m/.
Stage 2:
For any j -ary relation R 2 L and any hm1; a1i; : : : ; hmj ; aj i 2 MS ,

MS ˆ R
�
hm1; a1i; : : : ; hmj ; aj i

�
, M ˆ R.m1; : : : ; mj /:

Stage 3:
For any j -ary function f 2 L and any hm1; a1i; : : : ; hmj ; aj i 2 MS we let

MS ˆ f
�
hm1; a1i; : : : ; hmj ; aj i

�
D hm�; a�

i

exactly when
� M ˆ f .m1; : : : ; mj / D m�,
� a� D 0.

Let .m1; a1/ � .m2; a2/ if and only if m1 D m2. It is easily checked that � is
an equivalence relation which respects L and hence is contained in �MS . Further,
as M Š MS=� and M is a core, � must be the maximal equivalence relation
which respects L. So by Proposition 2.6 we have �D�MS and C.MS / Š M. It is
also immediate that eMS

reflects all formulas in Func. Hence, by Lemma 2.2 and
Corollary 2.3, eMS

reflects all formulas of Lc
!1;!.Func[ Neg/. In particular, eMS

reflects � , and so MS ˆ � (as M ˆ � ).
Finally, let E.N/ D ¹jŒa��N j W a 2 N º. As � is definable, E.N/ is pre-

served by isomorphism. But by construction E.MS / D S . So if S0 ¤ S1, then
E.MS0

/ ¤ E.MS1
/ and MS0

© MS1
.

Example 3.3 Suppose that �2 L, � 2 Lc
!1;!.Func [ Neg/ and that there is an

infinite M such that
� M ˆ � ,
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� M ˆ� is a partial order.
Then � has a perfect set of models. This follows from Proposition 3.2 and Exam-
ple 2.8.

In Propositions 3.1 and 3.2 we have shown that given a core M, if eitherM is infinite,
or if there is a function symbol of arity greater than zero in the language, then we
can “blow up” M to a perfect set of models all of whose cores are M and all of
which satisfy some of the same sentences as M. Next we show that if neither of
these conditions is satisfied, that is, there are no functions of arity greater than zero,
and if M is finite, then any model with core M must have a simple description.

For any first-order theory T � L!;!.L/, let S.T / be the collection of com-
plete types over T . Let L1.T / be the smallest fragment of L!1;!.L/ containing
L!;!.L/ [ ¹

V
'2p '.x/ W p 2 S.T /º. For a model M, let Th0.M/ be the com-

plete first-order theory of M in L, and let Th1.M/ be the complete theory of M in
L1.Th0.M//.

Definition 3.4 We say that M has the Martin property if S.Th0.M// is countable
and Th1.M/ is @0-categorical.

In particular, if M has the Martin property, then it has quantifier rank at most !C!.
Martin’s conjecture for a first-order theory T says that either T has a perfect set of
countable models or else every model of T has the Martin property.

It is worth mentioning that Martin’s conjecture does not hold if we replace “first-
order theory” with “sentence of L!1;!.L/.” For example, if M has high quantifier
rank (such as if M is a well-ordering of type ˇ � !) and �M is a Scott sentence
of M, then �M is @0-categorical even though M in general will not have the Martin
property.

The reason why Martin’s conjecture fails in this case is that we are able to encode
a great deal of complexity in the sentence �M, complexity which is lost when we
drop down to the first-order theory. A better generalization of Martin’s conjecture
for � 2 L!1;!.L/ would be something along the lines of “either � has a perfect set
of model, or the quantifier rank of any model of � is at most ˇC!C! where ˇ is the
quantifier rank of � .” Of course if � satisfies the condition of Martin’s conjecture,
then it also satisfies this condition. We will not dwell more on this topic now. We
mention it simply to prepare the reader for Corollary 4.2 in which we show that in
fact if we replace “first-order theory” with “sentence of Lc

!1;!.Uni/,” then Martin’s
conjecture will hold.

Proposition 3.5 Suppose that L has no function symbols of arity greater than zero
and that C.M/ is finite. Then M has the Martin property.

Proof Before we begin the proof, it is worth taking a moment to describe what
such a model M will look like. Let LR � L be the collection of all non-equality
relations in L. Such a model M will have one �-equivalence class for each element
of C.M/. Further, MjLR

will be completely determined by the number of elements
in each equivalence class along with the structure of C.M/jLR

. The model M will
also determine which constants are equal to which others as well as which constants
are �-equivalent to each other. The last piece in the description of M is then the
number of elements in each �-equivalence class which are not equal to any constant.
In particular, any model N with C.N/ D C.M/ and which agrees with M on the
above will be isomorphic to M. We now make this precise.
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Let C.M/ D ¹a1; : : : ; aj º. As C.M/ is finite, there is a finite L0 � LR such
that any automorphism of C.M/jL0

is also an automorphism of C.M/jLR
. For each

finite L� � LR, let ‰L�.x1; : : : ; xj / be the (first-order formula which is the) con-
junction of the complete L�-type of ha1; : : : ; aj i in C.M/. Let �L� be the con-
junction of � \L!;!.L

�/. Let TRel consist of the following, for each finite L� with
L0 � L� � LR:

� .8x1; : : : ; xj / ‰L0
.x1; : : : ; xj / $ ‰L�.x1; : : : ; xj /;

� .8x1; : : : ; xj ; x/ ‰L0
.x1; : : : ; xj / !

