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Weak One-Basedness

Gareth Boxall, David Bradley-Williams, Charlotte Kestner,
Alexandra Omar Aziz, and Davide Penazzi

Abstract We study the notion of weak one-basedness introduced in recent
work of Berenstein and Vassiliev. Our main results are that this notion char-
acterizes linearity in the setting of geometric þ-rank 1 structures and that lovely
pairs of weakly one-based geometric þ-rank 1 structures are weakly one-based
with respect to þ-independence. We also study geometries arising from infinite-
dimensional vector spaces over division rings.

1 Introduction

An independence relation j^ is a ternary relation on the set of small subsets of a
sufficiently saturated structureM . Roughly speaking, A j^C

B is intended to mean
that “A is independent from B over C .” More precisely, j^ satisfies certain axioms.
For convenience, we list the axioms which we shall be using in Definition 1.1. Six
of these are taken from Kim and Pillay [10, Definition 4.1], and for notational con-
venience, we have added the normality axiom (see, e.g., Adler [1]). Note that the
axioms in [10] are stated to suit the situation where A is a finite tuple. We follow
Adler in [1] in expressing them here without that restriction. We have also phrased
the invariance axiom without the aid of automorphisms to avoid having to make a
strong homogeneity assumption. The penultimate paragraph of this section gives
notational conventions which apply throughout this section.

Definition 1.1 Let M be a sufficiently saturated structure. Let j^ be a ternary
relation on the small subsets of M . Then j^ is an independence relation on M if,
for all small A;B;C �M , the following conditions are satisfied.

Invariance: For all A0; B 0; C 0 � M such that tp.A;B; C / D tp.A0; B 0; C 0/, if
A j^C

B , then A0 j^C 0
B 0.

Received December 30, 2011; accepted February 7, 2012
2010 Mathematics Subject Classification: Primary 03C45; Secondary 03C10, 03C95
Keywords: stability theory, thorn-forking, independence, one-based, geometric theory,
local modularity
© 2013 by University of Notre Dame 10.1215/00294527-2143934

435

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-2143934


436 Boxall, Bradley-Williams, Kestner, Omar Aziz, and Penazzi

Symmetry: If A j^C
B , then B j^C

A.
Transitivity: For all D � C , if C � B , then A j^D

B if and only if both
A j^D

C and A j^C
B .

Extension: There exists A0 ˆ tp.A=C/ such that A0 j^C
B .

Normality: We have A j^C
B if and only if A j^C

B [ C .
Finite character: We have A j^C

B if and only if, for all finite B 0 � B ,
A j^C

B 0.
Local character: There exists D � B such that jDj � jT h.M/j � jAj and
A j^D

B .

Well-known examples of independence relations include the case whereM is a vec-
tor space and j^ is linear independence or whereM is an algebraically closed field
and j^ is algebraic independence. An important difference between these two ex-
amples is that linear independence is linear while algebraic independence (in an al-
gebraically closed field) is not. Various conditions, which characterize linearity of
an independence relation j^ in certain situations, have been defined. For the rest of
this section we fix a sufficiently saturated infinite structureM and an independence
relation j^ onM . So “A �M ” means “A �M and A is small.” An important role
is played by the notion of modularity which we now recall.

Definition 1.2 .M; j^/ is modular if, for all A;B �M , A j^ acl.A/\acl.B/ B .

Here acl is the model-theoretic algebraic closure operator in M . There is a much-
studied weaker notion called local modularity. A further weakening is given by
Berenstein and Vassiliev in [3] and is as follows.

Definition 1.3 .M; j^/ is weakly locally modular if, for all A;B � M , there
exists C �M such that C j^ ;AB and A j^ acl.AC/\acl.BC/ B .

There is a related notion called one-basedness which Berenstein and Vassiliev
weaken in [4] to obtain the following (in which we treat the finite tuple Na as a small
set by forgetting the order of its entries).

Definition 1.4 .M; j^/ is weakly one-based if, for all Na 2M n andB �M , there
exists C � M such that B � C , Na j^B

C , and, for all Na0 ˆ tp. Na=C/, if Na j^C
Na0,

then Na j^ Na0
C .

There are several other relevant properties to consider, including one which is actu-
ally called linearity. We recall its definition in Section 3. Some background is given
at the beginning of [4], and we recall some of that now. For the remainder of this
paragraph, the independence relation in question is always j^

acl (see Definition 2.3)
which is known to coincide with j^

þ , the independence relation which comes from
þ-forking (see Onshuus [11]), for the structures under consideration. When M is
strongly minimal, it is known that local modularity, one-basedness, and linearity
all coincide. In the more general setting where M is simple with SU-rank 1, one-
basedness and linearity are known to coincide and to be strictly weaker than local
modularity. In this setting it is proved in [3] (using a result from Vassiliev [13]) that
weak local modularity is equivalent to one-basedness and linearity. In the even more
general setting whereM is geometric and has þ-rank 1, it is shown in [4] that weak
local modularity is equivalent to weak one-basedness. Also in this setting, it is shown
in [4] that weak one-basedness is equivalent to a notion called generic linearity and



Weak One-Basedness 437

implies linearity. We prove in Section 3, in this geometric þ-rank 1 setting, that lin-
earity implies generic linearity and therefore that weak one-basedness is equivalent
to linearity. This is proved in [4] under the assumption thatM is dense o-minimal.

