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On the Status of Reflection and Conservativity in
Replacement Theories of Truth

Jeffrey R. Schatz

Abstract This article examines Kevin Scharp’s formal solution to the alethic
paradoxes, ADT, which stands for ascending and descending truth. One of the
main supposed benefits of ADT over its competitors is that it alone can validate
the uses of truth concepts in theoretical contexts, such as truth-theoretic seman-
tics. The appendixes contain a new consistency proof for ADT, and additionally
show that it is conservative. As a result of its conservativity, the article argues
that ADT faces a problem in accounting for certain mathematical uses of truth.
Thus, Scharp’s theory needs to be amended in order to fulfill its aim of replicat-
ing all substantive uses of truth.

1 Introduction

Work on the philosophy of truth in the analytic tradition has often centered on the
analysis and solution of the alethic paradoxes, especially the liar paradox. A defining
feature of the contemporary literature on the liar paradox is the ubiquity of revenge
phenomena, understood as the tendency for any proposed solution to the liar paradox
to generate further paradoxes. As a result, a successful theory of truth must not only
solve the liar paradox, but also explain the tendency of further revenge paradoxes to
arise in any such theory.

One recent approach to explaining the prevalence of revenge paradoxes is to pro-
pose that truth is an inherently problematic concept. In particular, inconsistency
theories of truth argue that the constitutive rules governing the use of the concept of
truth force an agent to endorse inconsistent claims. As a result, these views claim that
revenge paradoxes naturally arise from any solution to the paradoxes that retains each
of the meaning-constitutive rules of truth. While some inconsistency theorists, such
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as Matti Eklund and Kirk Ludwig, argue that the inconsistent concept of truth can
nonetheless be fruitfully applied in theoretical contexts, other inconsistency theorists
argue that the concept of truth must be rejected from any serious semantic theory.1
This latter approach gives rise to replacement theories of truth, which argue that the
truth predicate must be replaced by some new, consistent concepts.

The most prominent example of a replacement theory of truth in the literature is
found in Scharp’s Replacing Truth, which presents a comprehensive theory of truth,
involving a formal axiomatization, an explanation of the cause of the alethic para-
doxes, and a conception of the nature of truth. For this reason, this article will focus
on Scharp’s theory as a paradigmatic example of a replacement theory of truth.2 The
theory centers on Scharp’s claim that due to the inconsistency of its constitutive prin-
ciples the truth predicate must, for certain theoretical purposes, be replaced by two
new concepts: ascending and descending truth (the theory of these two concepts is
henceforth abbreviated ADT). Scharp argues that these two concepts are uniquely
able to avoid the alethic paradoxes, retain classical logic, refrain from “monster-
barring,” and do not require a substantial revision of the theoretical uses of truth. As
no other theory of truth can achieve these goals, Scharp argues that ADT provides
the best response to the alethic paradoxes.

In this article, I will argue that while ADT is a consistent theory of truth, it fails
to live up to all of Scharp’s criteria of a successful solution. Specifically, it cannot
validate certain applications of truth in mathematical practice. Such applications can
be used to argue for the consistency of a formal mathematical theory, something that
cannot be proven in the theory itself due to incompleteness. In Appendix B of this
paper I show that ADT is conservative, and as such cannot possibly lead to such
results. This proof relies on a model construction that is a natural modification of the
construction of the minimal model of ADT presented in Appendix A. In particular,
here, as often is the case, we prove that one theory is conservative over another by
showing that any model of the latter can be expanded to a model of the former.
Furthermore, I then show that ADT cannot be supplemented with genuine reflection
principles. Then I examine the traditional arguments for why the formulation of such
reflection principles are necessary for a formal theory of truth, finding that they hold
even in the setting of a replacement theory of truth.

In so doing, this article serves to connect the literature on conservativity and
reflection principles with the literature on inconsistency approaches to the alethic
paradoxes.3 The conservativity debate centers around whether a minimal or light
concept of truth can and should go beyond the proof-theoretic strength of the origi-
nal theory. A virtue of inconsistency approaches to the alethic paradoxes is that they
can typically explain an increase in the strength of a theory arising from the addition
of a truth predicate.4 As a replacement version of an inconsistency approach, how-
ever, ADT does not even permit such an increase in proof-theoretic strength. This
article therefore serves as a preliminary exploration of the options for replacement
theories in light of this issue.

2 The Theory of Ascending and Descending Truth

Scharp’s theory marks a stark distinction between uses of truth in everyday and theo-
retical contexts (see [13, p. 19]). While truth is used as a device of endorsement and
rejection in everyday conversation, these uses of truth rarely generate paradoxes, and,
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even when they do so, the paradoxes pose little risk to one’s purposes and projects. In
contrast, the paradoxes can pose far greater problems when they arise in theoretical
contexts where one employs truth in systematic investigations of meaning and rea-
soning (see [13, p. 1]). Scharp suggests that, as an inconsistent concept, truth should
be replaced specifically for these theoretical purposes with a new concept: descend-
ing truth. In this article, I will focus solely on Scharp’s axiomatization of descending
truth.

The property of semantic release—the ability to infer ' from D.'/—is constitu-
tive of descending truth, as this property enables descending truth to function as a
device of endorsement. Beyond semantic release, descending truth is wholly charac-
terized by seven axioms (the theory ADT):5

Axiom D1: D.p'q/ ! '; if ' is an LŒD�-sentence
Axiom D2: D.p:'q/ ! :D.p'q/
Axiom D3: D.p' ^  q/ ! .D.p'q/ ^D.p q//
Axiom D4: ŒD.p'q/ _D.p q/� ! D.p' _  q/
Axiom D5: D.p'q/; if ' is a logical truth
Axiom D6: D.p'q/; if ' is a theorem of PA with the induction schema for the

language of PA supplemented with a D predicate6

Axiom D7: D.p'q/; if ' is an instance of D1–D6

Throughout this article, an LŒD�-sentence is defined as any sentence, understood
in the typical way, in the language of Peano arithmetic with an additional descend-
ing truth predicate D. Additionally, a logical truth will be understood as meaning
that a formula has a deduction in first-order logic. We will understand p'q to be
the standard Gödel numbering for the formula ', though to ease readability we will
sometimes drop this notation when convenient. We note that ADT is in fact a consis-
tent theory, relative to the consistency of Peano arithmetic augmented with a single
predicate D.7 (For a consistency proof, which additionally identifies the minimal
!-model of ADT, see Appendix A.)