W
i�j x �L0

xi ;
� .8x0; x1/ x0 �L0

x1 $ x0 �L� x1;
� .9x1; : : : ; xj / ‰L0

.x1; : : : ; xj /.

We then also haveTRel ˆ .8x0; x1/ x0 �L0
x1 $ x0 � x1 and that Th0.M/ ˆ TRel.

In fact Th0.M/, along with the statement that there exists exactly j -elements, deter-
mines C.M/jLR

up to isomorphism.
Let ¹ci W i 2 �º D Lc be the collection of function symbols of arity 0 (i.e.,

constant symbols) in L. Let L0 D L[¹d1; : : : ; dj º, where the di ’s are new constants.
Define TCon to consist of the following, where c; c0 range over Lc :

� c D c0 if M ˆ c D c0 and c ¤ c0 if M ˆ c ¤ c0;
� ‰L0

.d1; : : : ; dj /;
� c �L0

di if C.M/ ˆ c D ai ;
� di D ck if C.M/ ˆ ck D ai and k is the least such that this holds.

The purpose of the new constants d1; : : : ; dj is to allow us to explicitly talk about
each �M-equivalence class.

For i � j , let ni D je�1
M .ai /j. Let TSize consist of the following.

� If ni is finite, then .9nix/x �L0
di and :.9ni C1x/x �L0

di .
� If ni D !, then for all n 2 !, .9nx/x �L0

di .

Let T D TRel [ TCon [ TSize. It is easily seen that every model of Th0.M/ has an ex-
pansion to an L0-structure which satisfies T and further, up to isomorphism, that this
expansion is unique (as all we are doing is adding a new constant to �-equivalence
classes which may not have one). Let M0 be such an expansion of M.

Now suppose that L� � L0 has only finitely many constants. It is then easily
checked that for any N ˆ T , NjL� Š MjL� . In particular, this implies that T is a
complete theory.

Let p.x/ WD ¹x ¤ c W c 2 Lcº, and let pi .x/ WD p.x/ [ ¹x �L0
di ; x ¤ di º.

It is easy to see that if pi .x/ is consistent over T , then
V

'2pi
'.x/ is equiva-

lent over T to a complete type. Further, it is also immediate that every complete
1-type in S.T / is equivalent over T to one of

V
'2pi

'.x/, x D ck or x D di

(where ck 2 Lc and i � j ). In addition, for every sequence of complete 1-types
t1.x1/; : : : ; tk.xk/ 2 S.T /, the statement

V
i�k ti .xi / ^

V
i¤j xi ¤ xj is a com-

plete type. Hence every complete type over T is of this form and jS.T /j � !.
However, as T is an expansion of Th0.M/, we also have jS.Th0.M//j � !,

and for every complete type r.x1; : : : ; xk/ 2 S.Th0.M// there are complete 1-types
s1; : : : ; sk such that Th0.M/ ˆ .8x1; : : : ; xl / r.x1; : : : ; xl / $

V
i�l si .xi /. Hence

every model of Th0.M/ is determined up to isomorphism by how many realizations
there are of each 1-type. In particular, this implies that every complete theory in
L1.Th0.M// is @0-categorical and that M has the Martin property.
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It is worth mentioning that if there are only finitely many constants in L, then
p.x/ is equivalent to a first-order formula, and hence if C.M/ is finite, then T is
@0-categorical. But, as every model of Th0.M/ has an expansion to a model of T ,
Th0.M/ is also @0-categorical.

4 Main Theorems

We are now ready to prove our main theorems.
Theorem 4.1 (Vaught’s conjecture for Lc

!1;!.Uni/) If � 2 Lc
!1;!.Uni/, then ei-

ther � has a perfect set of countable models or � has only countably many countable
models.
Proof If � has no countable models we are trivially done, so let us assume that
� has at least one countable model (i.e., is consistent). We then have three cases to
consider.

Case 1: L contains a function of arity greater than zero.
By assumption, there is a model M ˆ � , and by Corollary 2.3, C.M/ ˆ � as

well. But then by Proposition 3.1, � has a perfect set of models.
Case 2: There is an M ˆ � with C.M/ infinite.
By Corollary 2.3 C.M/ ˆ � , and so by Proposition 3.2, � has a perfect set of

models.
Case 3: For every M ˆ � , C.M/ is finite.
In this case, by Proposition 3.5, every model has the Martin property and hence

has quantifier rank at most ! C !. But then by results of Morley [5], � satisfies
Vaught’s conjecture.

In particular, Theorem 4.1 implies that Vaught’s conjecture holds for all sentences
of L!1;!.L/ which do not have equality as a subformula (i.e., are equivalent to a
formula in Lc

!1;!.Rel/).
Further, as an immediate corollary we have the following.

Corollary 4.2 (Martin’s conjecture for � 2 Lc
!1;!.Uni/) For any � 2

Lc
!1;!.Uni/, either � has a perfect set of models or every model of � has the

Martin property.
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