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Actualism, Serious Actualism, and Quantified
Modal Logic

William H. Hanson

Abstract  This article studies seriously actualistic quantified modal logics.
A key component of the language is an abstraction operator by means of which
predicates can be created out of complex formulas. This facilitates proof of
a uniform substitution theorem: if a sentence is logically true, then any sentence
that results from substituting a (perhaps complex) predicate abstract for each
occurrence of a simple predicate abstract is also logically true. This solves
a problem identified by Kripke early in the modern semantic study of quantified
modal logic. A tableau proof system is presented and proved sound and complete
with respect to logical truth. The main focus is on seriously actualistic T (SAT),
an extension of T, but the results established hold also for systems based on
other propositional modal logics (e.g., K, B, S4, and SS5). Following Menzel it
is shown that the formal language studied also supports an actualistic account of
truth simpliciter.

1 Preliminaries

How should we deal with subject-predicate sentences containing nondenoting singu-
lar terms? Suppose “Dweet” is a name that does not denote anything, and consider
the following sentences.

(1) Dweet is a sexagenarian.
(2) Dweet enjoys messing about in boats.

It seems perfectly plausible to construe “is a sexagenarian” and “enjoys messing
about in boats” as predicates, and thus to take the sentences in question to be of
subject-predicate form. I will call such sentences—those that result from applying
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a predicate to a singular term—attributive sentences. 1 will also use this term for
sentences like (3) that apply a relational predicate to two or more singular terms.

(3) Obama is taller than Dweet.

How should truth values be assigned to attributive sentences like (1)—(3) that contain
at least one nondenoting singular term?

One answer to this question is that such sentences have no truth values. Another
is that they have truth values, some of them being true and others false, just like
ordinary attributive sentences. A third answer, the one I advocate and want to explore
here, is that all such attributive sentences are false. Indeed they are necessarily false.
If there is no such thing as Dweet, then no claim to the effect that Dweet has such and
such properties (or stands in such and such relations) could be true, and all sentences
that express such claims are necessarily false. This view has been called serious
actualism."

Intuitively, serious actualism provides a model for understanding ordinary lan-
guage that is at least as plausible as those provided by the other two alternatives.
And when properly developed it has advantages, both technical and philosophical,
over them. Or so I claim. Briefly put, serious actualism is superior to the no-truth-
value view because it does not require that we abandon two-valued logic. It is supe-
rior to the some-are-true-some-are-false alternative because it is less likely to tempt
us with metaphysical excess, and because it forces us to draw a sharp line between
the logic of fiction and the logic of nonfictional discourse. More fundamentally, seri-
ous actualism reflects a basic intuition about objects and predication better than the
other two approaches.’

I also advocate actualism, the view that everything that is, in any coherent sense of
“is,” is actual. According to actualism there are no merely possible things, things that
do not exist but somehow manage to subsist or have some alternative kind of being.
Nondenoting names like “Dweet” and “Pegasus” really are nondenoting. They do
not denote, designate, or refer in any sense.’

In what follows I develop a system of quantified modal logic that is both seriously
actualistic and actualistic. A major goal is to extend the thesis of serious actual-
ism to complex predicates without giving up desirable logical properties, the most
important of which is uniform substitution. Substituting a complex predicate for each
occurrence of a simple predicate in a logical truth should yield a logical truth.

Any seriously actualistic attempt to deal with sentences more complex than simple
attributive sentences faces two problems. One is easily solved; the solution to other
is more difficult. The first problem is that in standard modern logic, connectives and
quantifiers are usually treated only as devices for generating more complex sentences
out of simpler ones. But in natural language they play a second role as well, allowing
us to generate more complex predicates and relational terms out of simpler ones.
This point is easily illustrated, using negation, with the following sentence.

(4) Dweet is not a sexagenarian.

Is (4) an attributive sentence, with “is not a sexagenarian” as its predicate, or is it
simply the negation of the attributive sentence (1)? If we choose the former answer,
we seem to be multiplying primitive predicates needlessly. But if we choose the
latter, we are forced to say that (4) is true, since it negates (1), which is false. Yet this
seems arbitrary, because “is not a sexagenarian” appears to have as good a claim to
being a predicate as “is a sexagenarian.” And if (4) is an attributive sentence, then
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under the seriously actualistic approach to nondesignating singular terms it is false,
not true.

This problem is easily solved by adopting a suitable device for distinguishing the
scopes of negation and other logical operators. We want to distinguish between

(4a) Dweet is a non-sexagenarian.
and
(4b) It is not the case that Dweet is a sexagenarian.