Given these axioms, Scharp also defines two further concepts. Ascending truth
is defined for all sentences ' as :D.:'/; we will abbreviate that ' is ascending
true as A.'/ (see [13, p. 152]). Semantic capture—the ability to infer A.'/ from
'—is constitutive of ascending truth’s meaning. Semantic capture enables ascending
truth to serve as a device of rejection, as :' follows from :A.'/ (see [13, p. 149]).
Further, safety is defined for all sentences ' as A.'/ ! D.'/. If some sentence ' is
safe, then descending truth and ascending truth can be replaced by the naive concept
of truth without fear of paradox (see [13, p. 153]).

Scharp argues that these principles are able to serve as a satisfactory replace-
ment for the inconsistent natural language truth predicate. First of all, descending
truth validates the rule (T-Out) (T .'/ ! ') while ascending truth validates (T-In)
(' ! T .'/). As these rules are at least some of the constitutive principles determin-
ing the meaning of truth, any replacement for truth must be able to validate them in
some form: “the truth predicates play several important roles in our linguistic prac-
tices and these roles depend on the truth predicates obeying (T-In) and (T-Out)” [13,
p. 63].8 Furthermore, Scharp claims that ADT, alone among possible solutions to the
alethic paradoxes, is able to validate all of the established theoretical uses of truth.
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As a result, ADT fundamentally gets the data right regarding the natural language
uses of the concept of “truth.”

Scharp pays particularly close attention to the uses of truth in linguistics. Scharp
rejects consistency theories of truth because such theories do not enable truth-
theoretic semantics, a cornerstone of contemporary semantics: “Unless truth is
treated as an inconsistent concept, we have no hope for a truth-conditional semantics
for natural language” [13, p. 121]. For Scharp, to question such successful uses of
truth by various branches of science is tantamount to a dereliction of one’s duty
as a philosopher. Philosophy serves to generate conceptual schemes acceptable for
theoretical usage, but not to reject these uses for purely philosophical reasons. One’s
philosophical account of truth must follow one’s prior uses of the truth predicate,
and not the other way around: “If one’s favored view of truth : : : conflicts with the
sciences, then it is the philosophical view that should go” [13, p. 123].

3 The Problem of Conservativity in ADT

Scharp’s strong commitment to validating theoretical uses of the truth predicate
poses a significant challenge for ADT in relation to the problem of conservative-
ness. In [16], Shapiro raises the question of whether a theory of truth should be
conservative, that is, whether the extension of a theory in some original language
to a language able to express a truth predicate should be a conservative extension
of the original theory. Shapiro [16, p. 499] argues that a theory of truth, at least
when supplemented by mathematical induction for predicates in the language of the
truth predicate, should be nonconservative, as such an expanded induction schema
can be used to inductively prove the consistency of the base mathematical theory.
As a result of Gödel’s second incompleteness theorem, this fact could not be proved
in the original theory, provided that it was in fact consistent. Therefore, if a theory
of truth is able to prove such a consistency statement, then it must be nonconser-
vative. As Shapiro holds that an expanded induction schema is necessary for any
serious candidate for a formal explication of truth, he thus concludes that any sat-
isfactory candidate for a formal theory of truth must be nonconservative (see [16,
p. 500]).

Let us spell a particular mathematical use of truth out further: arguing for the
consistency of ZFC. By noting both the truth of the axioms of ZFC and that logi-
cally valid inferences preserve truth, any arbitrary consequence of these axioms can
be endorsed. Due to the generality of this procedure, one can conclude that any
consequence must be true, and therefore that ZFC is consistent. Such argumenta-
tion has been endorsed by a wide spectrum of philosophers of mathematics, often
in response to the second incompleteness theorem. Despite the independence of any
strong mathematical theory’s Gödel sentence or consistency statement, such reason-
ing supposedly establishes the possibility of inferring these claims from the mere
acceptance of the strong theory itself.9 Due to the prevalence of such truth-based
arguments in the literature on the second incompleteness theorem, there is prima
facie reason to believe that these uses of truth in mathematics are well established in
a similar manner as truth-theoretic semantics is in linguistics.

As a result, the uses of truth predicates in mathematical argumentation seem as
established as the linguistic uses which Scharp argues we cannot reject. Yet, this pos-
sibility poses a nontrivial challenge for Scharp’s system, as it can be demonstrated
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that ADT is a conservative extension of certain strong mathematical theories, such
as ZFC (see Appendix B). It follows that the addition of Scharp’s replacement con-
cepts to some mathematical theories does not permit the proof of new results in the
language of ZFC. As such results, including the Gödel sentence of ZFC and the state-
ment of the consistency of ZFC, are the immediate consequences of the use of truth
in mathematical reasoning, ADT seemingly cannot capture this use of truth. This
conclusion would imply that Scharp is forced to be revisionary toward certain ele-
ments of mathematical practice in a parallel way to how alternative theories of truth
require revisions of linguistic practice. Scharp explicitly requires that any response
to the alethic paradoxes be able to capture all of the accepted theoretical uses of
truth. Yet, if one accepts the uses of truth in arguing for independent statements
of strong mathematical theories, then there is a seemingly substantive mathemati-
cal use of truth that escapes ADT. Thus, his approach would fail to meet the strong
requirements that he himself sets forth.

There are two defenses against this challenge for Scharp’s theory. The first defense
would claim that, despite the conservativity of ADT, the theory can nonetheless
somehow capture the mathematical uses of truth. Such a response would dissolve
the above challenge, showing that the essential mathematical uses of truth are in fact
separate from the conservativity issue. The alternative defense would be to recognize
the failure of ADT to permit the supposed uses of the concept of truth in mathemat-
ics, but claim that the traditional arguments for the importance of such uses tacitly
assume that a theory is seeking to retain the very alethic concept which Scharp seeks
to replace. As a result, the lack of reflection principles in ADT would fail to represent
a serious challenge for a replacement theory of truth. We will consider the merits of
these defenses in the following two sections.

