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Forking in Finite Models

Tapani Hyttinen

Abstract We study properties of forking in the classes of all finite models of
a complete theory in a finite variable logic. We also study model constructions
under the assumption that forking is trivial.

Originally this paper was written at the end of the 1990s but then forgotten. How-
ever, recently Cameron Hill seems to have applied the methods developed here to
give a new efficient algorithm for inverting the L2-invariant (see Hill [1]; such an al-
gorithm was first found in Otto [3]). Thus I have decided to give this paper a second
chance.

We assume that the reader is familiar with Hyttinen [2] and the usual tricks of
stability theory. We assume that � is a finite similarity type, k is greater than or equal
to the arity of � and in any case at least 2, L D Lk , T is a complete L-theory, and
K D ¹A j A ˆ T is a finite � -modelº. In addition, we assume that ¹A= Š j A 2 Kº

is infinite and that the property K2 (i.e., amalgamation over subsets of K-models)
from [2] is satisfied. K2 is a strong assumption, but one has to start from somewhere;
otherwise we could do everything in a more general setup. But by working out only
this special case, we avoid complicated assumptions.

Now the properties K1, K3, and L1 from [2] are satisfied and so, since L D Lk ,
the number of L-formulas modulo equivalence in K is finite. We let M be the
“monster model” proved to exist in [2]. The monster model is a limit model,
M D .Ai /i<! , but again since L D Lk , we may replace M by

S
i<! Ai . By a set

we mean a finite subset of M and write A, B , and so on for these, and Am means
the set of sequences of elements of A of length m. By a sequence we mean a finite
sequence of elements of M and write a, b, and so on for these, and a 2 A means
a 2 Alength.a/. We write ˆ '.a/ for M ˆ '.a/, and we write x, y, and so on for
the sequences of variables. As in [2], we allow the use of dummy variables, which
do not belong to V (D ¹v0; : : : ; vk�1º D the set of variables which are allowed to
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appear in L-formulas; see [2]). So for ' D '.x/, ˆ '.a/ makes sense also in the
case when the length of a (D the length of x) is greater than k. By p ` q we mean
that every a which realizes p, realizes also q. By Sn.A/ we mean Sn.A; M/. Several
authors use the notation Sk

n .A/ to indicate that only k-variable n-types are under
consideration, but we do not do this here because we only ever consider k-variable
types. By Rn.p; !/ we mean Rn

L
.p; A; !/, where A is any set such that p is over A.

This is well defined since L is finite (modulo equivalence in K), and, as pointed out
in [2], if K2 is satisfied, then Rn

�.p; A; !/ does not depend on the choice of A. We
write t .a; A/ for tM.a; A/. Finally, we write Rn.a; A; !/ for Rn.t.a; A/; !/.

In [2] we showed that if K is stable, then the ranks Rn.a; A; !/ exist. As pointed
out in [2], ranks allow us to define forking. We do this in the first section, where
we also prove the usual properties of forking. However, the dimension theory that
follows is of limited value if we cannot construct K-models, and as far as the author
of this paper knows, there are no methods of constructing models to a quite arbitrary
class of finite models. In the second section, we show that there is a method if forking
is trivial (and the class is as above).

In this paper, we calculate several numbers that are elements of N and functions
Nn ! N. We want to point out that we do not try to find the best possible values,
we just show the existence by calculating some value and proving that it satisfies the
requirements. Because there are many of these numbers, an index of symbols can be
found at the end of this paper.

Of course, everything we do is based on the ideas from Shelah [4]. Basic stability-
theoretic definitions are essentially the same; however, due to the fact that addition
and multiplication do not behave the same way on the (finite) cardinals relevant here
as they do on the (infinite) cardinals relevant in [4], some splitting of concepts hap-
pens. The proofs are sometimes verbatim copies of those in stability theory (see, e.g.,
the proof of Lemma 1.15), and sometimes additional work is needed (see, e.g., the
proof of Theorem 2.3 and the discussion just before it). Also, one of the main dif-
ferences between [4] and what we do here is that we have very little space to work
with. That is, knowing that something is finite is usually not good enough; some
kind of “uniform” upper bound is needed and similarly for “large enough” (see, e.g.,
Lemma 1.17). And, of course, the cardinals we are working with do not have nice
closure properties (again, see the discussion immediately before Theorem 2.3).

Throughout this paper, we assume that K is stable.

1 Independence

Definition 1.1

(i) Let a be a sequence of length k. We write a #B C if Rk.a; B [ C; !/ D

Rk.a; B; !/, and we say that t .a; B [ C / does not fork over B .
(ii) We write A #B C if for all a 2 Ak , a #B C .

Lemma 1.2 Assume that A � B � C � D and that a is of length k.
(i) (Existence) If a #A B , then there is b such that t .b; B/ D t .a; B/ and

b #A C .
(ii) (Transitivity) We have that a #A C iff a #A B and a #B C .
(iii) (Monotonicity) If a #A D, then a #B C .
(iv) We have a #A A.
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Proof Condition (i) follows from [2, Lemma 34], and (ii), (iii), and (iv) are trivial.