In the formal language developed in later sections this distinction will be marked
using a predicate abstraction operator (1), that allows us to render (4a) and (4b) as
follows:

(4a*) (Ax.—Sx)(d),

(4b*™) —(Ax.Sx)(d).
In (4b*) the predicate (Ax.Sx) (is a sexagenarian) is applied to the singular term d
(Dweet), and the resulting sentence is negated. But in (4a™) negation is involved in
forming the predicate (Ax.—Sx) (is not a sexagenarian). Predicate abstraction allows
us to control the scope of negation and thereby distinguish two senses of (4), using
S as the only primitive predicate.

Augmenting modal languages with predicate abstraction is not a new idea, but
its usefulness has not been fully exploited. The first-order modal system developed
here contains a predicate abstraction operator, and it embodies serious actualism
in the manner just described. I will focus on the version of this system based on the
propositional modal logic T, which I call SAT (seriously actualistic T), but the results
obtained apply to languages based on several other propositional modal logics.*

The second and more difficult problem facing the serious actualist in developing
a system worthy of being called a logic involves uniform substitution. The result
of substituting a complex predicate for each occurrence of a simple predicate in a
logically true sentence should also be logically true. I show in Section 5.1 that when
complex predicates are defined using predicate abstraction, uniform substitution does
indeed preserve logical truth in SAT. But none of the work on serious actualism of
which I am aware deals with this matter fully and satisfactorily.’

Itis hard to overemphasize the importance of uniform substitution. There is nearly
universal agreement among logicians that a formal system is not a logic unless it
respects logical form in this way. The reason that seriously actualistic modal systems
have not been more widely studied is probably that they appear not to support uni-
form substitution. But this is only because attention has been focused on languages
that lack a means of properly handling predication. In such languages uniform sub-
stitution does indeed fail to preserve logical truth. This was noticed by Kripke at the
very beginning of the modern semantic study of modal logic:

It is natural to assume that an atomic predicate should be false in a world H of all
those individuals not existing in that world; that is, that the extension of a predicate letter
must consist of actually existing individuals. [...] We have chosen not to do this because
the rule of substitution would no longer hold; theorems would hold for atomic formulae
which would not hold when the atomic formulae are replaced by arbitrary formulae. (This
answers a question of Putnam and Kalmar.)°

Kripke’s insight can be illustrated using sentences that express existential generaliza-
tion, such as

5) Fa — 3IxFx
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and
(5*) =Fa — Ix—Fx.

If we adopt the view that Kripke says “is natural to assume,” (5) is valid but (5*) is
not. If a does not denote at a world and the extension of F is the entire domain of that
world, —Fa is true but Ix—Fx is false. So if we make the natural assumption that
primitive predicates behave in accordance with serious actualism, we must accept
the unnatural result that complex predicates do not. Uniform substitution fails.

In Section 5.1, however, I show that when a complex predicate abstract replaces
each occurrence of a primitive predicate abstract in a sentence, logical truth is pre-
served. So if ¢(y) is any formula with free occurrences of y (but no free occurrence
of any other variable), every instance of

©) (Ay.¢(»))(@) - Ix(Ay.¢(y))(x)
is valid.

Just as predicate abstraction facilitates a plausible account of serious actualism,
so an actuality connective (A) facilitates the expression of actualism itself.” Letting
& (x) abbreviate 3y (y = x), actualism can be formalized as

(7) VxAE(x).

Although (7) is not valid, it is true. That is, it is true at the actual world element of
the intended model of SAT, which is defined in Section 7. Indeed (7) is knowable a
priori. For I know, independently of experience, that I and all my surroundings are
part of the actual world. Hence I know that everything actually exists.® There is a
tableau for (7) in Section 8.3.7 that illustrates this point.

It is also worth noting that since SAT contains A it is able to capture the content
of sentences that cannot otherwise be expressed in first-order modal languages. An
example is

(8) There might have been something that does not actually exist,
which can be rendered
9) OAx—AE(x).

Without an actuality connective, there is no way to express (8) in a first-order modal
language.’

Several other features of SAT should be noted before delving into the details. SAT
is a version of free logic and as such has three important features. First, as has already
been stated, it makes all attributive sentences with nondenoting singular terms false.
Hence, second, unrestricted universal instantiation is not valid. One cannot infer the
formal analogue of (2) from that of

(10) Everyone enjoys messing about in boats.

Third, SAT allows models in which quantifiers range over the empty domain. So no
existentially quantified sentence is a logical truth, and all inferences from a universal
sentence to the corresponding existential sentence are invalid.'