The notion of þ-rank for a formula is given in Ealy and Onshuus [8, Defini-
tion 4.3]. We follow the convention that M has þ-rank 1 if and only if the formula
x D x has þ-rank 1 in M . We recall what it means for M to be (pre)geometric in
Definition 2.3.

In Section 2 we observe that the equivalence between weak one-basedness and
weak local modularity, which is proved in [4] in the case where M is pregeometric
and j^ D j^

acl, extends to the general setting of an arbitrary sufficiently saturated
infinite structureM and an arbitrary independence relation j^ onM , provided that
one uses an appropriately modified definition of weak local modularity.

The notion of a lovely pair .N; P.N // of geometric structures has been exten-
sively studied (see [3] and Boxall [5]). It consists of a geometric structure N ex-
panded by a unary predicate P which names a well-behaved elementary substructure
P.N/. A nice example is given by the real field together with a predicate for the
subfield of all real algebraic numbers (see van den Dries [12]). Lovely pairs of geo-
metric structures play an interesting role in the history of the topics we are consider-
ing here. In [3] weak local modularity of j^

acl in a sufficiently saturated geometric
structure is characterized in terms of the modularity of an independence relation in
a corresponding lovely pair. Lovely pairs, being an especially well-behaved kind of
expansion, also provide a test of the robustness of the notion of weak one-basedness.
It is proved in [5] that ifM is geometric with þ-rank 1, then the corresponding the-
ory of lovely pairs is rosy, and so sufficiently saturated models of it are equipped
with the independence relation j^

þ . We prove in Section 4 that if M is geometric
with þ-rank 1 and .M; j^

acl/ is weakly one-based, then j^
þ in a sufficiently saturated

model of the corresponding theory of lovely pairs will also be weakly one-based.
Berenstein and Vassiliev prove this in [4] under an additional assumption.

An earlier version of [4] had contained several questions about the theory of the
projective geometry of an infinite-dimensional vector space over a division ring. See
Section 4 of [4] to understand the relevance of these geometries. In the appendix
we address the issue of stability, showing that the theory of the projective geometry
of an infinite-dimensional vector space over an infinite division ring is stable if and
only if the theory of the division ring is stable. We do this by proving a quantifier
elimination result for the vector space in an appropriate language. We do not claim
that these results are new. Indeed they seem to be essentially well known. However,
we thought it would be useful to give a presentation of them here.

Our terminology and notation are fairly standard. The following applies to the first
four sections. Parameter sets (as opposed to definable sets) are denoted by the letters
A;B;C , orD or by variants of them such asA0. We always work in a sufficiently sat-
urated infinite structure, and so all such sets are automatically assumed to be small.
When we say that two tuples of parameter sets have the same type (possibly over
some other parameter set), for example, tp.A;B; C=D/ D tp.A0; B 0; C 0=D/, we
mean that this is true for some well ordering of each of these parameter sets. Ele-
ments of M n, for some finite n, are denoted by Na; Nb; Nc, or Nd (or Na0, etc.). We use e
to denote an imaginary element (an element of M eq). We use x; y; z as real vari-
ables, Nx; Ny; Nz as finite tuples of real variables, and w as an imaginary variable. We
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usually just write sets or tuples next to each other to indicate their union or the tuple
obtained by writing one before the other. The conventions in use in the appendix are
made clear in the appendix.

2 Some Equivalent Notions

Throughout this section,M is a sufficiently saturated infinite structure, and j^ is an
independence relation on M . We recalled one formulation of weak one-basedness
in Definition 1.4. The following alternative version is also given in [4] (but here we
give it a slightly different name for ease of reference).

Definition 2.1 .M; j^/ is very weakly one-based if, for all Na 2M n and B �M ,
there exists Na0 ˆ tp. Na=B/ such that Na j^B

Na0 and Na j^ Na0
B .

Remark 2.2 If .M; j^/ is very weakly one-based then, for all Na 2 M n and
B �M , there exists Na00 ˆ tp. Na=B/ such that Na00 j^B

Na and Na00 j^ Na
B .

Proof Suppose that for Na 2 M n and B � M we have Na0 ˆ tp. Na=B/ such
that Na j^B

Na0 and Na j^ Na0
B . Then as Na ˆ tp. Na0=B/ we have an Na00 such that

tp. Na Na0=B/ D tp. Na00 Na=B/. The result follows by invariance.

We use acl to denote model-theoretic algebraic closure in the structure M . Recall
the following standard notions.

Definition 2.3 M is pregeometric if acl has the Steinitz exchange property (in
which case we say that .M; acl/ is a pregeometry). In this case, for Na 2 M n and
B;C � M , we say that Na j^

acl
B
C if dim. Na=B/ D dim. Na=BC/, where this notion

of dimension is obtained from acl analogously to the way that transcendence degree
is obtained from the algebraic closure operator in an algebraically closed field. For
A;B;C � M , we say that A j^

acl
C
B if Na j^

acl
C
B for all finite tuples Na from A. If in

addition Th.M/ eliminates the quantifier 91, we say thatM is geometric.