4 Reflection Principles and Mathematical Uses of Truth

In considering important features of the uses of truth in mathematical reasoning, we
will focus on the case of proving the consistency of ZFC. Here we seek to connect the
notions of provability in a certain formal system with assertability or mathematical
truth: “There is also the intuitive principle that if a proposition or sentence is proven,
then it is true” [13, p. 205]. It is often claimed that the intuitive notion of proof
requires the assumption of such a principle to justify the use of proofs. Otherwise,
one would have no reason to believe that a proof would provide support for derived
conclusions. Any theory of truth that was capable of replicating this reasoning would
need to have a counterpart for these features.

Such an inferential role of semantic reasoning can be formalized through a formal
reflection principle. A reflection principle is a proposition in a mathematical lan-
guage that in some manner internalizes the claim that a certain mathematical theory
is consistent. When a mathematical theory is supplemented with a truth predicate,
these principles often take the form “For all ', if ' is proven in S , then ' is true”
for the relevant theory S .10 As a result of the connections between reflection princi-
ples and the consistency of a theory, incompleteness shows that we cannot include
a theory’s own reflection principle in it under pain of a contradiction: “a reflection
principle . . . states something about a formal theory that cannot be captured by the
formal theory on pain of contradiction” [13, p. 118]. In particular, the reflection
principle instance “PrvZFC.0 D 1/ ! T .0 D 1/” together with “:T .0 D 1/” entails
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“:PrvZFC.0 D 1/.” Provided that the base theory ZFC is consistent, and therefore
does not prove every statement, “:PrvZFC.0 D 1/” can be seen as a consistency
statement by expressing that there is in fact some particular statement that ZFC fails
to prove.

It is important to note that the mere expressibility of a reflection principle does not
by itself entail the nonconservativity of a theory of truth. In the case of an individual
proposition, the reflection principle merely entails that some provable proposition is
true. By itself, such an entailment does not imply anything in the language of the base
mathematical theory that was not implied by the mathematical theory itself. Further-
more, the proof of the “:PrvZFC.0 D 1/” through a reflection principle employs an
auxiliary hypothesis—namely, that the theory can derive the falsity of some contra-
diction, such as “:T .0 D 1/.”11 As this further hypothesis may not be derivable in
a formal theory of truth, such instances of reflection principles can be independent
of the question of conservativeness. As a result, merely having expressible reflection
principles in ADT need not conflict with the conservativity of the theory.

Due to the close connections between reflection principles and the inferential uses
of truth in mathematical arguments, the advocate of ADT could argue that the theory
can capture these mathematical uses of truth if one could derive reflection principles
in the theory. Such an argument would be in keeping with the first possible response
to the challenge of the conservativity of ADT. For a theory that retains the concept
of truth, there is only one option for a reflection principle, but for a replacement
theorist like Scharp, there are multiple options for formulating a reflection principle.
As Scharp replaces truth with two distinct concepts, there is a possibility of two
reflection principles, Reflection-D and Reflection-A:12

Reflection-D: If a sentence is proven, then it is descending true.
Reflection-A: If a sentence is proven, then it is ascending true.

Of these two possibilities, the formulation Reflection-D is certainly able to fulfill
the role of a reflection principle. Since ADT entails “:D.0 D 1/,” Reflection-D
can be used to derive a formal consistency statement for strong mathematical theo-
ries like ZFC. Thus, if Reflection-D were a consequence of ADT, then ADT would
succeed in validating these inferences, conservativity notwithstanding. Nonetheless,
Scharp notes that Reflection-D is inconsistent with ADT (see [13, p. 205]). Con-
sider the descending liar �, which states that � is not descending true. We note that
ADT proves that � is not descending true. As D.�/ ! �, if � were descending
true, then it would follow that �. But this is equivalent to :D.�/, generating a con-
tradiction. Thus, we can derive :D.�/. As this is equivalent to the content of �,
ADT proves �. Thus, Reflection-D would entail that � was descending true, leading
to it being both descending true and not descending true, a clear contradiction. As
a result, Reflection-D cannot successfully fulfill the role of a reflection principle in
ADT.

On the other hand, Reflection-A is consistent with ADT, since if ADT proves ',
then, by the constitutive principle of ascending truth, ' is ascending true on any
model of ADT. Scharp takes this as providing a conceptual explication of proof in
ADT: “We should use Reflection-A as our conceptual connection between proof and
the replacement concepts” [13, p. 205]. Additionally, Reflection-A has the syntactic
form typical of a reflection principle. As a result, one might expect Reflection-A
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to function as the equivalent of a reflection principle for ADT. Nonetheless, this is
not the case. Reflection-A can only be used to derive conclusions of the form that
' is ascending true, which provides neither an endorsement nor a rejection of '.
As statements of the form A.'/ can entail neither ' nor its negation, Reflection-
A wholly fails to be useful in permitting any justification or knowledge-generating
inferences.13 Thus, Reflection-A cannot be used in the inferences characteristic of
a genuine reflection principle. I posit that a replacement for some principle must
be capable of fulfilling the original principle’s important inferential roles, yet the
replacement reflection principle cannot do so. For this reason, Scharp seems mis-
taken to ascribe such significance to Reflection-A.

It may be instructive to identify precisely where the standard inductive proof
through reflection principles to Con(PA) fails when ascending truth is used in place
of truth in formulating the reflection principles.14 The standard proof begins by
claiming that a formal theory of truth for a base theory S proves that all axioms
of S are true. The standard proof then claims that logically valid inferences are truth
preserving; that is, if the premises of a valid inference are true, then the conclusion
of the inference must also be true. It is at this step, however, that the argument fails
when truth is replaced with ascending truth. Scharp notes that, for both ascending
and descending truth, “one should not accept that valid arguments are necessarily
truth-preserving” [13, p. 151]. As a result, a crucial step in the argument fails, and so
the standard formal proof through reflection principles fails to entail the consistency
of PA when truth is replaced with ascending truth.