To summarize, and to provide some additional information as a guide to the details
that follow, SAT has the following noteworthy features.

e The object language contains the usual symbols of a first-order modal lan-
guage plus a predicate abstraction operator (1) and an actuality connective
(A).
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e Names are nonrigid. SAT is thus a contingent identity system. An identity
statement containing two names may be true at some worlds and false at oth-
ers.

e A name need not denote at each world. Indeed a name need not denote at any
world.

e If aname denotes at a world, it denotes an object that exists in that world. This
makes an actualistic interpretation possible. Indeed the sentence VxAE (x),
which expresses the core tenet of actualism, is true in the intended model.

e An atomic sentence is false at a world unless all the terms it contains denote
objects in the domain of that world. Since identity is a primitive predicate,
this holds for identity sentences. And since names need not denote, even a
self-identity sentence can be false at a world. Thus no self-identity sentence
is a logical truth.

e Far from being a flaw, the fact that self-identity sentences are not logically
true is an advantage. For it avoids the result that 3y[1(y = a) is a truth of
logic without artificially restricting necessitation or existential generalization.

e The extension of a predicate abstract at a world, like that of a primitive pred-
icate, is restricted to objects that exist in that world. Thus SAT embodies
serious actualism. All sentences of the form OVx({Ay.¢)(x) — &(x)) are
logical truths.

e There are models in which some or all worlds have empty domains. (In the
latter case the domain of the entire model is also empty.)

e The actual world element of a model plays no special role in the definitions
of validity and logical consequence. Validity is thus general validity, truth at
every world in every model.

In Sections 2—4 I present the syntax and semantics of SAT. Section 5 contains impor-
tant semantic metatheorems, including uniform substitution and replacement (substi-
tution of logically equivalent subformulas). Section 6 compares SAT with the work
of others, and Section 7 presents an actualistic account of truth. Section § contains
semantic tableau proof rules and some examples of their application. Section 9 is a
brief conclusion. In the Appendix I prove the tableau proof rules sound and (weakly)
complete with respect to validity as defined for SAT. These proofs extend straightfor-
wardly to several related systems.

2 Syntax

The language under consideration, £, is a first-order modal language supplemented
with a predicate abstraction operator and an actuality connective.

2.1 Symbols The nonlogical symbols of £ are individual constants (names) and
predicate constants (predicates). The former are the lower case letters a through
j; the latter are the upper case letters A through Z. The logical symbols are the
variables, which are the lower case letters u through z, plus the following symbols

- AV > < O0VY3I = AL.{()()

The first ten of these are the usual truth-functional and modal connectives, quan-
tifiers, and the identity predicate. The next two are the actuality connective and
the abstraction operator. The remaining five are punctuation marks. The term term
applies to both individual constants and variables.'!
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2.2 Formulas and sentences Formulas and sentences of £ are as usual. An atomic
Jformula is either an n-ary predicate followed by n terms or the identity sign flanked
by two terms (the whole being enclosed in parentheses). All occurrences of variables
in atomic formulas are free occurrences. Thus the following are atomic formulas

Bx Gxy (z=c¢) Xzyz Gyb (d =h) Xaab (b =0Db),

and all the occurrences of variables in them are free. The notions of formula, free
occurrence of a variable in a formula, and predicate abstract are defined simultane-
ously, as follows.

(1) Every atomic formula is a formula, and every occurrence of a variable in an
atomic formula is a free occurrence.

(2) If ¢ is a formula, so are —¢, O, O¢p, and A¢p. The free occurrences of
variables in these formulas are the same as those in ¢.

(3) If ¢ and  are formulas, so are (¢ A V), (¢ V V), (¢ — V), and (¢ < V).
The free occurrences of variables in these formulas are the same as those in
¢ together with those in .

(4) If ¢ is a formula, « is a variable, and « has at least one free occurrence in ¢,
then Ya¢ and da¢ are formulas. The free occurrences of variables in these
formulas are the same as those in ¢, except for occurrences of o.'”

(5) If ¢ is a formula, « is a variable, and « has at least one free occurrence in
¢, then (Aa.¢) is a predicate abstract. The free occurrences of variables in
(Aa.@) are the same as those in ¢, except for occurrences of «.

(6) If (Aae.¢p) is a predicate abstract and 7 is a term, (Aa.¢)(7) is a formula. The
free occurrences of variables in (Ax.¢p)(7) are the same as those in (Aa.¢)
together with those in 7."?

Any occurrence of a variable in a formula that is not free is bound. A formula in
which all occurrences of variables are bound is a sentence.

It will be convenient, in what follows, to have a way of abbreviating formulas
involving iterated predicate abstraction. Consider a formula of the form

(a1 (Ao (Aas.¢) (13))(12))(T1).
where o1, o3, 03 are variables, 71, 1, 73 are terms, and ¢ is a formula. Such formulas
will be abbreviated as
(AOll, Oy, 013.¢>(1'1, T2, ‘173).
Similar abbreviations will be used for formulas containing different numbers of iter-
ated predicate abstracts.