It is well known that j^
acl is an independence relation on M when M is pregeo-

metric. It is proved in [4] that weak local modularity, weak one-basedness, and very
weak one-basedness are all equivalent whenM is pregeometric and j^ D j^

acl. We
would like to extend this equivalence to the general setting which we are considering
here, that of an arbitrary sufficiently saturated infinite structure M and an arbitrary
independence relation j^ on M . However, we do not see how to make this work
with weak local modularity as in Definition 1.3, and so we consider the following
version instead.

Definition 2.4 .M; j^/ is very weakly locally modular if, for all Na 2 M n and
B �M , there existsC �M such thatC j^ Na

B ,C j^B
Na, and Na j^ acl. NaC/\acl.BC/ B .

It is easy to check that very weak local modularity coincides with weak local modu-
larity whenM is pregeometric and j^ D j^

acl. After replacing weak local modular-
ity with very weak local modularity, Berenstein and Vassiliev’s equivalence extends
to our general setting. However, some preliminary work is required. The argument in
[4] makes use of the following property, which we do not claim to be true generally.

Property 2.5 Let Na 2 M n and B � M . Let Na0 ˆ tp. Na=B/. If Na j^B
Na0 and

Na j^ Na0
B , then Na0 j^ Na

B .
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It is proved in [4] that .M; j^/ has Property 2.5 when M is pregeometric and
j^ D j^

acl. The argument may be phrased in terms of additivity of U -rank and
so extended to apply to any independence relation which has a U -rank which is finite
on every type. However, we do not see how to stretch it to the general setting of
an arbitrary sufficiently saturated infinite structureM and an arbitrary independence
relation j^ onM . This does not matter since we require only the following strength-
ening of very weak one-basedness which can be proved, in this general setting, by
other means.

Lemma 2.6 Suppose that .M; j^/ is very weakly one-based. Let Na 2 M n and
B � M . Then there exists Na0 ˆ tp. Na=B/ such that Na j^B

Na0, Na j^ Na0
B , and

Na0 j^ Na
B .

Proof By very weak one-basedness and Remark 2.2, there exists Na1 ˆ tp. Na=B/
such that Na1 j^B

Na and Na1 j^ Na
B . Using very weak one-basedness and Remark 2.2

again, there exists Na2 ˆ tp. Na1=B Na/ such that Na2 j^B Na
Na1 and Na2 j^ Na1

B Na. Contin-
uing in this way, for i D 2; 3; 4; : : : , we obtain NaiC1 ˆ tp. Nai=B Na Na1 � � � Nai�1/ such
that NaiC1 j^B Na Na1��� Nai�1

Nai and NaiC1 j^ Nai
B Na Na1 � � � Nai�1. Let Na0 D Na.

Having constructed the sequence . Nai /i<! , we could continue the process and ex-
tend it to a sequence . Nai /i<˛ , for any small infinite ordinal ˛. Then, for each n < !

and i0 < i1 < � � � < in < inC1 < ˛, we would have NainC1
j^B Nai0

Nai1
��� Nain�1

Nain and
NainC1

j^ Nain

B Nai0 Nai1 � � � Nain�1
. (Both of these independences follow, by transitivity,

normality, and invariance, from the construction of . Nai /i<˛ .)
By choosing ˛ large enough and then applying a well-known consequence of the

Erdős–Rado theorem (which is stated as Adler [2, Theorem 1] where references are
also given), we obtain a sequence indexed by ! with all the properties stated for our
original sequence . Nai /i<! and with the additional property of being indiscernible
overB . Therefore we may assume that our original sequence . Nai /i<! is indiscernible
over B , and from now on we do so.

For all n < !, by transitivity and normality, we have

Na1 j^
Na0

B; : : : ; Nan j^
Na0��� Nan�1

B;

and so we get Na1 � � � Nan j^ Na0
B using transitivity, normality, and symmetry.

Let � be .jTh.M/j�jBj/C considered as an ordinal. Then there is an indiscernible
sequence . Nci /i<� of tuples from M such that tp. Nci1 � � � Ncin=B/ D tp. Naj1

� � � Najn
=B/

for all natural numbers n and all i1 < i2 < � � � < in < � and jn < jn�1 < � � � <

j1 < !. Given that � is a limit ordinal with cofinality greater than jTh.M/j � jBj,
it is a well-known consequence of the local character axiom (in conjunction with
transitivity, symmetry, and normality) that there cannot exist a sequence . Ndi /i<� of
finite tuples from M such that NdiC1 6 j^ Nd0���

Ndi
B for all i < �. Therefore there will

be some i < � such that NciC2 j^ Nc0��� NciC1
B . We also have Nc0 � � � Nci j^ NciC1

B . We
then get NciC2 j^ NciC1

B . We also have NciC1 j^ NciC2
B and NciC1 j^B

NciC2. Since
Na ˆ tp. NciC1=B/, there exists Na0 ˆ tp. Na=B/ such that Na j^B

Na0, Na j^ Na0
B , and

Na0 j^ Na
B .



