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Ehrenfeucht’s Lemma in Set Theory

Gunter Fuchs, Victoria Gitman, and Joel David Hamkins

Abstract Ehrenfeucht’s lemma asserts that whenever one element of a model
of Peano arithmetic is definable from another, they satisfy different types. We
consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The
original argument applies directly to the ordinal-definable elements of any model
of set theory, and, in particular, Ehrenfeucht’s lemma holds fully for models of set
theory satisfying V D HOD. We show that the lemma fails in the forcing exten-
sion of the universe by adding a Cohen real. We go on to formulate a scheme of
natural parametric generalizations of Ehrenfeucht’s lemma, namely, the princi-
ples of the form EL.A; P;Q/, which asserts that P -definability from A implies
Q-discernibility. We also consider various analogues of Ehrenfeucht’s lemma
obtained by using algebraicity in place of definability, where a set b is algebraic
in a if it is a member of a finite set definable from a. Ehrenfeucht’s lemma holds
for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and
ordinal-definable sets coincide. Using a similar analysis, we answer two open
questions posed earlier by the third author and C. Leahy, showing that (i) alge-
braicity and definability need not coincide in models of set theory and (ii) the
internal and external notions of being ordinal algebraic need not coincide.

1 Introduction

Ehrenfeucht’s lemma asserts that if an element b in a model M of Peano arithmetic
(PA) is definable from another distinct element a, then the types of a and b in M
must be different. This lemma first appeared in a short paper by Ehrenfeucht [2], who
used it to argue that if a model of PA is the Skolem closure of a single element a,
then a is the only element of its type; consequently, such models have no nontrivial
automorphisms. The lemma was independently obtained in [6]. Since that time,
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Ehrenfeucht’s lemma has become ubiquitous in the study of models of PA. In light
of the extensive transfer of model-theoretic techniques from models of PA to models
of set theory, we find it extremely natural to inquire whether Ehrenfeucht’s lemma
holds for models of set theory.

The initial answer is that Ehrenfeucht’s original argument succeeds directly in
models of V D HOD, and, more generally, it applies to the ordinal-definable ele-
ments of any model of set theory. Nevertheless, we prove that the lemma does not
hold in all models of ZFC, and it definitely fails in the forcing extension obtained by
adding a generic Cohen real.

Theorem 1.1

1. If a is ordinal-definable in a model of set theory M ˆ ZF and b is definable
from a, with b ¤ a, then a and b satisfy different types in M . Consequently,
Ehrenfeucht’s lemma holds fully in models of V D HOD.

2. Meanwhile, Ehrenfeucht’s lemma does not hold in all models of set the-
ory. Specifically, if M is any model of ZFC, then in the forcing extension
MŒc� to add a Cohen real c, there are interdefinable elements a ¤ b with
exactly the same type in MŒc�. Indeed, there are such elements a and b with
tpMŒc�.a=M/ D tpMŒc�.b=M/, meaning that a and b satisfy all the same
formulas even with parameters from the ground model M .

These two claims will be proved as Theorems 2.1 and 2.5, respectively. Generalizing
these observations, we shall introduce in Section 3 the parametric family of princi-
ples EL.A; P;Q/, which holds for a model of set theoryM if whenever a 2 A and b
is definable inM from a using parameters in P , with b ¤ a, then the types of a and
b overQ inM are different. So in short, EL.A; P;Q/ can be expressed by the slogan
that P -definability from A impliesQ-discernibility. It might be of interest in general
to also specify a set B that b has to belong to, but, for our present purposes, this is
not needed. Usually, the crucial case is that a and b come from the same collection,
because if they do not, then they can be distinguished for that very reason, at least for
the classes A that will be of interest to us.

These principles unify several natural variations of Ehrenfeucht’s lemma that one
finds in set theory. The principle EL.M;;;;/, for instance, expresses the original
Ehrenfeucht lemma itself, and we have just mentioned in the theorem above that
the principle EL.ODM ;;;;/ holds in every model of set theory, while the princi-
ple EL.M;;;OnM / fails in any model M obtained by forcing to add a Cohen real.
The principle EL.M;M;OnM / expresses in a model M of set theory that any two
distinct elements ofM can be distinguished by some formula with an ordinal param-
eter, which is the Leibniz–Mycielski axiom (see [4]). The principle EL.M;M;;/
holds for a model M if any two distinct elements of M have distinct types, which is
precisely the property of M being Leibnizian (see [3]).

Last, we shall explore in Section 4 the relationship between definability and alge-
braicity and also explore variations of Ehrenfeucht’s lemma which arise by using
algebraicity in place of definability. Specifically, as in [9], a set is algebraic in a
parameter if it belongs to a finite set definable from that parameter. We show that
Ehrenfeucht’s lemma holds on all ordinal-algebraic sets if and only if the ordinal-
algebraic sets and the ordinal-definable sets coincide (Theorem 4.10), and we also
settle several open questions that were asked in [9] by pointing out that there are
models of set theory in which there are algebraic sets that are not ordinal-definable
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(Theorem 4.6) and there are models of set theory in which there are objects that are
internally but not externally algebraic (Theorem 4.7). Finally, we shall also investi-
gate the algebraic versions of Ehrenfeucht’s lemma, the principles AELext.A; P;Q/

and AELint.A; P;Q/, which state that if b is (externally/internally) algebraic in a
using parameters from P , with b ¤ a, then the types of a and b in M over Q are
different—in short, P -algebraicity from A implies Q-discernibility.