3 Semantics

The logic I present in this paper is a seriously actualistic quantified modal logic
whose underlying propositional modal logic is the system T. Hence its name, SAT. Its
semantic framework will be familiar to those who know Kripke-style modal seman-
tics, and especially familiar to those who know Fitting and Mendelsohn’s [7] presen-
tation of it. Indeed only small changes in Fitting and Mendelsohn’s definitions of
basic semantic notions are sufficient to yield SAT.'* But small differences in seman-
tic details can make a big difference in the resulting logic, and this is the case with
SAT.

Although in what follows I confine attention to SAT, similar proof techniques
are readily available, and similar metatheorems hold, when the underlying modal
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propositional logic is changed to K, B, S4, or S5. Especially noteworthy among
these metatheorems are uniform substitution and substitutivity of equivalents (see
Section 5) and soundness and completeness of the tableau rules (see Appendix).
I call the systems in question SAK, SAB, SAS4, and SASS. In what follows I will
periodically remind the reader that what is being proved applies also to them.

The fundamental semantic notions are those of model, interpretation, valuation,
satisfaction, truth, validity, and consequence.

3.1 Models A model is a quintuple M = (W, @, R, D, J), where W is a nonempty
set, @ € W, R is a reflexive binary relation on ‘W, D is a function from members
of ‘W to (possibly empty) sets (all of which are disjoint from W), and J assigns
extensions to nonlogical symbols of the language at members of 'W. The domain
Dy = U{D(w;) | w; € W}, the union of the sets of individuals assigned to mem-
bers of W by D, is called the domain of the model M. (Notice that this definition
allows Dy to be empty.) The possibilist’s way of giving intuitive content to these
definitions is to say that ‘W is a set of worlds, @ is the actual world, R is the rela-
tive possibility relation among worlds, £ assigns to each world the (possibly empty)
set of individuals that exist in it, J is an interpretation of the nonlogical symbols of
the language, and D, is the set of all actual and possible individuals. I argue in
Section 7 that models can be understood in a purely actualistic way.

3.2 Interpretations An interpretation J is a function that assigns individuals to indi-
vidual constants and sets of ordered n-tuples of individuals to n-ary predicates, both
assignments being relative to a member of ‘W. Note that d is not required to assign
anything to an individual constant at a world, but if it does, the individual so assigned
must exist at that world. Similarly, J requires the extension of an n-ary predicate at
a world to contain only n-tuples of individuals that exist at that world. This holds for
all predicates, including the identity predicate. (So if the individual constant d fails
to denote at a world, even (d = d) is false at that world.) It is these two features of J
that make the object language actualistic and seriously actualistic, respectively, and
thereby distinguish it from most other quantified modal logics.

More precisely, an interpretation d of a model M = (W, @, R, D, d) is the
union of a (perhaps partial) function on individual constants and members of ‘W and
a total function on predicate constants and members of ‘W such that:

(1) For an individual constant ¢, and a world w € W, if 4(:,w) is defined,
Jd(t, w) € D(w)."

(2) For each n-ary predicate 6 and each w € W, 4(6,w) is a set of ordered
n-tuples of elements of O (w). Specifically, if 6 is =, (0, w) is the identity
relation on D (w).'°

These two clauses embody actualism and serious actualism, respectively.'’

3.3 Valuations of variables: Designations of terms Three more semantic functions
must be defined before I can define satisfaction.

First, a valuation 'V relative to amodel M = (W, @, R, D, J) is a (total) function
from the set of variables of the language into D¢. (Thus if Dy is empty, V is the
null set.)

Next, where V and U are valuations relative to a model M = (W, @, R, D, d),
w € W, « is a variable, and D(w) is not empty, U is an «-variant-at-w of V if
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V and U differ at most in what they assign to «, and U(x) € D(w). (I stipulate
that if O (w) is empty, no valuation (not even V itself) is an a-variant-at-w of V.
In this case universally quantified formulas are satisfied by all valuations at w and
existentially quantified formulas are satisfied by none; see Section 3.4.)

Finally, I define the designation of a term at a world of a model relative to a
valuation. Recall that a term may be either a variable or an individual constant.
Since it is models (via their constituent interpretations) that assign designations to
individual constants, but valuations that assign designations to variables, it will be
convenient to have a single notation that expresses the designation of a term. For this
purpose I adopt the notation ('V x 4)(z, w) of Fitting and Mendelsohn (where 'V is a
valuation relative to a model M = (W, @, R, D, d), w € W, and 7t is a term).

(1) If t is a variable, (V x )(t, w) = V(7).
(2) If 7 is an individual constant, and J (t, w) is defined, (V*d)(t, w) = J (7, w).
Otherwise (V % d)(t, w) is undefined.