440 Boxall, Bradley-Williams, Kestner, Omar Aziz, and Penazzi

We are now in a position to prove the main result of this section, which extends
Berenstein and Vassiliev’s equivalence to the setting where M is an arbitrary suffi-
ciently saturated infinite structure and j^ is an arbitrary independence relation onM .

Theorem 2.7 The following are equivalent:
(1) .M; j^/ is very weakly locally modular,
(2) .M; j^/ is weakly one-based,
(3) .M; j^/ is very weakly one-based.

Proof After Lemma 2.6, the rest of the proof of Theorem 2.7 is essentially given
in [4]. For convenience we write it out here. We use the axioms of an independence
relation, as stated in Definition 1.1, and well-known consequences of them freely and
without specific reference.

Assume .1/. Let Na 2 M n and B � M . Let C � M be such that C j^B
Na,

C j^ Na
B , and Na j^ acl. NaC/\acl.BC/ B . Let Na

0 ˆ tp. Na= acl.BC// such that Na j^BC
Na0.

Then C j^ Na0
B , and so acl. Na0C/ \ acl.BC/ j^ Na0

B . But acl. Na0C/ \ acl.BC/ D
acl. NaC/ \ acl.BC/. So acl. NaC/ \ acl.BC/ j^ Na0

B . We also have Na j^C
B Na0, and

so Na j^ acl. NaC/\acl.BC/ B Na
0 and Na j^ .acl. NaC/\acl.BC// Na0 B . Therefore Na j^ Na0

B . We
also have Na0 ˆ tp. Na=B/ and Na j^B

Na0. Therefore we have .3/.
Assume .3/. Let Na 2 M n and B � M . By assumption and Lemma 2.6, there

exists Na0 ˆ tp. Na=B/ such that Na j^B
Na0, Na j^ Na0

B , and Na0 j^ Na
B . Let C D Na0. Then

Na j^ acl. NaC/\acl.BC/ B . Therefore we have .1/.
Assume .3/. Let Na 2 M n and B � M . By assumption and Lemma 2.6, there

exists Na00 ˆ tp. Na=B/ such that Na j^B
Na00, Na j^ Na00

B , and Na00 j^ Na
B . Let C D B Na00.

Let Na0 ˆ tp. Na=C/ such that Na j^C
Na0. Then Na00 j^ Na0

B . Also Na j^ Na00 Na0
B , since

Na j^ Na00
B and Na j^B Na00

Na0. So Na j^ Na0
B . From Na j^B

C and Na j^C
Na0 we get

Na j^B Na0
C Na0. Therefore Na j^ Na0

C . Therefore we have .2/.
Assume .2/. Let Na 2 M n and B � M . Let C � M be such that B � C ,

Na j^B
C , and, for all Na0 ˆ tp. Na=C/, if Na j^C

Na0, then Na j^ Na0
C . There is some

Na0 ˆ tp. Na=C/ such that Na j^C
Na0. We then have Na j^B

Na0 and Na j^ Na0
B . Clearly

Na0 ˆ tp. Na=B/. Therefore we have .3/.

3 Notions of Linearity

For this section we continue to assume that M is a sufficiently saturated, infinite
structure and j^ is an independence relation on M . In addition, throughout this
section, we assume M is geometric and j^ D j^

acl. Recall that a family of plane
curves is given by a pair of formulas '.x; y;w/ and  .w/, possibly with parameters
fromM , such that x and y are variables of the home sort (real variables) but w pos-
sibly belongs to an imaginary sort and, for each e 2M eq such thatM eq ˆ  .e/, the
subset ofM 2 defined by '.x; y; e/ has acl-dimension 1 (i.e., it is infinite and no ele-
ment ab of it is acl-independent over e together with the parameters in '). Recall too
that a family of plane curves is said to be normal if, for any two distinct e; e0 2 M eq

such thatM eq ˆ  .e/ andM eq ˆ  .e0/, the set defined by '.x; y; e/ ^ '.x; y; e0/
is finite. In [4] (which refers back to Hasson, Onshuus, and Peterzil [9]), a family of
plane curves given by '.x; y; Nz/ and  . Nz/, where Nz is a tuple of real variables, is said
to be almost normal if, for all Nc ˆ  . Nz/, there exist only finitely many Nc0 ˆ  . Nz/

such that the set defined by '.x; y; Nc/ ^ '.x; y; Nc0/ is infinite.
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In the following definition, linearity is a standard notion and generic linearity is
defined in [4] (which refers back to [9]). The dimension referred to in the definition
of linearity is some extension of acl-dimension from M to M eq. We only consider
linearity in situations where a well-behaved such extension is known to exist such as
whenM has þ-rank 1.