Thus, there are two candidates for a reflection principle for ADT.15 The first,
Reflection-D, would function as a genuine reflection principle, but is unable to con-
sistently be added to ADT. The second, Reflection-A, while compatible with ADT,
cannot actually be used as a reflection principle. Thus, neither of these two options
are up to the task of enabling the mathematical inferences associated with naive
semantic reasoning. The question arises of whether there is some other principle
that could be both consistently added to ADT and be powerful enough to fulfill the
role of a reflection principle. This prospect seems dim, as it is unclear both of what
syntactic form it could be and how it could be strong enough to lead to nonconser-
vative inferences. Due to the close connection between reflection principles and the
mathematical uses of truth, as well as the established conservativity of the theory, it
therefore seems that ADT cannot in fact capture these uses of truth. Thus, the first
potential response to our challenge regarding the conservativity of ADT seems to
fail.

5 Current Criticisms of Reflection Principles

A second possible response to the challenge arising from the conservativity of ADT
would be to concede the inability of ADT to replicate the supposed mathematical
uses of truth, but argue that this poses no problem for a replacement theory of truth.
The traditional arguments for the importance of the concept of truth in mathematical
argumentation, as put forth by Mostowski and Shapiro, have recently come under
considerable scrutiny, with various philosophers challenging whether any acceptable
theory of truth must endorse them.16 As Walter Dean [1] understands it, the tra-
ditional arguments center around the implicit commitment thesis (henceforth ICT),
which claims that anyone who accepts a mathematical theory is already committed
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to accepting further statements—including reflection principles—that are formally
independent of the theory (see [1, pp. 32–34]). These commitments arise by noting
that if all of the axioms of a theory are true and if all the inferences used in the theory
are truth preserving, then all of the consequences of the theory itself must be true.
The ICT argument posits that, while these reflection principles cannot even be for-
mulated in the original language of the mathematical theory itself, they are already
wholly justified by a subject’s epistemic attitudes to the original theory. Given that
reflection principles are already justified, advocates of ICT argue that any adequate
theory of truth should—solely by virtue of expanding the language of the original
theory—permit the derivation of these principles.

Dean argues that there are two distinct problems with the ICT argument, poten-
tially providing a rationale for a formal theory of truth that is unable to articulate
reflection principles. The first problem concerns the scope of applicability for the
ICT argument. While advocates of ICT claim that the argument forces any mathemat-
ical theorist to accept the reflection principles for any endorsed theory, Dean notes
that formal reflection principles in various forms correspond directly to strong ver-
sions of mathematical induction. As a result, it may be consistent for proponents of
theories which withhold acceptance of the full schema of mathematical induction—
including forms of finitism and predicativism—to remain agnostic toward the reflec-
tion principles for such theories (see [1, p. 54]). By this argument, one could avoid
a commitment to reflection principles by refraining from accepting certain mathe-
matical claims, including the full principle of mathematical induction for PA. Given
Scharp’s commitment to not revising prior theoretical uses of truth, however, it would
be improper to choose one’s mathematical commitments for the sake of defending
ADT. Doing so would amount to favoring a philosophical theory of truth over math-
ematical practice in precisely the way that Scharp condemns. Thus, Dean’s first
problem does nothing to shield ADT from the impact of the ICT argument.

Furthermore, Dean also considers whether the ICT argument compels even the
classical mathematical theorist to endorse reflection principles. Considering the
relationship between the informal argument for the consistency of PA and more for-
mal derivations of this claim, Dean notes they are separated by a genuine mathe-
matical principle—namely, the extension of the induction schema to include sen-
tences involving the truth predicate (see [1, p. 61]). In particular, the formal argu-
ment for reflection principles relies on an induction on the length of proofs showing
that all theorems of PA have the property of truth. As a result, Dean concludes
that the ICT requires the derivation of reflection principles from a formal theory
of truth only given the assumption that the truth predicate can be fully utilized in
the induction schema. ADT then would be justified in not proving the descend-
ing reflection principle if the theory also limited the use of descending truth in the
induction schema of PA. Though Scharp does not speak explicitly on the scope of
the induction schema in ADT, there seems little prospect for such a response given
Scharp’s further commitments.17 In particular, Scharp sees PA as the theory of syn-
tax underlying ADT, and on that basis finds that any attempt to limit the resources
of PA in ADT is wholly improper (see [13, p. 152]). As the induction schema is
among the axioms of PA, Scharp’s explicit commitments seem to require an accep-
tance of the full induction schema in the language of ADT. Thus, both problems
Dean notes for the capability of the ICT argument to require any formal theory of
truth to derive formal reflection rely on a theorist rejecting genuine mathematical
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principles, but in both cases Scharp seems committed to accepting these princi-
ples.

Separately from Dean’s critique of the ICT argument, Harty Field [4] has also
challenged the claim that any satisfactory formal theory of truth must derive certain
reflection principles. Field notes that the typical informal argument for the consis-
tency of a formal theory relies on two essential premises: that all axioms of the theory
are true and that all inferences in the theory preserve truth (see [4, p. 201]). These
assumptions cannot be accepted for the entirety of a formal theory of truth, however,
without leading to a contradiction on the basis of Gödel’s second incompleteness
theorem. As a result, Field concludes that any serious and noncontradictory theory
of truth must reject the claim that all accepted logical inferences are truth preserving
(see [4, p. 203]). Without the claim that all first-order inferences are truth preserv-
ing, the use of truth to argue informally for the consistency of even a subtheory of the
formal theory of truth—such as PA or ZFC—fails, and so Field argues that both the
consistency statements and reflection principles of such theories need not be deriv-
able in a satisfactory formal theory of truth.

At first, this argument seems to provide a solid defense for Scharp regarding
the underivability of reflection principles in ADT. Scharp explicitly notes that these
issues necessarily lead to the failure of ADT to prove that all logical inferences pre-
serve either ascending or descending truth (see [13, p. 151]). However, as Scharp
intends for ADT to be interpreted, all sentences in the language of PA should be either
both ascending and descending true or both ascending and descending false.18 Addi-
tionally, ADT can derive the restricted claim that all rules of inference, as applied
to only such sentences, are both ascending and descending truth preserving.19 Thus,
Scharp seems committed to the claim that the rules of inference are truth preserving
when applied to sentences in the language of PA. As a result, Field’s argument only
provides a defense for the inability of ADT to prove its own reflection principle, and
not a defense of its inability to prove the reflection principles for PA and ZFC. Thus,
the informal argument for the importance of reflection principles still seems to apply
to ADT.