Note that under these definitions variables designate rigidly, but individual constants
are allowed to designate nonrigidly.

3.4 Satisfaction and satisfiability The definition of satisfaction is now straightfor-
ward. First, abbreviate valuation V satisfies formula ¢ at world w of model M
as My(¢p,w) = 1, and valuation V does not satisfy formula ¢ at world w of
model M as My(¢p,w) = 0. Satisfaction of a formula ¢ relative to a model
M= (W, @ R, D,d), avaluation 'V, and a world w € W (where 6 is an n-ary
predicate, « is a variable, t and 7y, ..., T, are terms, and ¢, y, and ¥ are formulas)
is defined as follows.

(1) If ¢ is the atomic formula 07y ... 7, My(p, w) = 1if (Vxd)(t1,w), ...,
(V * §)(1,, w)) € 4(0, w); otherwise My (¢, w) = 0.'®
2) If ¢ is =y, My (¢, w) = 1if My (Y, w) = 0; otherwise My (¢, w) = 0.
3) I ¢ is (W A 1), My(pw) = 1if My(p,w) = 1 and My(x,w) = 1;
otherwise My (¢, w) = 0.
(4)—(6) The clauses for v, —, and <> are similar (with obvious modifications) to
clause 3.
) If ¢ is OY, My(p, w) = 1if My(¥,w*) = 1 for all w* € W such that
wRw*; otherwise My (¢, w) = 0.
®) If g is Oy, My (¢, w) = 1if My(¥, w*) = 1 for at least one w* € W
such that wRw*; otherwise My (¢, w) = 0.
9) If g is Ay, My(¢p,w) = 1if My(¥, @) = 1; otherwise My (¢, w) = 0.
(10) If ¢ is Vo, My (¢, w) = 1 if My (3, w) = 1 for all valuations U that are
a-variants-at-w of V; otherwise My (¢, w) = 0.
(11) If ¢ is oy, My (P, w) = 1 if My (¢, w) = 1 for at least one valuation U
that is an a-variant-at-w of V; otherwise My (¢, w) = 0.
(12a) If ¢ is (Ao )(T), (V % d)(r, w) is defined, and (V » d)(r,w) € D(w),
My (P, w) = 1if My (¥, w) = 1, where U is the a-variant-at-w of V such
that U(a) = (V = 4)(z, w); otherwise My (¢, w) = 0.
(12b) If ¢ is (Aa.y¥)(7) and either ('V x d)(z, w) is undefined or (V » 4)(z, w) ¢
D(w), My(p,w) = 0.
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A set of formulas ¥ is satisfiable if and only if there is a model M = (W, @, R,
D, d), a valuation 'V relative to M, and a world w € ‘W, such that for each formula
0; € X, My(0;,w) = 1. A formula ¢ is satisfiable if and only if {¢} is satisfiable.

3.5 Truth at a world in a model; Truth in a model As in the standard Tarskian
approach to semantics, a sentence of SAT is satisfied by a valuation at a world in
a model just in case it is satisfied by all such valuations. Truth and falsity for sen-
tences can thus be defined in the usual way. A sentence ¢ is true at world w of model
M if and only if all valuations V relative to M satisfy ¢ at w. Similarly, ¢ is false at
world w of M if and only if no valuation V relative to M satisfies ¢ at w. A sentence
¢ is true in model M if and only if ¢ is true at world @ of M.

Notice that truth and falsity are defined only for sentences. This is deliberate.
Extending these definitions so that they apply to all formulas would not be a harm-
less change. It would be tantamount to introducing possibilist universal quantifiers
(quantifiers that range over the domain of a model) although allowing them to stand
only at the beginnings of sentences. Such quantifiers flout the fundamental principle
of actualism. And defining truth in this way can lead to serious confusion, as was
shown by Kripke [19] in his refutation of an alleged proof of the Converse Barcan
Formula given by Prior.'”

3.6 Validity, consequence, and equivalence Definitions of validity, logical conse-
quence, and logical equivalence, again only for sentences, can now be given in the
standard way. (These definitions apply to SAK, SAB, SAS4, and SASS, as well as
to SAT.) A sentence ¢ is valid (abbreviated = ¢) if and only if it is true at every
world of every model. A sentence ¢ is a logical consequence of a set of sentences I'
(abbreviated I' F ¢) if and only if for every world in every model, if each member
of T is true at that world so is ¢. Two sentences ¢ and ¢’ are logically equivalent if
and only if E (¢ < ¢’). Itis easy to verify that the rule of necessitation (if F ¢,
then F C¢) holds.