Definition 3.1

(1) .M; j^
acl/ is linear if, for every normal family '.x; y;w/ and  .w/ of plane

curves, the set defined by  .w/ has dimension less than 2.
(2) .M; j^

acl/ is generically linear if, for every almost normal family '.x; y; Nz/
and  . Nz/ of plane curves (where Nz is a tuple of real variables), the set defined
by  . Nz/ has acl-dimension less than 2 (i.e., dim. Nc= Nd/ < 2 for all Nc ˆ  . Nz/,
where Nd are the parameters in  and dim is as in Definition 2.3).

Berenstein and Vassiliev prove in [4] that .M; j^
acl/ is weakly one-based if and

only if it is generically linear. Assuming that M has þ-rank 1, they also prove that
.M; j^

acl/ is linear if it is weakly one-based. We reverse this implication using the
following variation on the theme of linearity.

Definition 3.2

(1) Let Na 2 M n. Let E be a ;-definable equivalence relation on M n. Let
e D Na=E be the imaginary which corresponds to the equivalence class of
Na with respect to E. We call e a finite set imaginary (an FSI) if every equiv-
alence class of E is finite. In this case we call the sort to which e belongs an
FSI-sort.

(2) We say that a normal family '.x; y;w/ and  .w/ of plane curves is FSI-
normal if the variable w ranges over an FSI-sort.

(3) We say that .M; j^
acl/ is FSI-linear if, for every FSI-normal family

'.x; y;w/ and  .w/ of plane curves, the set defined by  .w/ has acl-
dimension less than 2.

Here we speak of acl-dimension, even though we are talking about a set of imagi-
nary elements. On this occasion it is perfectly safe to do so because there will be
a definable set Z � M n and a ;-definable (in the sense of M eq) function f (the
function which quotients out by E) such that f .Z/ is the set defined by  .w/ and
each fiber of f is finite. We take the acl-dimension of the set defined by  .w/ to be
equal to the acl-dimension of Z. As is well known, this agrees with the extension of
acl-dimension toM eq that we get using j^

þ whenM has þ-rank 1.
The “only if” part of the following result is essentially proved in [4].

Theorem 3.3 .M; j^
acl/ is generically linear if and only if .M; j^

acl/ is FSI-
linear.

Proof .)/ Suppose that .M; j^
acl/ is not FSI-linear. Let '.x; y;w/ and  .w/

be an FSI-normal family of plane curves which witnesses this. Let Z and f be as
in the paragraph after Definition 3.2. Let  0. Nz/ define Z. Let '0.x; y; Nz/ be such
thatM eq ˆ .8xy Nz/Œ 0. Nz/! .'0.x; y; Nz/$ '.x; y; f . Nz///�. Then '0.x; y; Nz/ and
 0. Nz/ form an almost normal family of plane curves (since, for Nc; Nc0 ˆ  0. Nz/, either
the set defined by '0.x; y; Nc/ ^ '0.x; y; Nc0/ is finite or f . Nc/ D f . Nc0/; recall that the
fibers of f are finite). The set defined by  .w/ has acl-dimension at least 2, by
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assumption, and so the set defined by  0. Nz/ has acl-dimension at least 2. Therefore
.M; j^

acl/ is not generically linear.
.(/ Suppose that .M; j^

acl/ is not generically linear. Let '.x; y; Nz/ and
 . Nz/ be an almost normal family of plane curves which witnesses this. Fix
some Nc ˆ  . Nz/ such that dim. Nc= Nd/ � 2, where dim is as in Definition 2.3
and Nd are the parameters in  and (we may assume also) in '. Let m < ! be
maximal subject to there being distinct Nc1; : : : ; Ncm ˆ  . Nz/ such that Nc D Nc1
and the formula '.x; y; Nc1/ ^ � � � ^ '.x; y; Ncm/ defines an infinite set. For each
k < !, let  k. Nz1; : : : ; Nzk/ be the formula .91xy/Œ'.x; y; Nz1/ ^ � � � ^ '.x; y; Nzk/ ^
 . Nz1/ ^ � � � ^  . Nzk/ ^

V
i¤j Nzi ¤ Nzj �. Let  0. Nz1; : : : ; Nzm/ be  m. Nz1; : : : ; Nzm/ ^

.8NzmC1/Œ: mC1. Nz1; : : : ; NzmC1/�. Let E be the equivalence relation which says that
the order of the Nzi ’s in Nz1 � � � Nzm does not matter. Then E is ;-definable in M . Let
f be the function which quotients out by E. Then f is ;-definable in M eq. Let
 00.w/ be such that M eq ˆ .8Nz1 � � � Nzm/Œ 

00.f . Nz1; : : : ; Nzm// $  0. Nz1; : : : ; Nzm/�.
Let '0.x; y;w/ be such that
M eq
ˆ .8xy Nz1 � � � Nzm/

�
'0
�
x; y; f . Nz1; : : : ; Nzm/

�
$ '.x; y; Nz1/^ � � � ^ '.x; y; Nzm/

�
:

Then '0.x; y;w/ and  00.w/ form a normal family of plane curves. Since the fibers
of f are finite, '0.x; y;w/ and  00.w/ form an FSI-normal family of plane curves.
Let Z be the set defined by  0. Nz1; : : : ; Nzm/. We have Nc1 � � � Ncm 2 Z such that
Nc1 D Nc. Clearly Z is definable over the parameters in ' and  . Therefore Z
has acl-dimension at least 2. The set defined by  00.w/ is f .Z/ and so it too has
acl-dimension at least 2. Therefore .M; j^

acl/ is not FSI-linear.