Let I D .ai /i<˛ and J D .bi /i<˛ , ˛ � !, be order-indiscernible sequences over
A. We say that I and J are isomorphic over A if there is an L-elementary function
f W A [

S
i<˛ ai ! A [

S
i<˛ bi such that f � A D idA and f .ai / D bi . We

say that I is a maximal order-indiscernible sequence over A if ˛ D ! or for all a,
I _ .a/ is not order-indiscernible over A. By arity of I we mean length.a0/.

Lemma 1.3

(i) Let I D .ai /i<˛ and J D .bi /i<˛ , k � ˛ � !, be order-indiscernible
sequences over A. If there is an L-elementary function f W A [

S
i<k ai !

A [
S

i<k bi such that f � A D idA and for all i < k f .ai / D bi , then I

and J are isomorphic over A.
(ii) For all A, the number of maximal order-indiscernible sequences over A of

fixed arity modulo isomorphism over A is finite.
(iii) There is a function f 0

I W N ! N such that for all A and ai , i < f 0
I .jAj/,

the following holds. If .ai /i<f 0
I

.jAj/ is an order-indiscernible sequence over
A of arity at most k, then there are ai , f 0

I .jAj/ � i < !, such that .ai /i<! is
order-indiscernible over A.

(iv) If .ai /i<n, n � f 0
I .jAj/, is an order-indiscernible sequence over A of arity at

most k, then it is indiscernible over A.

Proof Condition (i) follows immediately from the assumption that L D Lk .
Condition (ii) follows easily from (i) and K3 (if .ai /i<˛ and .bi /i<ˇ are maxi-
mal indiscernible sequences and .ai /i<k and .bi /i<k are isomorphic over A, then
˛ D ˇ). Condition (iii) is immediate by (ii) (and K3). Condition (iv) follows from
[2, Lemma 22, Theorem 25].

Lemma 1.4 There is N 0
in 2 N such that for all indiscernible I D .ai /i<˛ of arity

at most k, '.x; y/ and a, eitherˇ̌®
i < ˛

ˇ̌
ˆ '.a; ai /

¯ˇ̌
< N 0

in

or ˇ̌®
i < ˛

ˇ̌
ˆ :'.a; ai /

¯ˇ̌
< N 0

in:

Proof The proof is immediate by Lemma 1.3 and the fact that K does not have the
independence property.

Definition 1.5 Let g W N ! N be such that g.n/ D max¹f 0
I .n/;N0

in C 1º. We
say that t .a; B/ splits strongly over A � B if there are I D .ai /i<g.jAj/ � B

indiscernible over A, '.x; y/ and f such that .'.x; a0/; f / 2 t .a; B/ and
.:'.x; a1/; f / 2 t .a; B/.

Lemma 1.6 Assume that length.a/ D k. If t .a; B/ splits strongly over A � B ,
then a 6 #A B .

Proof Assume not. By Lemmas 1.3 and 1.2, for all n 2 N, we can find
.ai /i<n, b, ' and f such that t .b; A/ D t .a; A/, .'.x; a0/; f / 2 t .b; A [ a0/,
.:'.x; ai /; f / 2 t .b; A [ ai /, 0 < i < n, and b #A

S
i<n ai . It is easy to see that

this implies that Rk.a; A; !/ > Rk.a; A; !/, which is a contradiction.
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Lemma 1.7

(i) There is Nsp 2 N such that for all a of length at most k and Ai , i < Nsp,
there is j < Nsp such that t .a;

S
i�j Ai / does not split over

S
i<j Ai .

(ii) Assume that N D Nsp � f 0
I .jA0j/, Ai , i � N , and B , a, and b are such that

(a) for all i < j � N , Ai � Aj � B ,
(b) length.a/ D length.b/ D k,
(c) t .a; AN / D t .b; AN /,
(d) Rk.a; B/ D Rk.b; B/ D Rk.a; A0/,
(e) for all i < N and c 2 B of length at most k, there is d 2 AiC1 such

that t .d; Ai / D t .c; Ai /.
Then t .a; B/ D t .b; B/.

(iii) There is f W N ! N such that for all a of length k, and A � B , if
Rk.a; B/ < Rk.a; A/, then there is C � B such that A � C , jC j � f .jAj/,
and Rk.a; C / < Rk.a; A/.

(iv) There is �.K/ 2 N such that for all a of length k and Ai , i < �.K/, there is
j < �.K/ such that a #S

i<j Ai
Aj .

(v) There is Ffo W N ! N such that for all A � B and a of length k,
there is C � B such that a #C B , A � C , and jC j < Ffo.jAj/.
We write ��.K/ D Ffo.0/. (Note that we can choose Ffo so that
Ffo.n/ D n C ��.K/.)

(vi) Let Nin D max¹f 0
I .��.K//; N 0

inº. Then in (ii), N can be replaced by Nsp �Nin.