The notion of validity just defined (truth at each world of each model) is called
general validity. It should not be confused with the weaker notion of real-world
validity, which requires only truth at the actual-world element, @, of each model.
Elsewhere I have argued that general validity better captures our intuitive notion of
logical truth.”’

4 Notable Features of the Semantics

4.1 Attributive sentences We are now in a position to see how SAT handles the
examples with which we began in Section 1. Consider a model M = (W, @, R,
D, d) and a particular world w € ‘W such that D(w) is not empty. For predicate
constants S and N, and individual constant d, suppose that (S, w) and d (N, w) are
nonempty subsets of D (w), (N, w) is the complement of 4 (S, w) with respect to
D(w), and d(d, w) ¢ D(w). Then (Ax.~Sx)(d) and (Ax.Nx)(d) are both false at
w while =(Ax.Sx)(d) and —=(Ax.—=Nx)(d) are both true. If we think of S, N, and
d as “is a sexagenarian,” “is a non-sexagenarian,” and “Dweet,” respectively, and w
as the world of interest, we have formal representations of sentences (4a) and (4b) of
the Introduction. Since Dweet does not exist at w, all attributive sentences involving
“Dweet” are false, and the denials of all such sentences are true.



242 William H. Hanson

Without predicate abstraction we would need both S and N as primitive predi-
cates to symbolize sentences (4a) and (4b). For Nd is false at w while =Sd is true.
Predicate abstraction lets the serious actualist say what he wants to say, whether a
predicate or its complement is taken as primitive.”!

4.2 Identity Since individual constants may denote different objects at different
worlds (and need not denote anything at some or even any worlds), SAT allows
identity sentences to be true at some worlds and false at others.?” It is thus a contin-
gent identity logic. Adding this feature to serious actualism entails that self-identity
sentences are false at worlds in which the individual constant involved does not
denote. And as the following paragraphs show, this in turn allows us to avoid hav-
ing as theorems of logic statements to the effect that ¢ necessarily exists, for every
individual constant ¢.”

To facilitate exposition, let &(t) abbreviate do(e = t), where t is a term and o
is a variable distinct from t. Clearly & () is satisfied by a valuation at a world just in
case the object denoted by 7 is a member of the domain of that world. So & can be
thought of as an existence predicate.

Every sentence of the form

(Id) Va(x = a)

is valid, but claims of self-identity that make use of individual constants are not.
Thus neither d = d nor (Ax.(x = x))(d)) is valid. Indeed both are false at world w
of the model M of Section 4.1. And while all sentences of the forms

(d1dl) Va(a =a — OE (o) = (¢ = a))),
(OId2) Yo Vas(og = ar — O(E(a1) — (@1 = a3))),
and
(ND) Vo Vaz(ay # a2 — O(a1 # a2))
are valid, no sentence of the form Vo (o = ¢ — O(a = «)), Yo Vaz(a; = ar —
O(a; = @3)), or YaO(a = a) is.”
It is also noteworthy that existence claims and claims of self-identity are logically
equivalent. That is, all instances of

EW) <« (=)

are valid. And since the rule of necessitation preserves validity, if d = d were valid,
then & (d) and 0O& (d )—abbreviations of 3x (x = d) and O3x (x = d)—would also
be valid. Of course the same would hold for every individual constant. But surely we
do not want to have all, or any, sentences of the form

(NE) DE()

as theorems of logic. The consistent serious actualist avoids this problem by unflinch-
ingly applying her basic principle to self-identities. No sentence of the form

SDH 1t =1
is a logical truth.”’

Failure to take this principled step is not only inconsistent with serious actualism,
it leads to other difficulties. In Menzel’s [24] painstaking reconstruction of Prior’s
seriously actualistic modal logic, all sentences of the form (SI) are valid, but no
sentence of the form (NE) is. Menzel achieves this result only by denying that the
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rule of necessitation applies to (SI) or to valid sentences that depend on it.”° But this
seems ad hoc.

So in SAT statements of self-identity and tautologies are not logically equiv-
alent. While in classical logic d = d and Sd v —Sd are both logical truths,
in SAT only the latter is. Similarly Vx(Sx v =Sx) — (Sd v —S8d) is valid,
but Vx(x = x) — (d = d) is not.”’’ The proper comparison is between
(Ay.(y = ¥))(d) and (Ay.(Sy v =Sy))(d), which are logically equivalent though
not valid.

With respect to substitutivity of identicals, all sentences of the forms

(Subl) (11 =12) > ((Aa.@p(@))(t1) = (Ae.d())(t2))

and

(Sub2) Vo Vaz (o = a2 = ((Aas.d(@3))(a1) = (Aaz.¢(a3))(@2)))

are valid, but not all sentences of the form ((t; = () A ¢(12)) — ¢(t1) are. There

are thus instances of the corresponding argument form in which the conclusion is not
a consequence of the premises.”®

4.3 Quantifiers Quantification is world-relative in SAT, and primitive predicates
and predicate abstracts are true at a world only of objects that exist at that world.
Because of these two features some of the classical principles involving quantifiers
hold only in restricted forms.