It is clear that linearity implies FSI-linearity when M has þ-rank 1. So, combining
Theorem 3.3 with the results from [4] referred to above, we get the following.

Corollary 3.4 Suppose that the geometric structure M has þ-rank 1. Then
.M; j^

acl/ is weakly one-based if and only if .M; j^
acl/ is linear.

This was proved in [4] under the assumption thatM is dense o-minimal, via an argu-
ment which overlaps to some extent with our proof of the “if” part of Theorem 3.3.

4 Lovely Pairs

Throughout this section we assume thatM is a sufficiently saturated infinite structure
which is also geometric and has þ-rank 1. Furthermore, P is a new unary predicate
which is interpreted in M so that the expansion N D .M;P.M// is a sufficiently
saturated model of the theory of lovely pairs of models of Th.M/ (see [3] for the
relevant definitions). We shall use j^

þ to denote þ-independence in the structure N .
It was proved in [5] that Th.N / is superrosy. A well-known consequence of this is
that j^

þ is an independence relation on N . We continue to use j^
acl to denote acl-

independence in the structure M . One might wonder whether weak one-basedness
of .M; j^

acl/ would imply weak one-basedness of .N; j^
þ /. This is proved in [4]

under an additional assumption (namely, their Assumption 5.8). In this section we
show that this additional assumption is not needed.

For the rest of this section we assume that .M; j^
acl/ is weakly one-based. Recall

from [4] that it is then also weakly locally modular. It is proved in [3] that then the
algebraic closure operator in N coincides with acl in M , and so j^

acl is also an
independence relation on N .
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In addition to the independence relations j^
þ on N and j^

acl on either M or N ,
we shall also want to use the independence relation j^

scl onN . The closure operator
scl is defined in [3] as follows. Given a 2 M and B � M , we have a 2 scl.B/ if
and only if a 2 acl.B [ P.M//. Then j^

scl is obtained from scl analogously to the
way that j^

acl is obtained from acl.
Let Na 2M n, and let B;C �M . It is proved in [3] that Na j^

þ
C
B if both Na j^

acl
C
B

and Na j^
scl
C
B . It is well known, and clear from the definition of j^

þ , that Na j^
acl
C
B

if Na j^
þ
C
B . So the relation j^

þ lies, in strength, somewhere between j^
acl
^ j^

scl

and j^
acl.

The following fact is an immediate consequence of the definition of the theory of
lovely pairs of models of Th.M/, together with the saturation assumption (see [3]).

Fact 4.1 Let a 2M and B �M . Suppose that a … acl.B/. Then tpM .a=B/ has
a realization in P.M/.

We now prove the main theorem of this section. There is some overlap between
the argument presented here and that used to obtain the corresponding result, [4,
Proposition 5.9] (where their Assumption 5.8 was used). We use the axioms of an
independence relation, as stated in Definition 1.1, and well-known consequences of
them freely and without specific reference.

Theorem 4.2 Suppose that .M; j^
acl/ is weakly one-based. Then .N; j^

þ / is
weakly one-based.

Proof Let Na 2 M n and B � M . Using the weak one-basedness of .M; j^
acl/,

let D0 � B be such that Na j^
acl
B
D0 and, for all Na0 ˆ tpM . Na=D0/, if Na j^

acl
D0
Na0, then

Na j^
acl
Na0
D0. Using Fact 4.1, let D ˆ tpM .D0=B Na/ be such that D � scl.B/. We

may assume Na D Na0 Na1, where Na0 is scl-independent over D and Na1 � scl.D Na0/.
Let Np 2 P.M/m be such that Na1 � acl.D Na0 Np/. Using the weak one-basedness
of .M; j^

acl/ again, let C 0 � D be such that Na Np j^
acl
D
C 0 and, for all Na0 Np0 ˆ

tpM . Na Np=C 0/, if Na Np j^
acl
C 0
Na0 Np0, then Na Np j^

acl
Na0 Np0

C 0. Using Fact 4.1 again, let
C ˆ tpM .C 0=D Na Np/ be such that C � scl.D/. Then Na j^

acl
B
C and, since

C � scl.B/, Na j^
scl
B
C . Therefore Na j^

þ
B
C .

Let Na0 ˆ tpN . Na=C/ be such that Na j^
þ
C
Na0. We may assume that Np was cho-

sen so that Na Np j^
þ
C
Na0. Let Np0 be such that Na0 Np0 ˆ tpN . Na Np=C/. We may assume

Na Np j^
þ
C
Na0 Np0. Then Na Np j^

acl
C
Na0 Np0, and so Na Np j^

acl
Na0 Np0

C . We also have Na j^
acl
C
Na0. We

then get Na j^
acl
D
Na0, and so also Na j^

acl
Na0
D and then Na j^

acl
Na0
C .