As a result, we find that the usual considerations suggestive of the significance
of deriving reflection principles for accepted mathematical theories in a satisfac-
tory formal theory of truth stands even for a replacement theory of truth like ADT.
Through Scharp’s strong commitment to respecting theoretical practice with respect
to the truth predicate, he accepts the premises underlying such arguments. It follows
that there is little prospect for Scharp consistently rejecting the importance of reflec-
tion principles for ADT. Thus, the second defensive strategy available to Scharp—
rejecting the arguments underlying reflection principles—is of no use in dissolving
the problems of reflection principles. Given that there is also little prospect for ADT
to endorse or even formulate reflection principles, we find that the conservativity of
ADT does pose a genuine challenge to Scharp’s goal of respecting mathematical uses
of truth.

Given the dim prospects for rejecting the importance of reflection principles—and
therefore also the mathematical uses of truth—Scharp seemingly must accept a third
response to the problem of conservativeness: that is, accept that this poses a genuine
problem for ADT. As it currently stands, ADT fails to live up to its promises of
respecting all of the scientific uses of truth. While the theories that Scharp rejects fail
to support linguistic practice, ADT instead fails to support mathematical practice. It
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follows that ADT is not strictly better than other theories according to Scharp’s own
standards, but instead represents a trade-off, privileging the linguistic uses of the
concept of truth over the mathematical uses.

6 Conclusion

Scharp argues that ADT is superior to all of the alternative formal theories of truth
due to a variety of criteria, but first and foremost is its ability to validate all estab-
lished theoretical uses of truth. While he does establish that his theory, seemingly
alone among the various alternatives, can validate many of the received uses of
truth, this article has shown that it does so at a cost. Unlike its competitors, ADT
cannot endorse the mathematical uses of truth. As a result, though this article
has established that ADT is a consistent formal theory of truth, and thus a gen-
uine option, it fails to wholly succeed on all of Scharp’s criteria for such a the-
ory.

Additionally, we note that this article has served to connect the literature on ADT,
the foremost example of a replacement theory on offer in the extant literature, with
the traditional literature on conservativity and reflection principles in formal theories
of truth. While most of the latter literature implicitly assumes that such a theory
seeks to retain and utilize the concept of truth, we have found that the arguments for
nonconservativity and the importance of reflection principles nonetheless apply to
a replacement theorist as well. Regardless of this fact, we conclude by noting that
replacement theories of truth offer a new and interesting approach to the problems
arising from the alethic paradoxes, and that much further work remains to be done
connecting these new approaches with traditional arguments and issues from the
broader literature on truth.

Appendix A: Consistency of ADT

The first question that arises about ADT is whether it is a consistent theory or
not.20 We will prove the consistency of ADT with a three-step construction. In
the first step, the minimal !-model of axioms D2–D6 will be constructed. Next,
this model will be shown to be the minimal !-model for D1–D6 as well. Finally,
using this model as a starting point, the minimal !-model of ADT will be con-
structed.

LetLŒD� be an expansion of the signatureL of PA by a new unary predicate sym-
bol D. Then !-models are written as .!;D/, where D � !. By abuse of notation,
we sometimes refer to D as an !-model and write D ˆ ' in lieu of .!;D/ ˆ ',
and likewise we write D ˆ T in lieu of .!;D/ ˆ T . For the remainder of what
follows, we fix a recursively enumerable consistent deductively closed LŒD�-theory
T0 extending PAŒD� which is likewise true on all !-models. Here PAŒD� is simply
PA with the induction schema for LŒD�-formulas. For the sake of concreteness, we
could take T0 to be the deductive closure of PAŒD�. Note that the following proof is
for the general case where D6 is replaced with a generalization, D6.T0/, which states
that D.'/ for all ' such that T0 ˆ '. Clearly, D6.T0/ ˆ D6.

Let T ]
0 be the LŒD�-theory having D1–D7 as axioms. Instead of saying that ' is

an instance of D1–D6.T0/, we might sometimes say that ' 2 D1–D6. Further, let
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T
�
0 be T ]

0 minus D7, and let T [
0 be T �

0 minus D1. If T is any theory in the signature
of LŒD�, then we say that T has a minimal !-model if there is an !-model D0 ˆ T

such that for all !-models D ˆ T , we have D0 � D.
In the following propositions, we construct the minimal model of D]

0 by first con-
structing the minimal models for D[

0 and D�
0. We know from axiom D6 that D in

D]
0 must at least include the deductive closure of PA. One might wonder how much

bigger the extension of D has to be than this. The main idea behind these model
constructions is that its extension does not need to be much larger than the deductive
closure of PA. In fact, the extension of D in the minimal model of D]

0 will con-
sist in the deductive closure of our theory T0 together with instances of the axioms
D1–D6 and finite disjunctions including an instance of D1–D6 as one of the dis-
juncts.

Proposition A.1 The minimal !-model of T [
0 is D[

0 D ¹p'q W T0 ˆ 'º. Hence, if
p'q 2 D[

0, then ' is true on all !-models of T0.

Proof First, we show that D[
0 ˆ D2. Let :' 2 D[

0. This implies that T0 ˆ :'.
Assume that ' 2 D[

0. This likewise implies that T0 ˆ '. But then T0 is a model of
both ' and :', and, as such, is inconsistent. But, by assumption, T0 is consistent.
As a result, :.' 2 D[

0/, and so D[
0 ˆ D2.