Proof (i) The proof is immediate since K is stable and L is finite.
(ii) Assume not. Choose c 2 B such that for some ', ˆ '.a; c/ ^ :'.b; c/.

Let N 0 D f 0
I .jA0j/. By the choice of N , we can find i such that i C N 0 < N

and t .c; AiCN 0/ does not split over Ai . For all j < N 0, choose cj 2 AiCj C1 such
that t .cj ; AiCj / D t .c; AiCj /. Then it is easy to see that I D .cj /j <N 0 _ .c/ is
order-indiscernible over Ai . By Lemma 1.3(iv), I is indiscernible over A0. But then
it is easy to see that either t .a; B/ or t .b; B/ splits strongly over A, which contradicts
Lemma 1.6.

(iii) For each pair A � B , choose sets Ai , i < N as in (ii), A0 D A. Then for this
pair, we can let f .jAj/ D jAN j C k. Also it is easy to see that we can find for these
an upper bound that depends only on A. Finally, the claim follows from the fact that
the number of possible A (modulo isomorphism) in each cardinality is finite.

(iv) Clearly, it is enough to show that for all a and A, Rk.a; A; !/ < Nsp. For
this it is enough to show that if Rk.a; A; !/ D n C 1, then there are b and B � A

such that t .b; A/ D t .a; A/, t .b; B/ splits over A, and Rk.b; B; !/ D n. As in the
proof of [2, Lemma 30(iv)], we can find p such that t .a; A/ � p, p splits over A,
and Rk.p; !/ D n. By [2, Lemma 34], p can be extended into a complete type.

(v) Let Ffo.n/ D f �.K/.n/, where f is from (iii) (and f mC1 D f ı f m, etc.).
(vi) Note that if Ai , i < Nsp � Nin, a and b satisfy (a)–(e) in (ii), then all the

assumptions hold if we replace A0 by A � A0 such that jAj < ��.K/ and a #A A0.
Thus the claim follows.

Definition 1.8

(i) Assume that A � B and a #A B . We say that t .a; A/ is stationary inside B

if for all b, t .b; A/ D t .a; A/ and b #A B implies t .b; B/ D t .a; B/.
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(ii) We say that t .a; A/ is stationary if for all B � A, b, and c, t .b; A/ D

t .c; A/ D t .a; A/, b #A B , and c #A B implies t .b; B/ D t .c; B/.
(iii) Let f W N ! N be any function such that for all A, k � jSk.A/j < f .jAj/. We

define Fst W N ! N so that Fst.n/ D f N .n/, where N D Nsp � Nin.
(iv) We let fI be the function such that for all n 2 N,

fI .n/ D max
®
f 0

I .n/; Nin
¯
:

Lemma 1.9

(i) Assume that A � B . Then there is C � B such that A � C , jC j < Fst.jAj/

and for all a of length k, a #A C implies that t .a; C / is stationary inside B .
(ii) For all A, there is C � A such that jC j < Fst.jAj/ and for all a of length k,

a #A C implies that t .a; C / is stationary. Furthermore, if a is given, then C

can be chosen so that a #A C .

Proof The proof is immediate by Lemmas 1.7(ii) and 1.2(i) and the homogeneity
of M.

We say that t .a; A/ is algebraic if j¹b j t .b; A/ D t .a; A/ºj < !.

Lemma 1.10

(i) There is falg W N ! N such that for all A and a of length k, if j¹b j t .b; A/ D

t .a; A/ºj > falg.jAj/, then j¹b j t .b; A/ D t .a; A/ºj D !.
(ii) If t .a; A/ is algebraic and a is of length k, then a #A B for all B .
(iii) If t .a; A/ is not algebraic but t .a; B/ is, then a 6 #A B .

Proof Condition (i) follows easily from Lemma 1.3 and Ramsey’s theorem, and
conditions (ii) and (iii) follow from the remark that Rk.a; A; !/ D 0 iff t .a; A/ is
algebraic.

Lemma 1.11 Assume that length.a/ D length.b/ D k. Then a #A b iff b #A a.

Proof We first prove the following claim.

Claim If t .a; A/ is stationary and a #A b, then b #A a.

Proof For a contradiction, suppose that a #A b but b 6 #A a. Choose ai and
bi , i < !, so that t .ai ; A/ D t .a; A/, ai #A

S
j <i .ai [ bi /, t .bj ; A/ D t .b; A/,

and bi #A ai [
S

j <i .ai [ bi /. Then bj 6 #A ai iff j < i . By Lemma 1.10,
.ai _ bi /i<! is infinite. So it is easy to get a contradiction with the fact that K does
not have the order property.

It suffices to prove Lemma 1.11 from left to right. By Lemma 1.9, we can find B � A

such that for all c of length k, if c #A B , then t .c; B/ is stationary. Choose b0 so that
t .b0; A/ D t .b; A/ and b0 #A B . Choose a0 so that t .a0 _ b0; A/ D t .a _ b; A/

and a0 #A B [ b0. Then
b0

#A B ^ b0
#B a0

) b0
#A B [ a0

) b0
#A a0;

and so b #A a.