2 The Classic Ehrenfeucht Lemma

Let us begin by proving Ehrenfeucht’s lemma for the ordinal-definable sets in any
model of set theory, using essentially Ehrenfeucht’s original argument.

Theorem 2.1 If b is definable from an ordinal-definable element a in a model of
set theory M ˆ ZF, with b ¤ a, then a and b have different types in M ,

tpM .a/ ¤ tpM .b/:

Proof Suppose that b is definable in M from an ordinal-definable element a in
M . It follows that b also is ordinal-definable, and there is a definable class function
f WM !M such that f .a/ D b (namely, the function defined by f .x/ D y if y is
the unique set such that '.x; y/, where '.a; b/ is a fixed formula defining b from a;
otherwise, y D ; if there is no such set). Let us assume that a < b in the definable
well-ordering of ODM ; the case b < a can be handled by an essentially identical
argument.1 Let G be the graph on M having as edges the pairs ¹x; f .x/º whenever
x; f .x/ 2 ODM and x < f .x/ with respect to the OD-order. In particular, there
is an edge between a and b in G. Note that G is loop-free, because it is graded by
the OD-order and every node has upward degree at most one, since the only node
above x that could be connected directly to x is f .x/. So G is a tree, and within
each connected component, we have the graph metric d.x; y/, which is the length of
the shortest path of edges in G connecting x to y.

Let c be the OD-least element in the connected component of a and b in G. Note
that c is definable from either a or b by this property. Since a and b are connected by
an edge, it follows that the distances d.a; c/ and d.b; c/ differ by precisely one. In
particular, the distance of a to the least member of its connected component is even,
just in case the distance of b to the least member of its connected component is odd,
and this is therefore a property that distinguishes the types of a and b in M .

Corollary 2.2 Ehrenfeucht’s lemma holds in every model of ZFC V D HOD.
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A similar argument applies whenever we define a lower-rank set from a higher-rank
set.

Theorem 2.3 If a set b is definable from a set a in a model of set theoryM ˆ ZF
and b has strictly lower rank than a, then a and b have different types in M ,

tpM .a/ ¤ tpM .b/:

Proof Assume that b is definable from a and has strictly lower rank than a in M .
As before, there is a definable function f W M ! M such that b D f .a/. Starting
from a, let us iteratively apply the function—producing a, f .a/, f .f .a//, and so
on—continuing so long as the ordinal rank of the result continues to drop at each
step. Since there is no infinite descending sequence of ordinals in M , this process
must stop after a finite number of steps in M . The number of steps required must be
either even or odd inM , and since b D f .a/ starts one step later than a, the number
will be even for a if and only if it is odd for b, and so the types of a and b must be
different.

Note that, in the previous theorem, the rank function could be replaced by any
other M -definable function. So if b is definable from a in a model M of ZF, and
M ˆ F.b/ 2 F.a/, for some function F which is M -definable without parameters,
then a and b are discernible. One example would be the cardinality function in a
model of ZFC.

Question 2.4 Does the conclusion of the previous theorem also go through in the
case that b has strictly higher rank than a?

Meanwhile, Ehrenfeucht’s lemma does fail in some models of set theory, and it nec-
essarily fails after forcing to add a generic Cohen real. Indeed, we shall prove that,
in such a forcing extension, there are interdefinable sets having the same type, even
when one allows arbitrary parameters from the ground model.

Theorem 2.5 If M is a model of ZFC and MŒc� is the forcing extension obtained
by adding an M -generic Cohen real c, then in MŒc� there are sets a ¤ b such that
a is definable from b and b is definable from a, defined moreover in each case by the
same formula, but the types of a and b in MŒc� are the same, even when one allows
arbitrary parameters from M . In other words,

tpMŒc�.a=M/ D tpMŒc�.b=M/:

In particular, if ZFC is consistent, then Ehrenfeucht’s lemma fails in some models of
ZFC.

Proof It is easy to see that the forcing to add a Cohen real is isomorphic to the
!-fold finite-support product P of this forcing, and since this will be more conve-
nient, we shall work instead with P. More precisely, conditions in P are finite func-
tions p W dom.p/! <!2, with dom.p/ � !, ordered in the natural way by enlarging
the domain and extending on each coordinate. Thus, p.n/ specifies finitely many bits
of the Cohen real to be added at coordinate n. Suppose thatG � P isM -generic, and
consider the forcing extension MŒG�. For each n < !, let gn D

S
¹p.n/ j p 2 Gº

be the corresponding Cohen real added on coordinate n, and let C D ¹gn j n < !º,
A D ¹g2n j n < !º, and B D ¹g2nC1 j n < !º. Finally, let

a D hC;Ai and b D hC;Bi:
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Clearly, inMŒG� we have A D C nB and B D C nA, and so a is definable from b,
and b is definable from a, using the same defining formula in each case.