Next, we show that D[
0 ˆ D3. Let '^ 2 D[

0. This implies that T0 ˆ '^ . As
T0 is deductively closed, this means that T0 ˆ ' and T0 ˆ  . As a result, ' 2 D[

0

and  2 D[
0. As a result, D[

0 ˆ D3.
Next, we show that D[

0 ˆ D4. Let ' 2 D[
0 or  2 D[

0. In the first case, this
means that T0 ˆ ', and, as T0 is deductively closed, T0 ˆ ' _  . As a result,
' _ 2 D[

0. Similarly, in the second case, T0 ˆ  , and, by the deductive closure of
T0, T0 ˆ ' _  . Thus, ' _  2 D[

0. In either case, ' _  2 D[
0. Thus, D[

0 ˆ D4.
Next, we show that D[

0 ˆ D5. Assume that ' is a logical truth. By definition,
logical truths are modeled by all first-order structures. Thus, T0 ˆ '. As a result,
' 2 D[

0. Thus, D[
0 ˆ D5.

Finally, we show that D[
0 ˆ D6. Assume that ' is a theorem of PA[D]. As

T0 includes the deductive closure of PA[D], T0 ˆ '. Thus, ' 2 D[
0. Therefore,

D[
0 ˆ D6.
Putting the above together, we find that D[

0 is a model of T [
0 . We must demonstrate

that it is the minimal such model. Let ' 2 D[
0, and let D be an !-model of T [

0 . We
know that T0 ˆ ' by the definition of D[

0. As D ˆ T [
0 and T [

0 ˆ D6.T0/, we know
that D ˆ D.'/. Thus, ' 2 D. By generality, for any !-model D of T [

0 , we find
that for any ' such that ' 2 D[

0, ' 2 D; that is, D[
0 � D. Thus, D[

0 is the minimal
!-model of T [

0 .

Proposition A.2 D[
0 is also a model of T �

0 , and it is the minimal !-model of T �
0 .

Proof By Proposition A.1, we know that D[
0 is a model of D2–D6. Hence, we

must merely show that it is a model of D1. Assume that D[
0 ˆ D.'/. By definition,

this means that ' 2 D[
0, that is, that T0 ˆ '. As D[

0 ˆ T0 by the definition of D[
0,

we find that D[
0 ˆ '. Thus, D[

0 ˆ D.'/ ! '. Thus, D[
0 ˆ D1, and we find that

D[
0 ˆ T

�
0 .
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We must further show that D[
0 is the minimal model of T �

0 . Let ' 2 D[
0, and let D

be an !-model of T �
0 . As T [

0 � T
�
0 , we know that D ˆ T [

0 . By Proposition A.1, we
know that D[

0 is the minimal !-model of T [
0 , so D[

0 � D. Thus, D[
0 is the minimal

!-model of T �
0 .

Proposition A.3 The minimal !-model of T ]
0 is

D]
0 D D[

0 [ ¹p'q W ' 2 D1–D6º

[

°
p

n_
iD1

'i q W 'i 2 D1–D6 for some 1 � i � n
±
: (A.1)

Further, if p'q 2 D]
0, then ' is true on D[

0.

Proof First, we verify that D]
0 ˆ D5–D7. By Proposition A.2, since D[

0 � D]
0, we

know that D]
0 ˆ D5–D6. Similarly, since for any ' 2 D1–D6 we have that ' 2 D]

0,
we know that D]

0 ˆ D7.
Next, we verify that D]

0 ˆ D3. Suppose that D]
0 ˆ D.p' ^  q/. Then

p' ^  q 2 D]
0. There are then three cases to consider. First, suppose that

p' ^  q 2 D[
0. Then by the deductive closure of T0 we have p'q; p q 2 D[

0 � D]
0.

Second, suppose that ' ^  is an instance of D1–D6. Since the main connective
of ' ^  is a conjunction, we see that this case is in fact impossible by inspection
of the logical form of D1–D6. Specifically, when we inspect the axioms D1–D6
we find that they all either are atomic formulas or have a conditional as their main
connective, and so we find that no statement with a conjunction as its main connec-
tive could be an instance of one of these axioms. And similarly for the case that
' ^ has the form

Wn
iD1 'i , where one of the 'i is from D1–D6. Thus, we find that

D]
0 ˆ ' and that D]

0 ˆ  in all three cases. Therefore, we find that D]
0 ˆ D3.

Next, we verify that D]
0 ˆ D4. Suppose that D]

0 ˆ D.p'q/ _ D.p q/. Then
' 2 D]

0 or  2 D]
0. Without loss of generality, assume that ' 2 D]

0. Again,
there are three cases to consider. If ' 2 D[

0, then, by the deductive closure of D[
0,

we have p' _  q 2 D[
0 � D]

0. Next, assume that ' 2 D1–D6. Then ' _  

is of the form '1 _ '2, where '1 2 D1–D6. As a result, ' _  is of the form
p
Wn

iD1 'i q W 'i 2 D1–D6 for some i such that 1 � i � n. Thus, ' _  2 D]
0 by

the third component of its definition. Finally, assume that ' has the form
Wn

iD1 'i ,
where some 'i 2 D1–D6. This implies that ' _  is also of the form

Wn
iD1 'i .

Thus, ' _  2 D]
0. Thus, in all three cases, D]

0 ˆ ' _  . Therefore, we find that
D]

0 ˆ D4.
Next, we verify that D]

0 ˆ D2. First, we show that if ' 2 D]
0, then ' is true on

D[
0. Let ' 2 D]

0. If ' 2 D[
0, then, by Proposition A.1, ' is true on all !-models of

T [
0 . In particular, it is true on D[

0. If ' 2 D1–D6, then, as D[
0 ˆ T

�
0 by Propo-

sition A.1, we know that ' is true on D[
0. Finally, if ' is a disjunction includ-

ing some  2 D1–D6 as a disjunct, then, as D1–D6 are true on D[
0, ' is also

true on D[
0. In all three cases, ' is true on D[

0. Thus, all ' 2 D]
0 are true on

D[
0.
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Let p:'q 2 D]
0. As shown above, this implies that :' is true on D[

0. Assume
that p'q 2 D]

0. Again, by the above this implies that ' is true on D[
0. So both '

and :' are true on D[
0. As a result, we find that the assumption that p'q 2 D]

0

leads to a direct contradiction. Thus, we find that p'q … D]
0, and, as such, that

D]
0 ˆ D2.
Finally, we verify that D]

0 ˆ D1. Where j'j indicates the length of formula ',
we will prove by induction on the length of formulas l that j'j � l ! Œ' 2 D]

0 !