Theorem 1.12

(i) For all A, B , and C , there is A0 such that t .A0; B/ D t .A; B/ and C #B A0.
(ii) For all A, B , and a of length k, if A #B a and t .a; B/ is stationary, then

a #B A.
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(iii) For all A, B , and a of length k, if A #B a, then a #B A.
(iv) (Symmetry) For all A, B , and C , A #B C iff C #B A.

Proof (i) Choose sequences ai , i < n, so that they are of length k andS
i<n ai D A (use, e.g., constant sequences). Choose sequences a0

i so that
for all i < n, t .

S
j �i a0

i ; B/ D t .
S

j �i ai ; B/ and a0
i #B[

S
j <i a0

j
C . Then by

Lemmas 1.11 and 1.2, A0 D
S

i<n a0
i is as desired.

(ii) If not, then (by stationarity) we can find a0 2 Ak such that a 6 #B a0, which
contradicts Lemma 1.11.

(iii) Choose C � B so that
(a) for all c of length k, if c #B C , then t .c; C / is stationary,
(b) A [ a #B C and A #B[a C .
By (the proof of) (i), this is possible. Then by Lemma 1.2 and the latter half
of (b), A #C a and so by (ii), a #C A. By Lemma 1.2 again, a #B A.

(iv) This is immediate by (iii).

The following lemma is an analogue for the finite character property in the traditional
forking calculus.

Lemma 1.13 If A � B , a is of length k, and a 6 #A B , then there is b 2 Bk such
that a 6 #A b.

Proof By Theorem 1.12, B 6 #A a. By the definition of #, there is b 2 Bk such
that b 6 #A a. By Lemma 1.11, a 6 #A b.

Corollary 1.14 We can change our definition of ��.K/ in Lemma 1.7(v) by
��.K/ D k � �.K/.

Proof The proof is immediate by Lemma 1.13.

Lemma 1.15

(i) Assume that for all i < n, Bi #A

S
j <i Bj . Then .Bi /i<n is A-independent,

that is, for all w � n, [
i2w

Bi #A

[
i2n�w

Bi :

(ii) For all n there is n0 such that for all C , A, and Bi , i < n0, the following
holds. If .Bi /i<n0 is A-independent and jC j < n, then there is i < n0 such
that C #A Bi .

Proof These are some of the usual consequences of a well-behaved independence
notion. As an example we prove (i) by induction on n � 1. The case n D 1 is trivial.
Suppose that the claim is proved for n and we prove it for n C 1. We assume that
n … w; the other case is similar. Now by the assumption and monotonicity,

Bn #A[
S

i2n�w Bi

[
i2w

Bi :

By symmetry,
S

i2w Bi #A[
S

i2n�w Bi
Bn. But then by the induction assumption

and transitivity, the claim follows.

We finish this section with two additional observations.
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Definition 1.16 Assume that n � 2 � Nin and that I D .ai /i<n is an indiscernible
sequence of arity at most k. We let Av.I; A/ be the set of those pairs .'.x; a/; f /

such that a 2 A and ˇ̌®
i < n

ˇ̌ �
'.x; a/; f

�
2 t .ai ; A/

¯ˇ̌
� Nin:

Lemma 1.17 Assume that I D .ai /i<n is an indiscernible sequence of arity at
most k and that n � 2 � Nin.

(i) For all A, Av.I; I [ A/ is K-consistent. Furthermore, there is f 0 W N ! N
such that if n > f 0.jAj/, then there is i < n such that t .ai ; A/ D Av.I; A/.

(ii) For all A, Av.I; I [ A/ does not fork over
S

i<2�Nin
ai and Av.I; I / is sta-

tionary.
(iii) There is a function f W N ! N such that the following holds for every

indiscernible sequence I D .ai /i<n over A of arity at most k. Assume that
n � 2 � Nin, J D .bi /i<n0 , and K D .ci /i<n00 are indiscernible sequences
over A, n0 > n, n00 > f .n0/ and for all i < n, ci D bi D ai . Then there is
i < n00 such that t .ci ; A [ J / D Av.J; A [ J /.

Proof (i) This is immediate by Lemmas 1.3 and 1.4.
(ii) Assume not. Then, by (i) (and by extending and re-enumerating I , if nec-

essary), we can find a of length k and j � 2 � Nin, so that if we write
B D

S
i<j ai , then

(a) a #B [ I ,
(b) j C Nin < n,
(c) t .aj ; a [ B/ ¤ Av.I; a [ B/,
(d) for all j < i < n, t .ai ; a [ B/ D Av.I; a [ B/.
But by (c) and (d), t .a; [I / splits strongly over B . By Lemma 1.6, this
contradicts (a).