We shall now show that a and b satisfy the same formulas in MŒG�, while allow-
ing arbitrary parameters fromM . Let PA, PB , and PC be the natural P-names for A, B ,
and C , respectively. Suppose thatMŒG� ˆ '.a; s/ for some s 2M , and fix a condi-
tion p 2 P such that p 
 '.h PC ; PAi; Ls/. In M , we construct an automorphism � of
P by swapping certain coordinates as follows. For each i in the support of p, which
is a finite set, there is by density a coordinate mi 2 !, with the opposite parity of i ,
such that p.i/ � gmi

and where the mi ’s are all distinct. Let � be an automorphism
of P that interchanges all the even and odd coordinates of the product, undertaken
in such a way so as also to swap each i in the support of p with the preselected
coordinatemi . Because the support of p is finite, we can find such an automorphism
� in M . It follows that H D �“G is M -generic for P and MŒG� D MŒH�. Our
careful choice of mi ensures specifically that p 2 H . And since � swaps the even
and odd coordinates altogether, we have PCH D C , PAH D B , and PBH D A. Since
p 
 '.h PC ; PAi; Ls/ and p 2 H , it now follows that MŒH� ˆ '.h PCH ; PAH i; LsH /,
which means that MŒH�, and hence MŒG�, satisfies '.hC;Bi; s/ and thus '.b; s/.
So we have shown that tpMŒG�.a=M/ D tpMŒG�.b=M/, as desired.

A similar argument is used in [4, Theorem 3.1] in order to show that the Leibniz–
Mycielski axiom can fail in a model of set theory; the new contribution here is
that we also make the counterexample sets a and b interdefinable. One interest-
ing consequence of this argument is thatMŒc� can have no ordinal-definable or even
M -definable choice function on the class of all pairs, for we have no definable way
to pick one element of ¹a; bº over the other by means of any property in MŒc� using
parameters from M . In particular, there can be no M -definable linear ordering of
the universe in MŒc�. A class forcing version of the argument, adding a Cohen set
at each regular cardinal, provides a model in which there is no definable linear order
of the universe at all, using any set parameters. (This argument is originally due to
Easton [1], as exposited in [5]. See also [8].)

Question 2.6 If Ehrenfeucht’s lemma holds in a model of set theoryM , then does
it follow that M ˆ V D HOD?

It was pointed out by the referee that the answer to this question is no if one under-
stands “model of set theory” as “model of ZF,” because Ehrenfeucht’s lemma may
hold in a model of ZF in which the axiom of choice fails. This is because if ZF is
consistent, then there is a model of ZF in which the Leibniz–Mycielski axiom LM
(saying that any two sets can be distinguished inside some V˛; see Definition 3.6)
holds, but the axiom of choice fails. This was shown by Solovay, and a proof is
exposited in [4, Theorem 3.3]. Note that the Leibniz–Mycielski axiom is first-order
expressible and equivalent to saying that any two distinct sets can be distinguished
using an ordinal parameter (by Theorem 3.7). But it was shown in [11] that every
consistent extension of ZF has a model in which every ordinal is definable. So there
is then a model M of ZF in which LM holds, the axiom of choice fails, and every
ordinal is definable. By LM, it follows that no two elements of M can have the
same type (because they can be distinguished by an ordinal, which is definable). So
Ehrenfeucht’s lemma holds inM vacuously, andM does not believe that V D HOD,
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because, otherwise, it would satisfy the axiom of choice. The situation with ZFC in
place of ZF is open.

3 A Family of Parametric Ehrenfeucht Principles

We would like to introduce a natural family of variations of Ehrenfeucht’s lemma by
allowing parameters in various ways into the definitions and the types. Let us begin
with the observation that the original parameter-free version of Ehrenfeucht’s lemma
is equivalent to a version allowing parameters, which might seem stronger at first
sight.
Observation 3.1 If Ehrenfeucht’s lemma holds in a model of set theoryM ˆ ZF,
then the following parametric version of it also holds: if b ¤ a is definable from a in
M using some parameter p, then the types of a and b over p in M are different.
Proof If b is definable in M from a with parameter p, then the pair hb; pi is
definable inM from the pair ha; pi, without parameters. Since Ehrenfeucht’s lemma
holds in M , the types of ha; pi and hb; pi in M must be different, and so there is a
formula ' for which '.ha; pi/ and '.hb; pi/ have different truth values in M . From
this it follows that the types of a and b over p in M are different.

More interesting generalizations arise when one does not insist that the parameter
used to distinguish a and b is the same as the parameter used to define b from a.
Definition 3.2 Let M ˆ ZF, and let A;P;Q � M . The principle EL.A; P;Q/
forM asserts that if a 2 A, a ¤ b, and b is definable inM from a, using parameters
from P , then there are a formula ' and parameters Ec 2 Q such that M ˆ '.a; Ec/,
but M ˆ :'.b; Ec/. So, in plain words, EL.A; P;Q/ says that P -definability from
A implies Q-discernibility. We shall write EL.M/ for EL.M;;;;/, which is the
original assertion of Ehrenfeucht’s lemma.
Expressed in this new terminology, what Theorem 2.1 shows is that EL.ODM ;;;;/

holds for every model of set theory M ˆ ZF. Similarly, Theorem 2.5 shows that
EL.MŒc�;;;M/ fails if MŒc� is the forcing extension of M ˆ ZFC by adding a
Cohen real c. For the rest of this section, we would like to explain how several other
principles that have been considered can be expressed in the form EL.A; P;Q/.