Let Na2 be a maximal subtuple of Na0 such that Na2 is scl-independent over Na0. Using
Na Np j^

acl
Na0 Np0

C we then get Na � scl. Na2 Na0/. So we have Na j^
scl
Na2 Na0

C . We also have
Na j^

acl
Na2 Na0

C . Therefore Na j^
þ
Na2 Na0

C . Since Na2 is a subtuple of Na0, we have Na2 j^
scl
;
C

and Na2 j^
acl
;
C . Therefore Na2 j^

þ
;
C . Using Na2 j^

þ
C
Na0 we then get Na2 j^

þ
;
C Na0 and

so Na2 j^
þ
Na0
C .

From Na j^
þ
Na2 Na0

C and Na2 j^
þ
Na0
C we get Na j^

þ
Na0
C . Therefore .N; j^

þ / is weakly
one-based.
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Appendix: Infinite-Dimensional Projective Geometries

Let F be an infinite division ring, and let V be an infinite-dimensional vector space
over F . We use Geom.V / to refer to the structure .G; .‘x 2 cl.y1; : : : ; yn/’/n�1/,
which is the geometry associated with the pregeometry .V; span/. It is a classical
result in projective geometry that F is definable in Geom.V / (see, e.g., Part 5 of the
notes Csikós [6]).

We aim to show that Th.Geom.V // is stable if and only if Th.F / is stable. To
that end, we consider the two-sorted structure .V; F /. We refer to the sort of V as
the vector sort and to the sort of F as the field sort. A natural choice of language L
for the structure .V; F / consists of the ring language on the field sort for the division
ring structure on F , the abelian group language on the vector sort for vector addition
on V , and a function from the Cartesian product of the field sort and the vector sort
to the vector sort for scalar multiplication on V . We shall use variables x; y; z for the
field sort and variables u; v;w for the vector sort. Clearly, Geom.V / is interpretable
in .V; F /.

We will expand the structure .V; F / in a natural way to prove a quantifier elim-
ination result for Th.V; F / which we can then apply to count the number of types.
As we have already said, we do not claim that the results of this section are original.
However, we feel that a presentation of them here might be useful. In addition it is
worth mentioning that the functions �i , which we are about to define, have been used
by Francoise Delon and Luis Pinto, in a similar way to how we use them, to obtain
quantifier elimination results in certain settings. Delon works with pairs of fields (see
Delon [7]), as does Pinto, who also works with vector spaces over certain fields.

We extend L as follows.

� For every formula '. Nx/ in the ring language, we add a predicate P'. Nx/ on the
field sort.
� For every n � 1, 1 � i � n, we add a new (n C 1)ary function symbol
�ni .u1; : : : ; un; v/ from the appropriate Cartesian product of the vector sort
to the field sort.

Call this language LF;�.
We make .V; F / into an LF;�-structure as follows.

� For every formula '. Nx/ in the ring language, we interpret P' as the solution
set of '. Nx/ in F .
� For every n � 1, 1 � i � n, and s1; : : : ; sn; r 2 V ,

.�ni /
.V;F /.s1; : : : ; sn; r/ D

8̂̂̂<̂
ˆ̂:
0 if s1; : : : ; sn are not linearly independent,
0 if s1; : : : ; sn; r are linearly independent,
ai if s1; : : : ; sn are linearly independent and

r D
Pn
iD1 aisi :

Let TF;� be the theory of .V; F / as an LF;�-structure. Note that TF;� is a
definitional expansion of the L-theory of .V; F /. In particular, every L-structure
.U;K/ with .U;K/ � .V; F / can be uniquely expanded to an LF;�-structure satis-
fying TF;�.

Theorem A.1 TF;� has quantifier elimination.
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Proof We shall use the well-known fact that a complete (first-order) theory T has
quantifier elimination if, wheneverM and N are !-saturated models of T , the col-
lection of finite partial isomorphisms betweenM andN has the back-and-forth prop-
erty.

Note first that because of the functions �ni , finitely generated substructures of a
model .U;K/ of TF;� consist exactly of pairs .S; A/ where either A is a finitely
generated subring of K and S D ¹0º or A is a finitely generated division subring
of K and S is a finite-dimensional A-subspace of U such that any A-linearly inde-
pendent subset of S is also K-linearly independent. (Note that if 0 ¤ s 2 U , then
a�1 D �11.as; s/ for any nonzero a 2 K, and if s1; : : : ; sn 2 S n ¹0º are not linearly
independent overK, then, after reordering if necessary, we may assume that for some
1 � m < n, s1; : : : ; sm are linearly independent over K and smC1 D

Pm
iD1 aisi for

some a1; : : : ; am 2 K not all zero. But then ai D .�ni /
.U;K/.s1; : : : ; sm; smC1/ 2 A,

and so s1; : : : ; sn are not linearly independent over A either.)
Now let .U;K/ and .W; J / be !-saturated models of TF;�, and let f W .S; A/!