(iii) Notice first that by (i) and (ii), .ci /n�i<n00 is .A [ I /-independent. We let
f .n0/ D .k � n0/k � ��.K/ C n0. Then we can find w � n00 such that n � w,
jwj � f 0.n0/, and for all a 2 [J , a #A[

S
i2w ci

A[K. By (i) and (ii) above,
if i 2 n00 � w, then t .ci ; B [ J / D Av.J; B [ J /.

The second additional observation is a weak compactness theorem. We say that a
k-type p over A is complete if for all ', a 2 A and f , either .'.x; a/; f / 2 p

or .:'.x; a/; f / 2 p. Notice that (K-)consistency is not included in our notion of
completeness.

Lemma 1.18 Let m D Fst.k � �.K// C k, and let p be a complete k-type over A.
Assume that for all B � A, if jBj � m, then p � B D ¹.'.x; a/; f / 2 p j a 2 Bº

is K-consistent. Then p is K-consistent.

Proof Choose a maximal sequence of k-sequences ai and sets Ai , i � n, such that
(i) A0 D ;,
(ii) for all i � n, t .ai ; Ai / D p � Ai ,
(iii) for all i < n, aiC1 6 #Ai

AiC1, Ai � AiC1, and jAiC1 � Ai j � k.
Clearly this is possible, and jAnj < k ��.K/. Then choose B � A such that An � B ,
jBj � Fst.k ��.K//, and for all b, b #An

B implies that t .b; B/ is stationary inside A.
By Lemma 1.9, this is possible. Then choose a so that t .a; B/ D p � B and
a #B A. We claim that t .a; A/ D p. Assume not. Choose C � A such that B � C ,
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t .a; C / ¤ p � C , and jC j � m. Let a0 be such that t .a0; C / D p � C . By
the choice of B and a, a0 6 #B C . Especially a0 6 #An

C . By Lemma 1.13, this
contradicts the choice of An.

2 n-prime K-models

In this section, we study the possibilities of using our independence relation to con-
struct nice finite models which are a little bit saturated.

Definition 2.1

(i) We say that A is m-saturated if for all B � A of power m and p 2 S1.B/,
there is a 2 A such that a realizes p.

(ii) We say that B is m-atomic over A if for all a 2 B of length k, there is C � A

of power less than m such that t .a; C / ` t .a; A/, that is, t .a; C / m-isolates
t .a; A/.

(iii) We say that forking is trivial if for all a, B , C , and D, the following holds.
If a 6 #D B [ C and B #D C , then a 6 #D B or a 6 #D C .

Remark 2.2 Note that if A is k-saturated, then A is a K-model. Note also
that if k D 2, then forking is trivial (always). Finally, if a is of length at
most k and A is Fst.�

�.T //-saturated, then t .a; A/ is stationary. In fact, if A is
.��.K/ C 2 � k � Nsp C k � Nin/-saturated, then t .a; A/ is stationary (see the proof of
Lemma 1.7).

The basic idea behind the proof of the following theorem is the same as in an easy
proof of the fact that !-stable theories have saturated models in every (infinite) car-
dinality � (including singular cardinals). We recall this argument in order to make it
easier for the reader to follow the proof of Theorem 2.3 below.

For all i < !, let Ai be as follows: A0 D ; and AiC1 D Ai [
S

j <� bi
j , where

the sequence .bi
j /j <� is such that it is independent over Ai and every strong type

over Ai is realized by � many bi (algebraic types only once). Now M D
S

i<! Ai

is saturated: For this let A � M be of power less than �, and let b be arbitrary.
By !-stability we can find n < ! such that b #An

M . Also since jAj < � and
since .bi

j /j <� is independent over Ai , there is X � � of power less than � such that
bi

j 6 #Ai
A iff j 2 X . Thus there is j < � such that stp.bi

j ; Ai / D stp.b; Ai / and
bi

j #Ai
A. By stationarity of strong types, even t .bi

j ; Ai [ A/ D t .b; Ai [ A/.
The reason why our argument below is much more complicated than the argu-

ment above, is that the n above need not exist (finite cardinals are not regular limit
ordinals), we do not have strong types, and addition and multiplication on finite car-
dinals are much more complicated functions than what they are on infinite cardinals.
So what we do is that at each step, we do not realize all the types but only suitably
isolated ones; this together with the triviality assumption reduces the existence of
n to an existence of a large enough “gap.” Instead of stationarity of strong types,
Lemma 1.9(ii) is used. Note also that it does not really matter what the various num-
bers we calculate are as long as they are large enough. We calculate them only to
show that there are some numbers that actually are large enough (so one does not
lose much by reading the proof so that one forgets the numbers and just believes that
in the models there is enough space for the constructions).
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Theorem 2.3 Assume that forking is trivial. For all m0 2 N, there is an
m0-saturated K-model A.