Note that the principle EL.A; P;Q/ gets stronger if A or P are enlarged or if Q
is shrunk.
Observation 3.3 Fix a model M ˆ ZF and a subset P �M . Then

if M satisfies EL.M/; then M satisfies EL.M;P; P /:

More generally, if A �M and A � P<! � A, then
if M satisfies EL.A;;;;/; then M satisfies EL.A; P; P /:

In fact, in each case, it follows that if b ¤ a 2 A is definable from a using parameters
Ep 2 P in M , then a and b can be distinguished in M using the same parameters Ep.
Proof The first part follows immediately from Observation 3.1. A repetition of the
proof shows the second part. If b ¤ a is definable in M from a 2 A, using the
parameters Ep 2 P , then hb; Epi is definable in M from ha; Epi without parameters.
Since ha; Epi 2 A, it follows from EL.A;;;;/ that the M -types of ha; Epi and hb; Epi
are different, and this implies as before that the M -types of a and b over Ep are
different.
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Theorem 3.4 Given a model M ˆ ZF, the principle EL.M;OnM ;OnM /, which
says that in M ordinal definability implies ordinal discernibility, is first-order
expressible. That is, there is a sentence ' such that, for anyM ˆ ZF,M ˆ ' if and
only if M satisfies EL.M;OnM ;OnM /.

Proof The sentence in question expresses the following: for any sets a ¤ b, if '
is a code for a formula and there are ordinals ˇ < ˛ such that ' defines b from a

in V˛ , using the parameter ˇ, then there is a code �.x; y/ for a formula and there
are ordinals 
 and ı with 
 < ı such that, in Vı , �.a; 
/ holds, but �.b; 
/ fails.
If EL.M;OnM ;OnM / holds for M , then the above sentence holds in M , by using
Lévy/Montague reflection and using the codes for the actual formulas that define b
from a and that distinguish a from b. Conversely, if the sentence holds inM , then the
key observation is that the codes ' and � are ordinals of M , even though they may
be nonstandard and thus may be used as additional parameters in the actual formulas
defining b from a and distinguishing them.

The same argument shows the following.

Corollary 3.5 If A is a definable class of M ˆ ZF, and B and C are definable
classes ofM containing OnM , then the principle EL.A;B; C / is first-order express-
ible over M , using the same parameters used to define A, B , and C , if any.

Next, let us explain that the Leibniz–Mycielski axiom can be expressed as an instance
of the principle EL.A; P;Q/.

Definition 3.6 (see [4]) A model of set theoryM satisfies the Leibniz–Mycielski
axiom LM if whenever a ¤ b are sets in M , then there is some ordinal ˛ above the
ranks of a and b in M and there is a formula ' for which VM

˛ ˆ '.a/ ^ :'.b/. In
other words, .T h.V˛; a/ ¤ T h.V˛; b//

M .

This property is first-order expressible.

Theorem 3.7 The Leibniz–Mycielski axiom for a model M ˆ ZF is equivalent
to the principle EL.M;M;OnM / for M , which says that inequality implies ordinal
discernibility.

Proof If the Leibniz–Mycielski axiom holds in M , then any two elements a ¤ b

have different types over the ordinals, precisely because VM
˛ ˆ '.a/ ^ :'.b/, and

so EL.M;M;OnM / holds. For the converse, which is also shown in [3, Lemma
2.1.1], if EL.M;M;OnM / holds, then what this amounts to is that distinct ele-
ments a ¤ b of M can be distinguished by formulas using ordinal parameters.
So M ˆ '.a; ˇ/ ^ :'.b; ˇ/ for some ordinal parameter ˇ. By reflection, there
is some ordinal 
 such that VM


 already sees this. Let ı be the Gödel code for h
; ˇi
in M , and note that ı is definable without parameters in VM

ıC1
, and so 
 and ˇ are

also definable there. So the facts that VM

 ˆ '.a; ˇ/ and VM


 ˆ :'.b; ˇ/ are now
expressible in VıC1 as properties distinguishing a and b without any parameters.

Enayat [4] points out that the Leibniz–Mycielski axiom implies that there is a defin-
able linear ordering of the universe, making use of various selection principles. Let
us briefly provide a direct argument here, explaining why LM implies that there is a
definable bijection of the universe with <On2, which is linearly ordered by the lexi-
cal order. It suffices by the class version of the Schröder–Cantor–Bernstein theorem
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to construct a definable injection of the universe into <On2. To do so, associate to
every object a the set Ta of pairs h'; ˛i for which V˛ ˆ '.a/, for ˛ up to the next
†2-correct ordinal ˇ above the rank of a. If a ¤ b, then under LM there is some
ordinal ˛ and formula ' for which V˛ ˆ '.a/^:'.b/, and this must happen before
the next †2-correct ordinal, which implies that Ta ¤ Tb . Using Gödel coding, we
may view each pair h'; ˛i as an ordinal, and thus Ta becomes a set of ordinals. So
we have a definable injection of the universe into <On2 and hence also a definable
bijection, as well as a definable linear ordering of the universe. Note that if there is
any definable linear ordering of the universe, then there is one that is also set-like,
simply by stratifying the universe by rank and using the linear order on each level in
turn.