D]
0 ˆ '�. As there are no formulas of length 0, clearly this holds for l D 0.
Assume that ' 2 D]

0, that j'j D l C 1, and that the induction hypothesis holds
for formulas of length n � l . First, assume that ' 2 D[

0. By Proposition A.1, this
implies that ' is true on all !-models of T [

0 . Thus, D]
0 ˆ '. Next, assume that ' is

an instance of D2–D6. By the above, we know that D]
0 ˆ ', as D]

0 ˆ D2–D6. Next,
assume that ' is an instance of D1. This implies that ' is of the formD. / !  for
some . Then, as j j � l , we find that 2 D]

0 implies that D]
0 ˆ  by the induction

hypothesis. Thus, if D]
0 ˆ D. /, then D]

0 ˆ  . As a result, D]
0 ˆ .D. / !  /,

and, therefore, D]
0 ˆ '. Finally, assume that ' is of the form

Wn
iD1 'i for n > 1

with some 'i being an instance of D1–D6. As 'i is an instance of D1–D6, we
know that 'i 2 D]

0, and, as j'i j � l , we know by the induction hypothesis that
'i 2 D]

0 implies that D]
0 ˆ 'i . Thus, we find that D]

0 ˆ 'i , and, therefore, that
D]

0 ˆ
Wn

iD1 'i . Thus, in all four cases, we find that ' 2 D]
0 implies that D]

0 ˆ '.
Thus, D]

0 ˆ D1.
As D]

0 ˆ D1–D7, we find that D]
0 is an !-model of T ]

0 . Next, we must show that
it is the minimal such !-model. Assume that D is an !-model of T ]

0 and that ' 2 D]
0.

First, assume that ' 2 D[
0. Then, as D ˆ T [

0 , we find that ' 2 D by Proposition A.1.
Next, assume that ' is an instance of D1–D6. Then, as D ˆ D7, ' 2 D. Finally,
assume that ' is of the form

Wn
iD1 'i , where 'i is an instance of D1–D6 for some

'i . Then, as shown above, 'i 2 D, and, as D ˆ D4, we find that
Wi

i�1 'i 2 D.
Thus, for all ', we find that ' 2 D]

0 implies that ' 2 D. As a result, D]
0 � D

for any !-model D of T ]
0 . Thus, we establish that D]

0 is the minimal !-model of
T

]
0 .

By constructing the minimal model of ADT for any consistent deductively closed
extension of PAŒD�, we thereby establish the consistency of ADT, given the consis-
tency of PAŒD�. ADT thus represents a technically acceptable solution to the alethic
paradoxes.

Appendix B: Conservativity of ADT

Though Scharp does not comment on the conservativeness debate in relation to ADT,
it is interesting to note that ADT is conservative over strong systems like set theory.
Thus, the mere addition of ascending and descending truth predicates to a language
does not increase the proof-theoretic strength of such theories. It is presently unclear
to us whether this result holds for first-order Peano arithmetic, although the obvi-
ous modification of the proof below also works for second-order Peano arithmetic,
third-order Peano arithmetic, and so on.
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For this proof we will work with the theory ZFCŒD�, which is simply ZFC with the
replacement and separation axiom schemas expanded to include sentences with the
descending truth predicate. Furthermore, for the duration of this section, ADT will
be axioms D1–D5CD60

CD7, where D60 is “D.'/ if ' is a theorem of ZFC with the
replacement and separation schemas for the language of ZFC supplemented with aD
predicate.” Note that this updated version of D6 simply amounts to replacing PA in
the original formulation of the axiom with the now relevant theory ZFC. The idea in
the proof below is to focus attention on the restriction of D1–D60 to LŒD�-sentences
in �n, which we define to be Boolean combinations of…n or†n-sentences. By this is
meant the restriction to the instances of D1–D60 in which the relevant sentences '; 
are in the complexity class �n. We abbreviate this class of sentences by .D1–D60/n.
Likewise D7n is the restriction of D7 to D.'/ where ' is from .D1–D60/n.

The main idea behind these model constructions is to consider the sentences that
would be true on all possible extensions of the descending truth predicate. Obviously,
the descending truth predicate in the minimal model of ZFCŒD�CADT must include
at least these truths. We can again wonder how much bigger the extension of the
descending truth predicate must be, and again it turns out that it need not be much
bigger, also including instances of the axioms D1–D60 and finite disjunctions with
an instance of D1–D60 as one of its disjuncts. Note that the model construction
carried out in Proposition B.2 is a natural modification of the construction found in
Proposition A.3, altered to function in the setting of ZFCŒD� instead of PAŒD�.

Proposition B.1 Suppose that M is a model of ZFC, and let P D .P.!//M be
the powerset of ! relative to M . Define

D[
n D

®
' 2 �0

n W 8 D 2 P .M;D/ ˆ '
¯
: (B.1)

Then .M;D[
n/ is a model of ZFCŒD� plus .D1–D60/n.

Proof First note that D[
n is…0;M

nC1-definable and so is a member of P by separation
in M . Hence, we have that for ' 2 �n,

' 2 D[
n H) .M;D[

n/ ˆ ': (B.2)
From this it follows immediately that D2 holds when restricted to �n-sentences.
Further, D3, D4, D5, and D60 hold by definition of D[

n, again when restricted to
�n-sentences in the signature LŒD�. Finally, D1 holds by (B.2).

Proposition B.2 Suppose that M is a model of ZFC, and let P D .P.!//M be
the powerset of ! relative to M . Define D[

n as in (B.1), and define D]
n by

D]
n D D[

n [
®
' 2 .D1–D60/n

¯
[

°
p

m_
iD1

'i q 2 �n W 'i 2 .D1–D60/n

for some m > 1 and 1 � i � m
±
: (B.3)

Then .M;D]
n/ is a model of ZFCŒD� plus .D1–D60/n and D7n.

Proof By the second component in the definition of D]
n, we have that .M;D]

n/

models D7n. Prior to verifying D2, note that if ' 2 �n and ' 2 D]
n, then ' is true on

.M;D[
n/. From this it follows that .M;D]

n/ models .D2/n. The arguments for D3n
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and D4n are by cases much like the analogous parts of Proposition A.3, whereas
those for D5n and D60

n go through D[
n.