Proof Clearly, we may assume that m0 � k, and so if A is m0-saturated, it is also a
K-model. Let m D m0 C �.K/ � ��.K/, N D Nsp � Nin, and n� D m � .N C 1/. We
construct A in layers:

(a) A0 D ;,
(b) AiC1 D Ai [ Bi ,
(c) A D An� ([An� to be precise, An� is a set of k-sequences),
(d) Bi is a set of sequences b of length k such that

- Bi is Ai -independent;
- for every sequence b 2 Bi , t .b; Ai / is Ni -isolated (we will define the

numbers Ni below);
- Bi #Ai

A0
i , where A0

i � Ai is chosen so that for all b, if b #Ai
A0

i , then
t .b; A0

i / is stationary;
- for all k-sequences b, if b #Ai

A0
i , t .b; Ai / is Ni -isolated and b … Ai ,

then there is b0 2 Bi such that t .b0; A0
i / D t .b; A0

i /; furthermore, if
t .b; A0

i / is algebraic, then the number of such b0 is 1 and otherwise the
number is 2 � f n�

cl .Nn�/ (see the next paragraph for the definition of the
functions f

j
cl ).

Our first goal is to determine the numbers Ni . We do this by induction on i . We
let N0 D 1. Assume that Nj , j < i , have been defined. We say that C � A is
closed if for all i < n� and b 2 C \ Bi , there is Bb � C \ Ai of power less than
Ni such that t .b; Bb/ ` t .b; Ai /. We let f i

cl W N ! N be such that for all C � Ai ,
the closure of C is of power less than f i

cl.jC j/. Note that f i
cl can be calculated from

¹Nj j j < iº. Let f W N ! N be such that for all A, k2 � jS.A/j < f .jAj/. Note
that for all n, Fst.n/ � f N .n/. Then we let

(e) NiC1 D .f /3�N .f i
cl.m//.

We recall from above that for all i , we have chosen A0
i � Ai so that for all b, if

b #Ai
A0

i , then t .b; A0
i / is stationary. Furthermore, we require that A0

i � A0
iC1. We

will use these in place of strong types.
Let N � D f n�

cl .Nn�/.
Notice the following.

Claim 1 Assume that C � Ai is of power f N .f i
cl.m

0//. Then for all b there is
b0 2 Bi such that t .b0; C / D t .b; C /.

Proof The proof is immediate by Lemma 1.13 and the definition of f and Ni .

We show that A D An� is m0-saturated. For this it is enough to prove the following.
Assume that B � A is of power m, a is a singleton, and for all i � n�, a #B\Ai

Ai .
Then there exists b 2 A, such that t .b; B/ D t .a; B/. Let I � n� be such that i 2 I

iff B \ Bi ¤ ;. By the pigeonhole principal, we can find i� < n� such that for all
j , if i� � j � i� C N , then j … I . Let i 0 D i� C N , and let B� be the least set
such that it is closed and B \ Ai� � B� � Ai� . Then jB�j < f i�

cl .m/.
Now choose C0 � C1 � C2 � Ai 0 so that
(1) B� � C0,
(2) for all c, if c #B� C0, then t .c; C0/ is stationary (use the method from

Lemma 1.7(ii)),
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(3) for all c there is d such that t .d; C0/ D t .c; C0/ and t .d; C1/ isolates
t .d; Ai 0/ (use the method from Lemma 1.7(ii)),

(4) C2 is the least closed set such that C1 � C2,
(5) jC1j < Ni 0 .

By Claim 1 and the construction, this is possible. Also jC2j < N �. Let E � A be
the least set such that it is closed and B � E. Then B� � E and jEj < Nn� � N �.

Claim 2 We can choose C2 (together with C0 and C1) so that C2 #B� E.

Proof We start with the following two subclaims. We say that D is separate from
C over C 0 � C \ D if the following holds: for all i < n� and

d 2 .D \ C \ Bi / � C 0;

t .d; Ai / is algebraic. Note that if, for example, D is closed, then t .d; Ai \ D/ is
algebraic.

Subclaim 1

(i) Assume that D is closed and separate from C over C 0. Then for all i < n�,
D #D\Ai

A0
i [ ..C \ AiC1/ � C 0/.

(ii) Assume that D, C , and C 0 are closed and that D is separate from C over C 0.
Then D #C 0 C .

Proof (i): Since D is closed, we can see that
(*) for all j < n� and d 2 Bj \ D; d #D\Aj

A0
j [

�
Bj � ¹dº

�
.

So by transitivity, D #D\AiC1
A0

i [ ..C \ AiC1/ � C 0/. So it is enough to prove
that D \ Bi #D\Ai

A0
i [ ..C \ AiC1/ � C 0/. By (*), it is enough to show that

for all d 2 D \ Bi , d #A0
i

..C \ Bi / � C 0/ [ Di
d

, where Di
d

D D \ Bi � ¹dº.
If t .d; Ai / is algebraic, this is clear. Otherwise, d … .C \ Bi / � C 0, that is,
d … ..C \ Bi / � C 0/ [ Di

d
, and so the claim follows from the definition of Bi .

(ii): By induction on i we show that D \ Ai #C 0\Ai
C \ Ai . The case i D 0 is

trivial. We prove the case i C 1. Because C 0 is closed, C 0 #C 0\Ai
.D [ C / \ Ai .