Note that if M is a model of ZF C V D HOD, then any two elements of M
can be distinguished by an assertion with ordinal parameters (one of them is the ˛th
element in the OD order and the other is not, for some ˛), and so V D HOD implies
EL.M;M;OnM / or, equivalently, LM. Since ZF C V D HOD is equivalent to the
existence of the ordinal-definable well-ordering of the universe, we are left with the
following natural questions, also asked in [4].

Question 3.8 Which of the implications listed below are strict and which can be
reversed for a model M ˆ ZF or M ˆ ZFC?

Recall that Solovay constructed a model of ZF in which LM holds but the axiom
of choice fails, so the first implication in the diagram cannot be reversed if one just
assumes M ˆ ZF (see the discussion following Question 2.6). Enayat [4, Conjec-
ture 4.3.2] conjectures that neither of these implications reverse and makes several
other interesting conjectures concerning further variations and related principles.

Finally, let us consider the principle EL.M;M;;/ for a model M of ZF, which
asserts that any two distinct elements a ¤ b ofM have different types or that inequal-
ity implies discernibility. This property of a model is known as being Leibnizian
(see [3]), following Leibniz’s philosophical view on the identity of indiscernibles,
so that every object is uniquely determined by the collection of all its properties.
This may be viewed as a weak form of pointwise definability (see [10]): while point-
wise definability means that, for every object, there is a formula that defines it, being
Leibnizian can be viewed as saying that every element of M is defined by the infi-
nite conjunction of all the formulas in its type, that is, it is definable in the infinitary
language with countable conjunctions and disjunctions. So if M is pointwise defin-
able, then EL.M;M;;/ holds for M . This implication cannot be reversed, because
every pointwise definable model is countable, but Enayat [3] has proved that there
are uncountable Leibnizian models of set theory, which therefore cannot be point-
wise definable. There are also countable Leibnizian models of set theory that are
not pointwise definable: by [3, Theorem 2.1.(iii)], if T is a complete, consistent the-
ory extending ZF that contains LM, then T has 2@0 many nonisomorphic countable
Leibnizian models. Obviously, any two models M and N with the same theory that
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are pointwise definable have to be isomorphic (by the map sending the member ofM
defined by formula ' in M to the member of N defined by ' in N ), so that at most
one of these nonisomorphic countable Leibnizian models can be pointwise definable.

In summary, we have seen that several natural principles studied in set the-
ory can be expressed as instances of the generalized Ehrenfeucht lemma principle
EL.A; P;Q/.

4 Algebraicity versus Definability

We would like now to investigate variants of Ehrenfeucht’s lemma that arise by
replacing the notion of definability with that of algebraicity. The idea of using the
model-theoretic concept of algebraicity in set theory originates in [9]. If M ˆ ZF
and a; b 2M , then b is algebraic over a inM if there is a finite subsetP ofM which
is definable in M from a such that b 2 P . By looking at it closely, it becomes clear
that there are two ways of understanding the term “finite” here: Should M believe
that P is finite, or should P be finite, as viewed from the outside? The former inter-
pretation is what we call internal algebraicity; the latter is external algebraicity, and
henceforth we shall intend the external meaning unless stated otherwise.

There are two obvious ways in which one can modify Ehrenfeucht’s lemma by
replacing definability with algebraicity. First, one can ask, in a situation where
a; b 2M ˆ ZF and b ¤ a is algebraic in a (possibly allowing parameters), whether
it follows that the M -type of b is different from the M -type of a. Second, one can
ask simply whether the classic Ehrenfeucht’s lemma holds for models of set theory
not only for the ordinal-definable sets as we proved in Theorem 2.1, but also for
the ordinal-algebraic sets, the sets that are algebraic in an ordinal parameter. Let us
denote the collection of ordinal-algebraic sets of a model M by OA.M/. This latter
approach raises a fundamental question on the concept of algebraicity in set theory,
which was asked and left open in [9].

Question 4.1 (see [9]) If M is a model of set theory (ZF or ZFC), does it follow
that OA.M/ D ODM ? In other words, are the ordinal-algebraic sets the same as the
ordinal-definable sets?

It is interesting that this question remained unanswered, even though a closely related
result seems to suggest that OA should equal OD. In order to state it, let us denote
the collection of hereditarily ordinal-algebraic sets of M by HOA.M/.

Theorem 4.2 ([9, Theorem 1]) For any model M of ZF, the hereditarily ordinal-
algebraic sets are the same as the hereditarily ordinal-definable sets; or, in other
words,

HOA.M/ D HODM :

The proof of this result made use of the hereditary nature of the two classes involved,
however, and seems to give no information about the relationship between OA and
OD. It was also left open in [9] whether the parameter-free versions of the concepts
of definability and algebraicity may be different.

Question 4.3 (see [9]) Is there a model of ZF in which there is an element that is
algebraic (without parameters) but not definable (without parameters)?

We shall answer all these questions. Let us begin with an observation that shows that
(even external) algebraicity does not imply definability if parameters are allowed.
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Observation 4.4 If c is Cohen-generic over M ˆ ZFC, then there are sets a and
b in MŒc� such that b is externally algebraic over a in MŒc�, but b is not definable
from a, using ordinals, or any parameters from M .