Existential generalization in the form

(EG) (Aaz.y(2))(t) = Jai{Aoz. ¥ (a2)) (1)

is valid. Thus the sentences (Ax.Nx)(d) — Jdy{AyNx)(y) and (Ax.—~Sx)(d) —
dy(Ax.—Sx)(y) are valid, but not every sentence of the form v (¢) — Ja () is.
For example, =Sd — JIx—Sx is not. Similarly, not all instances of (¥ (1) A E(t)) —
da iy (o) are valid. Although this schema is valid in standard nonmodal free logics,
the presence of & (i) in the antecedent is not sufficient to guarantee validity when
modal connectives are available. For example, the sentence (OSd A §(d)) —
AxOSx is invalid. Individual constants may denote different objects at different
worlds. So Sd can be true at every world accessible from a world w even though no
object in the domain of w exhibits S at all such worlds.

When applied to predicate abstracts quantifiers do not exhibit their usual dual
properties. Thus in spite of the validity of (EG), not all sentences of the form

Yo (Aaa.¢(e2))(e1) = (Aaz.¢(a2))(1)
are valid. Indeed
Vx(Ay.Sy)(x) — (Ay.Sy)(d)
is not. Even if the antecedent is true, d must designate in order for the consequent to

be true.
Universal instantiation in the form

(UD Vai{daz.¢(az))(@r) = (6() = (Aaz.¢(x2)) (1)),
however, is valid. And just as in the case of (EG) the use of predicate abstraction in
(UD) is essential, since not every sentence of the form

(faux UI) Voi¢(ar) — (E() — ¢ (1)

is valid. For example, the sentence
vVxOSx — (6(d) — OSd)
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is not. There is a tableau for this sentence, and a countermodel, in Section 8.3.

4.4 The Barcan and Converse Barcan Formulas SAT provides sensible treatments of
the Barcan and Converse Barcan Formulas. Consider first the following form of the
Converse Barcan Formula:

(CBF) Jo1 O (Aaz.¢(a2)) (1) = QIar{Aaz.¢(a2))(@1).

(CBF) is valid, as seems entirely plausible. Evaluated at any world w, (CBF) says
(roughly) that if there is an object in w that has a property in some possible world
w’, then there is a possible world in which some object has this property. Given
the antecedent, and given that according to serious actualism an object can have a
property at a world only if it exists in that world, w’ as described is sufficient to make
the consequent true. If an object from w has a property in w’, that object must exist
inw’.”’

Standard counterexamples to this form of the Converse Barcan Formula assume
that true predications can be made of objects at worlds in which those objects do not
exist.” Serious actualism rejects this assumption. In so doing it provides a plausible
explanation of why these counterexamples so often seem wrong to the uninitiated.
They are wrong.

Of course the Converse Barcan Formula can also be expressed using necessity
and universal quantification. (CBF) is logically equivalent to

DVoq —'(/\0524) (012))((11) — VO{l Dﬁ(ka2.¢(oz2))(oz1),
which is also valid. But in this form the fact that negations precede predicate abstracts
is crucially important. Not all sentences of the form
(faux CBF) OVa (Aaz.¢(a2)) (1) — Yo O{Aaz.¢(a2)) (1)
are valid. Standard counterexamples apply.’' There are tableaus for instances of
(CBF) and (faux CBF) in Section 8.3.

It is worth noting that Stalnaker [32] gives a version of the Converse Barcan For-
mula that is entailed by, but does not entail, (faux CBF). Translated into my notation
it is
(Stal CBF) OV {Aas.¢(a2)) (1) — Yoy (Aaz.O¢(az)) (o).

(Stal CBF) is not valid in SAT or in Stalnaker’s system. (For more about the latter,
see Section 6.2.)

Turning now to the Barcan Formula, it is not difficult to see that both of the fol-
lowing formulations have invalid instances:

Qﬂal(kaz.qb(az))((xl) — Eloe1<><)ka2.¢(a2))(a1),
Vo O{Aaz.¢(@2)) (1) — OV {Aaz.¢(e2))(er).

Standard counterexamples again apply.*>

4.5 Extensionality of predicate abstraction Predicate abstraction in SAT is in a cer-
tain sense extensional, as the following valid sentences show:

Vz({Ax.(Ay. Fy)(x))(z) < (Ay.Fy)(2)).