By this and the induction assumption,
(˛) C \ Ai #C 0\AiC1

D \ Ai .
By (i), C \ AiC1 #C \Ai

D \ Ai , and so by (˛),
(ˇ) C \ AiC1 #C 0\AiC1

D \ Ai .
By (i), D \ AiC1 #D\Ai

C \ AiC1 � C 0, and so (ii) follows from this and (ˇ).

Assume that C � A is closed. We say that f W C ! A is good if it is L-elementary,
preserves the levels of the construction, and f .C / is closed. Note that if f W C ! A

is good, then so is f �1 W f .C / ! A.

Subclaim 2 Let i < n�.
(i) Assume that C � Ai is closed and of power less than N � and that

f W C ! Ai is good. Let c be such that t .c; C / isolates t .c; Ai /. If
f .t.c; C // D t .c0; f .C //, then t .c0; f .C // isolates t .c0; Ai /.

(ii) Assume that C � A and D � AiC1 are sets, C and D [ C are closed,
C [ D is of power less than 2 � N �, and f W C ! A is good. Then there
is a good function g W C [ D ! A such that f � g. Furthermore, if
E� and E 0 are closed and such that f .C / is separate from E� over E 0 and
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jf .C / [ E�j C jDj < 2 � N �, then g can be chosen so that g.C [ D/ is
separate from E� over E 0.

Proof We prove these simultaneously by induction on i . For the case i D 0, (i) is
trivial and (ii) goes as in the case i C 1. We prove the case i C 1. Now (i) follows
immediately from item (ii) of the induction assumption. So let C and D be as in
(ii). By the induction assumption we may assume that D � Bi and that for all
d 2 D, d … C . Choose D0 so that t .D0; f .C // D f .t.D; C // and D0 #f .C / A0

i .
By Subclaim 1(i), D #C \Ai

C , and so D0 #f .C /\Ai
f .C / [ A0

i . Especially, D0

is A0
i -independent. By the choice of A0

i , it is enough to find D00 � Bi such that
t .D00; A0

i / D t .D0; A0
i / and for all d 2 D00, d … f .C /. By (i), for all d 2 D0,

t .d; Ai / is sufficiently isolated. So for all d 0 2 D0, we can find d 2 Bi such that
t .d; A0

i / D t .d 0; A0
i /. By the definition of Bi , the set of these is the wanted D00, if we

can choose the sequences so that they do not belong to f .C / (and are distinct from
each other). If t .d; Ai / is not algebraic, then this is clear. If t .d; Ai / is algebraic,
then it is enough to show that for all c 2 f .C / \ Bi , t .d; A0

i / ¤ t .c; A0
i /. But this is

clear, since otherwise t .d; A0
i / is not stationary (d ¤ c for all c 2 f .C / \ Bi ).

The furthermore part follows immediately from the construction.

Now Claim 2 follows from Subclaim 2(ii) by an easy induction. Note that after we
have moved C2 so that C2 #B� E, (3) above still holds by Subclaim 2(ii) ((1), (2),
(4), and (5) are clear).

Then we can choose b so that t .b; C0/ D t .a; C0/ and t .b; C1/ isolates t .b; Ai 0/. So
we can choose b so that in addition b #C1

A0
i 0 , b 2 Bi 0 and b … E or t .b; C1/ is

algebraic. Then by Claim 2, b #C0
E. So if a #C0

E, t .b; B/ D t .a; B/. So it is
enough to show that a #C0

E.
Assume not. Let j < n� be such that a #C0

Aj \ E and a 6 #.Aj \E/[C0
c for

some c 2 E \ Bj (since forking is trivial, such c exists). Also j � i 0 C 1, because
a #Ai0C1\B Ai 0C1 and Ai 0C1 \ B D Ai� \ B � C0. Then t .b; .Aj \ E/ [ C0/ D

t .a; .Aj \ E/ [ C0/, but t .b; .Aj \ E/ [ C0 [ c/ ¤ t .a; .Aj \ E/ [ C0 [ c/. This
contradicts the fact that E is closed, and this also concludes the proof of Theorem 2.3.

By taking a closer look at the proof of Theorem 2.3, we can see that the following
theorem also holds.

Theorem 2.4 Assume that forking is trivial.
(i) There are g; h W N � N ! N such that the following holds. For all m0 2 N

and D, if (*) below holds, then there is an m0-saturated K-model A � D

such that it is h.m0; jD0j/-atomic over D.
(*) D D D0 [ D1 and D1 is g.m0; jD0j/-saturated.

(ii) There are g; h W N�N ! N such that the following holds. For all m0; m 2 N
and D, if (**) below holds, then there is an m0-saturated K-model A � D

such that it is h.m0; m/-atomic over D.
(**) D D

S
i2I Di

0 [ D1, D1 is g.m0; m/-saturated, jI j � g.m0; m/, for
all i 2 I , jDi

0j < m, and for all i; j 2 I , t .Di
0; D1/ D t .D

j
0 ; D1/.