Proof Let A, B , and C be the sets used in the proof of Theorem 2.5. Let
a D ¹A;Bº, and let b D A, say. Clearly, P D a is a finite set definable from a, and
b is in it. But the proof of Theorem 2.5 shows that h¹A;Bº; Ai and h¹A;Bº; Bi sat-
isfy the same formulas in MŒc� (with parameters from M ). This shows that neither
A nor B can be definable from ¹A;Bº in MŒc�, using ordinals, or any parameters
from M .

The question underlying any further investigation of whether EL.OA.M/;;;;/ for
every model M ˆ ZF holds is the fundamental question whether OA.M/ D ODM

necessarily holds. The following is a sufficient condition for when algebraicity and
definability coincide.

Observation 4.5 If M ˆ ZF has a definable linear ordering of its universe, then
external algebraicity and definability coincide for M . That is, a set b is externally
algebraic over a in M just in the case in which it is definable from a in M .

The fundamental question is answered by the following theorem. The content of
the theorem was known to Groszek and Laver [7], even though the concept of alge-
braicity in a set-theoretic context was not considered at the time, and the result was
rediscovered by the first author. In order to state it, let us denote Sacks forcing by S,
and let us write Œjxj� for the constructibility degree of a real x.

Theorem 4.6 IfM ˆ ZFCV D L and a; b are mutuallyM -generic Sacks reals,
then Œjaj� ¤ Œjbj� are the only minimal degrees of constructibility in MŒa; b�, and
furthermore, Œjaj� and Œjbj� have the same type in MŒa; b�, even allowing parameters
fromM . In particular, the set ¹Œjaj�; Œjbj�º is definable inMŒa; b� without parameters,
making both Œjaj� and Œjbj� algebraic (with no parameters) there, but neither Œjaj� nor
Œjbj� are definable in MŒa; b�, even allowing parameters from M . In particular, Œjaj�
and Œjbj� are (parameter-free) algebraic in MŒa; b�, but not ordinal-definable there.

Sketch of Proof Let us just write L for M . It is well known that a Sacks real is
minimal, so the degrees of a and b are minimal. A back-and-forth version of the
usual argument showing the minimality of Sacks reals can be used to show that if
c is a real in LŒa; b� and c is neither constructible from a nor from b, then both a
and b are constructible from c. This shows that the degrees of a and b are the only
minimal degrees in LŒa; b�.

It follows from a homogeneity property of Sacks forcing S that the degrees of
a and b have the same type in LŒa; b� (using ordinals or arbitrary parameters from
M ). Given Sacks conditions p0 and p1, there is an isomorphism between S�p0

and
S�p1

, where S�r denotes the restriction of the forcing to conditions that are at least
as strong as the Sacks condition r .

To prove the desired indiscernibility of the constructibility degrees of a and b,
let Pa and Pb be canonical names for the reals corresponding to the projection of
an .S � S/-generic filter on the first and second coordinates, respectively. Sup-
pose LŒa; b� ˆ '.Œjaj�; Ę/, and let hp; qi 2 G � H force this; that is, in L,
hp; qi 
 '.Œj Paj�; Ę/. Let f W S�p

�
 ! S�q be an isomorphism. Since G � H
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is .S � S/-generic over L and since hp; qi 2 G � H , it follows that, by letting
NG D G \ S�p and NH D H \ S�q , NG � NH is .S�p � S�q/-generic over L.

Let NI D f “ NG, NJ D f �1“ NH . Clearly, NI � NJ is .S�q � S�p/-generic over L.
Let I , J be the closures of NI and NJ in S under weakening. Clearly, I � J is an
.S � S/-generic filter for L. Let a0 and b0 be the Sacks reals corresponding to I and
J , respectively. Because f is an isomorphism, we have that LŒa; b� D LŒa0; b0�,
and because f 2 L, we have that Œjaj� D Œja0j� and Œjbj� D Œjb0j�. Now, note that
the canonical coordinate-switching automorphism of S � S, which maps hr; si to
hs; ri, induces a transformation of .S � S/-names, which takes Pa to Pb and Pb to Pa.
Since we had in L that hp; qi 
 '.Œj Paj�; Ę/, it follows by applying the coordinate-
switching isomorphism that hq; pi 
 '.Œj Pbj�; Ę/. Since hq; pi 2 I � J , it follows
that LŒa0; b0� ˆ '.Œjb0j�; Ę/. So, since LŒa0; b0� D LŒa; b� and Œb0� D Œb�, we have
that '.Œjbj�; Ę/ holds in LŒa; b�.

So it is possible that there are more ordinal-algebraic sets than there are ordinal-
definable ones, which makes the question of whether EL.OA.M/;;;;/ holds in a
model M ˆ ZF considerably more attractive. The methods of the previous theorem
enable us to settle another question from [9] fairly easily: Can there be a model of
set theory in which there are sets that are internally algebraic but not externally so?

Theorem 4.7 If ZFC is consistent, then there is a model in which there are sets
that are internally algebraic, but not externally algebraic, in fact not even externally
ordinal-algebraic.