.R;B/ be a finite partial isomorphism from .U;K/ to .W; J /. We may assume that
A is a division subring of K. Then we can find Na 2 An such that A is the division
subring of K generated by Na and Ns 2 Sm, such that S is the A-subspace of U
generated by Ns and Ns is linearly independent overK. We need to show that whenever
a 2 K n A or s 2 U n S , there is a finite partial isomorphism g extending f with
a 2 dom.g/ or s 2 dom.g/, respectively. (Similarly, we can then also extend f so
that its image contains any given element from .W; J /.)

First, let a 2 K be given. By Morleyization of the field sort and !-saturation, we
can find b 2 J such that Naa and f . Na/b have the same division ring type. LetA0 be the
division subring of K generated by Naa, let S 0 be the A0-submodule of U generated
by Ns, let B 0 be the division subring of J generated by f . Na/b, and let R0 be the B 0-
submodule of W generated by f .Ns/. Then .S 0; A0/ and .R0; B 0/ are obviously again
closed under all the functions �ni and are thus again (finitely generated) substructures
of .U;K/ and .W; J /, respectively, and f [¹.a; b/º extends to a partial isomorphism
g W .S 0; A0/! .R0; B 0/.

Now let s 2 U be given. There are two cases.

Case 1: s is K-linearly independent from S . Since W is infinite-dimensional
over J we can choose r 2 W J -linearly independent from R. Let S 0 be the
A-submodule of U generated by S [ ¹sº, and let R0 be the B-submodule of
W generated by R [ ¹rº. Then obviously, .S 0; A/ and .R0; B/ are closed
under all the functions �ni and thus are again (finitely generated) substruc-
tures of .U;K/ and .W; J /, respectively, and f [ ¹.s; r/º extends to a partial
isomorphism g from .S 0; A/ to .R0; B/.

Case 2: s is not K-linearly independent from S . Let ci D .�mi /
.U;K/.Ns; s/,

i D 1; : : : ; m. By Morleyization of the field sort and !-saturation of .W; J /,
there are d1; : : : ; dm 2 J such that Na; c1; : : : ; cm and f . Na/; d1; : : : ; dm
have the same division ring type. Let r D

Pm
iD1 dif .si /. Then obviously,

f [ ¹.s; r/º extends to a partial isomorphism between the substructure of
.U;K/ generated by .Nss; Na/ and the substructure of .W; J / generated by
.f .Ns/r; f . Na//. (Note that the substructure generated by .Nss; Na/ is exactly
.S 0; A0/ where A0 is the division subring generated by Na; c1; : : : ; cm and S 0
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is the A0-subspace of U generated by Nss, and similarly for the substructure
generated by .f .Ns/r; f . Na//.)

Proposition A.2 If Th.F / is stable (superstable, totally transcendental), then
Th.V; F / is stable (superstable, totally transcendental).

Proof Clearly it is enough to prove, for every infinite cardinal �, that TF;� is �-
stable if Th.F / is �-stable.

Let � be an infinite cardinal such that Th.F / is �-stable. Let .U;K/ be a model of
TF;� of cardinality � (i.e., both U and K have cardinality �). We count the number
of 1-types in each sort over .U;K/.

Let a be an element of the field sort of an elementary extension .U 0; K 0/ of
.U;K/. We may assume that a 2 K 0 n K. By Theorem A.1, the type of a over
.U;K/ is then already determined by the division ring type of a over K since all the
solutions of �ni .s1; : : : ; sn; r/ D x with s1; : : : ; sn; r 2 U lie already within K so
that the vector sort cannot contribute any new information about a. Thus, the number
of 1-types in the field sort is � by �-stability of Th.F /.

Now let s be an element of the vector sort of an elementary extension .U 0; K 0/ of
.U;K/. Again we may assume s … U . Then there are two cases.

Case 1: s is K 0-linearly independent from U . Then by Theorem A.1, the type
of s over .U;K/ is uniquely determined by this. So in this case, we have a
unique type.

Case 2: s is not K 0-linearly independent from U . Then there exist linearly
independent s1; : : : ; sn 2 U such that s is not linearly independent from
s1; : : : ; sn. Then again by Theorem A.1, it is easily seen that tp.s=.U;K// is
fully determined by this information (including the choice of s1; : : : ; sn) to-
gether with the division ring type of �n1.s1; : : : ; sn; s/; : : : ; �nn.s1; : : : ; sn; s/
over K, for which there are, by the assumption of �-stability of Th.F /, only
� many possibilities. Therefore, we count a total of @0��, where the first two
factors @0� correspond to the number of choices of finite linearly indepen-
dent tuples from U and the last � to the choice of the division ring type over
K of the coefficients in the linear combination.

Thus, we count a total of

� C @0�� C 1 D �

many 1-types in the vector space sort over .U;K/. (The first summand � counts the
realized types.)

This also shows that TF;� is superstable (totally transcendental) if Th.F / is su-
perstable (totally transcendental).

Proposition A.3 Th.Geom.V // is stable (superstable, totally transcendental) if
and only if Th.F / is stable (superstable, totally transcendental).

Proof The left-to-right direction follows immediately from definability of F in
Geom.V /. The right-to-left direction follows immediately from interpretability of
Geom.V / in .V; F / and Proposition A.2.
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