Proof (i) Just repeat the construction from the proof of Theorem 2.3 with the fol-
lowing changes. First of all, note that (by choosing g properly) we can assume that
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every type over D1 is stationary. So if C � D and t .c; C / is stationary inside D,
then t .c; C / is stationary. We let A0 D D. Then we choose D2 � D1 so that
D0 #D2

D1 and t .D0; D2/ is stationary inside D1. Clearly the size of D2 depends
only on jD0j. Then we define closedness of C as in the proof of Theorem 2.3, ex-
cept that in addition we require that D0 [ D2 � C and t .C; C \ D1/ is stationary
inside D1. Note that

(*) if C is closed, then by triviality of forking, C 0 #C \D1
D1.

Then the maximal size of Nn� depends only on m0 and jD0j. So we define g so
that always g.m0; jC0j/ � 2 � Nn� and h is defined so that h.m0; jC0j/ � Nn� .
By (*), it is easy to see that if C is closed, then t .C; C \ D/ ` t .C; D/ and so A is
h.m0; jC0j/-atomic (in fact the value of h.m0; jC0j/ can be improved a lot).

(ii) Just repeat the construction from (i) with the following changes. As in (ii), we
can find D2 � D0 so that for all i 2 I , Di

0 #D2
D1 and t .Di

0; D2/ is stationary
inside D1. Then we define closedness of C as in the proof of Theorem 2.3, except
that in addition we require that D2 � C , t .C; C \ D1/ is stationary inside D1, and
if Di

0 \ C ¤ ;, then Di
0 � C . Then the proof of (ii) works.

Definition 2.5

(i) By Fat we mean the function h from Theorem 2.4(i), and by Gsat we mean
the function g from Theorem 2.4(i).

(ii) We say that A is m-constructible over B if there is .ai /i<n such that
A D B [

S
i<n ai and for all i < n, t .ai ; B [

S
j <i aj / is m-isolated.

In this case we say that .ai /i<n is an m-construction over B .
(iii) We say that A is m-primary over B if A is Fis.m/-constructible over B and

m-saturated, where Fis.m/ D Fst.Ffo.m//.
(iv) We say that A is m-primitive over B if for all m-saturated C � B , there is an

L-elementary embedding f W A [ B ! C such that f � B D idB .

Observe that by Lemma 1.7(v) and Lemma 1.9(i), for all A � B and a (of length k),
there are b and A � C � B such that t .b; A/ D t .a; A/, t .b; C / isolates t .b; B/ and
jC j < Fis.jAj/ (choose b so that the rank of t .b; B/ is minimal among those types
over B that extend the type t .a; A/).

Corollary 2.6 Assume that forking is trivial, that m � k, and that D is a set.
(i) There is an m-primary K-model over D.
(ii) m-constructible sets over D are m-primitive over D.
(iii) If D D D0 [ D1 and D1 is Gsat.m; jD0j/-saturated, then m-constructible

sets over D are Fat.m; jD0j/-atomic over D.

Proof Assertion (ii) is trivial; (i) follows immediately from (ii), the observation
above, and Theorem 2.3; and (iii) follows from (ii) and Theorem 2.4(i).

Remark 2.7 For all A ¤ ;,ˇ̌
Sk.A/

ˇ̌
< f

�
Fst

�
��.K/

��
� jAj

��.K/;

where f is from Definition 1.8(iii), that is, (any) function such that for all B ,
k � jSk.B/j < f .jBj/.

Proof There is no change from the classical proof (see the proof of [4, Lemma III.3.6]).
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So by going through the proof of Theorem 2.3, we can calculate a recursive upper
bound for min¹jAj j A 2 Kº from Nsp and Nin.

We finish this paper by proving the usual property of primary models.

Definition 2.8 We write AFB C if for all a of length k, a #B A implies a #B C .

Lemma 2.9 Assume that a is of length k, B is m-atomic over A [ a, and A is
m�-saturated, where m� D Fst.�

�.K// C m C k. Then a FA B .

Proof Assume not. Then we can choose A0 � A and b and c of length k such that
(i) a #A0 A [ b and t .a; A0/ is stationary,
(ii) t .c; A0 [ a/ ` t .c; A [ a/,
(iii) c 6 #A[a b,
(iv) jA0j < Fst.�

�.K// C m.
Then we can choose b0 2 .A [ b/k such that c 6 #A0[a b0. By (i), (iv) and since A is
m�-saturated, we can find b� 2 Ak such that t .b�; A0 [ a/ D t .b0; A0 [ a/. Clearly
this contradicts (ii).

Corollary 2.10 Assume that forking is trivial. Let a be of length k, let B be
m-primary over A [ a, and let A be m�-saturated, where

m�
D max

®
Fst

�
��.K/

�
C Fat

�
Fis.m/; k

�
C k; Gsat

�
Fis.m/; k

�¯
:

Then a FA B .

Proof The proof is immediate by Lemma 2.9 and Corollary 2.6.
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