Proof Let M be a model of ZFCCV D L, and let han j n < !i be a sequence of
Sacks reals overM , generic for the !-fold product of S, with finite support. Consider
the theory consisting of:

1. the ZFC axioms;
2. the sentence expressing “The set of minimal constructibility degrees is

finite”;
3. for each natural number n, the sentence asserting that there are at least n

minimal degrees:

9v09v1 � � � 9vn�1

� ^
i<j <n

.vi ¤ vj / ^
^
i<n

“vi is a minimal degree”
�
I

4. for every formula  with two free variables, the sentence asserting that if one
minimal degree satisfies a formula in the parameter ˛, then every minimal
degree satisfies that formula in the parameter ˛:

8˛ 2 On8x
��
x is a minimal degree ^  .x; ˛/

�
�! 8y

�
y is a minimal degree �!  .y; ˛/

��
:

By using compactness, it is easy to see that this theory is consistent. Given a finite
subtheory, one simply has to see what is the largest n such that a sentence of type 3
occurs in it. The methods of Theorem 4.6 show that MŒa0; : : : ; an�1� can serve as a
model for that subtheory. In a model of that theory, internally, each minimal degree
will be algebraic, since such a model will think that the set of minimal degrees is
finite. Note that no nonempty proper subset of the set of all minimal degrees will be
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ordinal-definable in such a model, by the axioms in item 4. So no minimal degree
will be externally ordinal-algebraic, since the set of all minimal degrees in that model
is externally infinite.

Let us now formally extend the family of Ehrenfeucht principles, introduced in Sec-
tion 3, to the context of algebraicity. Since the concepts of internal and external
algebraicity may differ, we distinguish between them in the formulation of the prin-
ciples.

Definition 4.8 Let M ˆ ZF. The external algebraic Ehrenfeucht’s lemma for
M , the principle AELext, says that if a ¤ b are elements of M and b is externally
algebraic over a in M , then tpM .a/ ¤ tpM .b/. The internal algebraic Ehrenfeucht’s
lemma for M , the principle AELint, gives the same conclusion when b is internally
algebraic over a in M . More generally, as before, the principles AELext.A; P;Q/

and AELint.A; P;Q/ are the corresponding assertions, whereA is the set of elements
a for which the principle is supposed to hold; P is the set of additional parameters
allowed in the algebraic definition of b from a; andQ is the set of parameters allowed
in order to distinguish the types of a and b.

So the slogan explaining AELext.A; P;Q/ or AELint.A; P;Q/ is that (external or
internal) P -algebraicity from A implies Q-discernibility.

Clearly, AELint.M;A;B;C / H) AELext.M;A;B; C /, since external algebraic-
ity implies internal algebraicity. It will turn out that, in many cases of interest, the
algebraic versions of Ehrenfeucht’s lemma are not stronger than the original form.

Lemma 4.9 For any M ˆ ZF, the principle AELext.ODM ;;;;/ for M holds.

Proof Let a 2 ODM , and let b ¤ a be externally algebraic over a in M . So let
P be a finite set definable over M from a, with b 2 P . Since a is ODM , we may
assume that b is also ODM , or else the formula “x 2 OD” distinguishes a from
b over M , and we are done. But if b is ODM and externally algebraic in a, then
for some natural number n, b is the nth element of P \ ODM , in the enumeration
according to the well-ordering of ODM . Since n is an actual natural number, it is
definable, and so, b is definable from a, not only algebraic in a. But then, it follows
from Theorem 2.1 that the types of a and b over M differ.

The following theorem answers, among others, our initial question of whether Ehren-
feucht’s lemma holds not only on ODM , but also on OA.M/, for a model M ˆ ZF.
It turns out that this is true if and only if ODM

D OA.M/.

Theorem 4.10 For any model M ˆ ZF, the following are equivalent.
1. OAext.M/ D ODM .
2. AELext.OAext.M/;;;;/. That is,

algebraicity from ordinal-algebraic sets implies discernibility.
3. AELext.OAext.M/;;;OnM /. That is,

algebraicity from ordinal-algebraic sets implies ordinal discernibility.
4. EL.OAext.M/;;;;/. That is,

definability from ordinal-algebraic sets implies discernibility.
5. EL.OAext.M/;;;OnM /. That is,

definability from ordinal-algebraic sets implies ordinal discernibility.
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Proof The following implications are very easy to see. Specifically, 1 H) 2
follows from Lemma 4.9. Statements 2 H) 4 and 3 H) 5 are trivial, because if b is
definable from a, then it is also algebraic in a. Statements 2 H) 3 and 4 H) 5 are
clear, because if a and b can be distinguished without using parameters, then they
can also be distinguished using parameters.

The reader is invited to draw a diagram of the implications proven so far. It will
become clear that it suffices to prove the following substantial implication.