Finally, we have the argument for D1n, which as in Proposition A.3 is by induction
on the length of ' 2 �n. Where j'j indicates the length of formula ', we will prove
by induction on the length of formulas l that j'j � l ! Œ' 2 D]

n ! D]
n ˆ '�. As

there are no formulas of length 0, clearly this holds for l D 0.
Assume that ' 2 D]

n, that j'j D lC 1, and that the induction hypothesis holds for
formulas of length n � l . First, assume that ' 2 D[

n. But by definition of D[
n in (B.1)

and the fact that D]
n is likewise in P , this implies that D]

n ˆ '. Next, assume that
' is an instance of .D2–D6/n. By the argument in the above paragraphs, we know
that D]

n ˆ ', as D]
n ˆ .D2–D6/n. Next, assume that ' is an instance of D1. This

implies that ' is of the form D. / !  for some  2 �n. Then, as j j � l ,
we find that  2 D]

n implies that D]
n ˆ  by the induction hypothesis. Thus, if

D]
n ˆ D. /, then D]

n ˆ  . As a result, D]
n ˆ .D. / !  /, and, therefore,

D]
n ˆ '. Finally, assume that ' 2 �n is of the form

Wm
iD1 'i with some 'i being

an instance of .D1–D6/n. As 'i is an instance of .D1–D6/n, we know that 'i 2 D]
n,

and, as j'j � l , we know by the induction hypothesis that 'i 2 D]
n implies that

D]
n ˆ 'i . Thus, we find that D]

n ˆ 'i , and, therefore, that D]
n ˆ

Wm
iD1 'i . Thus, in

all four cases, we find that ' 2 D]
n implies that D]

n ˆ '. Thus, D]
n ˆ D1n.

Corollary B.1 Suppose that ' is a sentence in the signature of ZFC. Suppose that
ZFCŒD�C ADT ` '. Then ZFC ` '.

Proof Since ZFCŒD� C ADT ` ', by compactness ' is deducible from ZFCŒD�
plus .D1–D60/n ^ D7n for some n. Suppose that ZFC ° '. Then by completeness
there is a model M of ZFC C :'. But by the previous proposition we can expand
M into a model .M;D]

n/ of ZFCŒD� plus .D1–D60/n ^ D7n, which contradicts that
this theory proves ' while the model satisfies :'.

Notes

1. For examples of inconsistency approaches which retain the concept of truth, see Eklund
[2], Ludwig [7], and Patterson [9].

2. See Scharp [13] for an extended development of his formal theory. See also Scharp [14]
for another development of this theory.

3. For the literature on conservativity, see Field [3] and Shapiro [16]. For the literature on
inconsistency approaches, see [2], [7], Priest [11], and Yablo [17].

4. See Priest [10] for an example of an inconsistency view with this virtue.

5. ADT formally includes, in addition to the following seven axioms, axioms for ascending-
truth and safety. Due to the definibility of these concepts in terms of descending
truth, their inclusion or exclusion does not alter the strength of the theory (see [13,
p. 154]). Additionally, Scharp includes an axiom E1 that states that if s D t , then
ADT ˆ D.s/ $ D.t/. It is not entirely clear where s D t is being evaluated, and
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therefore what this axiom entails. For our purposes here, we will thus focus on ADT as
being the theory of D1–D7 alone.

6. Scharp states D6 as “D.p'q/ if ' is a theorem of PA.” It is unclear whether he intends
the induction schema to be in the language of PA or the language of PA extended with a
descending truth predicate D. For our purposes here, we will consider D6 as including
the induction schema in the expanded language. See Section 5 for more on the induction
schema in ADT.

7. For a proof of the consistency of ADT using modal logic, see Sharp [13, pp. 157–69] or
[15].

8. These arguments originate in the discussion of truth’s expressive role in Quine [12]; see
[12, p. 12] especially.

9. See Mostowski [8, p. 107] and Shapiro [16, p. 505] for particularly influential defenses
of such claims.

10. For a standard treatment of global reflection principles, see Halbach [5, p. 90].

11. See [5, pp. 90–93] for an example of the standard proof of this result.

12. Note that Reflection-A is equivalent to what Scharp calls (Proof-A). See [13, p. 205]
for his presentation of the principle. Scharp is not explicit on where the claim that ' is
proven is to be evaluated. For our purposes here, we will consider the evaluation to be
made in ADT itself.

13. While it is unclear whether ADT can prove Reflection-A, we note that the reflection
principle will be true on any !-model of ADT. See [13, p. 205] for Scharp on the status
of Reflection-A.

14. See [5, pp. 90–93] for a standard reference to the formal proof.

15. Note that one trivially could not formulate a reflection principle with the safety predicate,
as some unsafe sentences—including the descending liar—are provable.

16. See [8, p. 107] and [16, p. 505].

17. As noted above, it is unclear whether axiom D6 requires that ADT entail all instances of
mathematical induction in the language of ADT, or merely in the restricted language of
the base theory.

18. We can see this by noting that Scharp intends his concept of safety—as explained above,
defined for all ' as A.'/ ! D.'/, which is equivalent to the claim that the ascending
and descending truth values of � coincide—to serve as a replacement for Kripke’s notion
of groundedness. See [13, p. 170] for the connection between safety and groundedness,
and see Kripke [6] for more on the traditional notion of groundedness.

19. Let the premises '1; : : : ; 'n all be descending true, let '1; : : : ; 'n entail  by some rule
of inference, and let formulas '1; : : : ; 'n and  be either descending true or not ascend-
ing true. Then '1; : : : ; 'n entails  which entails A. / which entails D. /. Thus, the
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rules of inference preserve descending and ascending truth as applied to sentences all of
which are either descending true or not ascending true. As all sentences in the language
of PA have this property according to ADT, we thereby find that all rules of inference as
applied to statements in PA are ascending and descending truth preserving.

20. See [15] and [13, pp. 157–69] for a nonconstructive proof of the consistency of ADT.
The following proof, alternatively, is more constructive.
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