To see that 5 H) 1, suppose a is externally ordinal-algebraic in M . Let P be
a finite subset of M which is ordinal-definable in M , and let a 2 P . Let Q be the
set of all linear orderings of the elements of P , that is, the set of all permutations
of P . Clearly, Q is ODM and finite. Moreover, each linear order is definable from
any other one. Fix one such linear ordering of P , and call it l . Since there are
only finitely many such linear orderings, l is externally ordinal-algebraic in M . By
EL.OAext.M/;;;OnM / for M , for any linear ordering l 0 ¤ l of P , there are a for-
mula 'l 0.x; y/ and an ordinal ˇl 0 2 OnM such that M ˆ 'l 0.l; ˇl 0/ ^ :'l 0.l 0; ˇl 0/.
So l is the unique element x of Q that satisfies

V
l 02Qn¹lº 'l 0.x; ˇl 0/ in M . So l

is ordinal-definable in M . But then every element of P is the nth element of P in
the enumeration l , for some n. So every element of P is ODM . The converse is
trivial; that is, every ordinal-definable member of M is clearly externally ordinal-
algebraic.

Let us see what can be said about the internally algebraic versions. Of course, the
internal and external versions of algebraicity only differ, if at all, in an !-nonstandard
model.

Lemma 4.11 For any model M ˆ ZFC, the following are equivalent.
1. OAint.M/ D ODM .
2. AELint.OAint.M/;;;OnM /. That is,

internal algebraicity from internally ordinal-algebraic sets implies ordinal
discernibility.

3. EL.OAint.M/;;;OnM /. That is,
definability from internally ordinal-algebraic sets implies ordinal discernibil-
ity.

Proof First, note that statement 1 implies that OAint.M/ D OAext.M/ D ODM ,
since ODM

� OAext.M/ � OAint.M/.
For 1 H) 2, suppose a; b 2 M , b ¤ a, a 2 OAint.M/, and b is internally

algebraic over a in M . By statement 1, a 2 ODM . So we may assume that b is also
ODM , as otherwise the formula “x 2 OD” distinguishes the types of a and b. But
then, of course, a and b can be distinguished, using ordinals, since both are definable
from ordinals.

The proof of 2 H) 3 is trivial, since if b is definable from a, then b is also
internally algebraic in a.

For 3 H) 1, suppose a 2 M is internally ordinal-algebraic. Let a 2 P , with
P M -finite, P 2 ODM . We have to show that a is ordinal-definable in M . As
before and working inside M , let Q be the set of linear orderings of P . Clearly, Q
is M -finite and ODM , since P is. Fix one particular linear ordering l 2 Q (so l
is internally ordinal-algebraic). Let us fix the number of elements of P , say, n (a
possibly nonstandard number in M ). For any l 0 2 Q, different from l , there is a
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permutation �l 0 of the first n natural numbers such that l 0 is the result of applying �l 0

to l . Of course, �l 0 can be viewed as a (nonstandard) number of M . Now, note that
the pair h�l 0 ; l 0i is definable from the pair h�l 0 ; li. So by EL.OAint.M/;;;OnM /

for M , there is a formula 'l 0 such that, in M , 'l 0.�l 0 ; l/ holds but 'l 0.�l 0 ; l 0/ fails.
By Levy reflection, this can be seen locally in M , and it follows that, for every
l 0 2 Q, l 0 ¤ l , there are an M -ordinal ˛l 0 and an M -formula  l 0 such that in
M , for every l 0 2 Q with l 0 ¤ l , V˛l0 ˆ  l 0.�l 0 ; l/ ^ : l 0.�l 0 ; l 0/. In fact,
the function l 0 7! h�l 0 ;  l 0 ; ˛l 0i can be arranged to belong to M . In M , let us
enumerate ¹h�l 0 ;  l 0 ; ˛l 0i j l 0 2 Q n ¹lºº as ¹h�r ;  r ; ˛ri j r < pº, for some
(possibly nonstandard) natural number p. Consider the M -formula^

i<p

“V˛i
ˆ  i .�i ; x/”

in the parameter c WD hh�0;  0; ˛0i; : : : ; h�p�1;  p�1; ˛p�1ii. Since the whole
parameter c can be coded by a single ordinal � in M , that formula can be expressed
as �.�; x/, for an actual external formula �. It follows then that l is the unique
member of Q such that M ˆ �.�; l/. Since Q was ODM , it follows that l is ODM .
But then, a is the sth element ofQ according to the enumeration ofQ by l , for some
(possibly nonstandard) number s. So a is ordinal-definable in M .

Question 4.12 If ODM
D OAint.M/, does it follow that AELint.OAint.M/;;;;/

holds for M ?

Definition 4.13 Let M ˆ ZF. We define that D.M/ is the collection of a 2 M
that are definable over M without parameters and that Aext.M/ is the collection
of a 2 M that are externally algebraic in M , without parameters. The collection
Aint.M/ is defined similarly.

The same proof shows the following parameter-free version of the previous theorem.

Theorem 4.14 For any model M ˆ ZF, the following are equivalent.
1. Aext.M/ D D.M/. That is, algebraicity is the same as definability.
2. AELext.Aext.M/;;;;/. That is, algebraicity in an algebraic set implies dis-

cernibility.
3. EL.Aext.M/;;;;/. That is, definability from an algebraic set implies dis-

cernibility.

Note

1. Namely, when b < a one should define the graph to include edges only when f .x/ < x
and then argue similarly. Alternatively, the case b < a can also be handled more easily
as in Theorem 2.3 by simply counting the number of times one can iterate f before the
OD-order stops dropping, and noting that this will be even for a just in the case in which
it is odd for b. The case when b and a are ordinals was also observed in [3, Lemma
2.1.3], and the argument in that case is basically the same.
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