(hx.(hy. Fy)())(d) < (y.Fy)(d).
(Az,w.(Ax,y.Rxy)(z,w))(d,0) < (Ax,y.Rxy)(d,0).
Vu‘v’v((x\z, w.{Ax, y.Rxy)(z, w))(u, v) < (Ax, y.Rxy)(u, v)).
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If predicate abstracts are taken to represent properties, then having a property and
having the property of having that property are not distinguished in the semantics,
similarly for relations.

5 Some Important Semantic Metatheorems

Since antiquity logicians have realized the importance of logical form. If a sentence
is logically true, then every sentence of the same form is also logically true. In pred-
icate logic this principle manifests itself in the principle of uniform substitution for
predicates. Substituting the same complex predicate for each occurrence of a simple
predicate in a logically true sentence should yield another logical truth. Yet seriously
actualistic logics have commonly been thought to violate this fundamental principle.
I show in Section 5.1 that when predication is understood properly, using predicate
abstraction, uniform substitution of predicates does indeed preserve logical truth.
This holds for SAT and its kindred systems, and it is one of their main advantages
over other attempts to formalize seriously actualistic modal logics.

Another important feature of SAT is that it supports a theorem (sometimes called
a replacement theorem) that sanctions substituting logically equivalent subformulas
for each other within a given formula. If, in a formula, an occurrence of a subformula
is replaced by a logically equivalent formula, the result is logically equivalent to the
original. Of course such a theorem depends on an appropriate definition of logical
equivalence for formulas. (The definition of logical equivalence given in Section 3.6
applies only to sentences.) In Section 5.2 I define logical equivalence for formulas
and prove a replacement theorem.

Section 5.3 contains two theorems about validity and logical consequence of sen-
tences. Section 5.4 contains a deduction theorem.”

5.1 Uniform substitution for predicate abstracts If a sentence ¢ is logically true,
then any sentence that results from substituting a new predicate (simple or complex)
for each occurrence of a simple predicate in ¢ should be logically true as well. Yet it
appears that uniform substitution does not preserve logical truth in seriously actual-
istic systems. For example, where F and G are primitive predicates, although

AxOFx — QAxFx

is valid in SAT,

AxO—Gx — $Ix—Gx
is not.”” Yet the second sentence has the same general form as the first, since it results
from substituting =G x for F x. I believe failure of uniform substitution is the reason
seriously actualistic systems of quantified modal logic have not been widely studied.

Indeed Kripke cited this failure as a major problem very early in the development
of model-theoretic modal semantics. In Section 1 I quoted the salient passage from
[19], one of his most important and most frequently cited early papers. Yet if prop-
erly understood, uniform substitution does preserve validity in seriously actualistic
systems. ™’

Proper understanding means taking predicate abstraction seriously as the pre-
ferred means of expressing predication, and thus understanding uniform substitu-
tion as substitution of a predicate abstract for each occurrence of a primitive pred-
icate abstract throughout a sentence.’® For example, if we substitute (Ay.—~Gy) for
(Ay.Fy) throughout the valid sentence

£ 34
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(11) IxO(Ay.Fy)(x) - O3x(Ay.Fy)(x),
we obtain
(12) IxO(Ay.=Gy)(x) — OIx(Ay.=Gy)(x),
which is also valid. Theorem 1 shows that the foregoing is not an isolated example.

Theorem 1 Uniform Substitution for Predicate Abstracts (USPA)

Consider a sentence @, an atomic formula O« . .. o,, where o, . .., oy are dis-
tinct variables, and a formula . Suppose that each of the variables oy, ..., o, has at
least one free occurrence in v, and no other variable occurs free in . Suppose also
that 6 occurs in @ only as part of the predicate abstract (Aaq, ..., ;.00 ... ay,), and
that W is the result of simultaneously substituting (Ao, ..., «,.1¥) for each occur-
rence of (Aay,...,a,.001...a,) in ®. Under these conditions, if ® is valid, then
sois V.

Proof Consider the case where n = 1. To facilitate the proof, I define the
extension of a unary predicate and the extension of a predicate abstract at a world
in a model. If 6 is a unary predicate, the extension of predicate 6 at world w
in model M = (W,@,R,D,d) (abbreviated Exty,(0)) is 4(6,w). By the
definition of an interpretation (see Section 3.2) Exty,, () € D(w). If ¢ is a
formula, o is a variable, o has at least one free occurrence in ¥, and no vari-
able other than « occurs free in v, the extension of predicate abstract (Ao.yr)
at world w in model M = (W,@, R, D,J) (abbreviated Exty, ((Aa.v/))) is
{V(a) | My({(Aa.¥)(a), w) = 1}, where V ranges over all valuations relative to
M. By clause 12 in the definition of satisfaction (see Section 3.4) it follows that
Extug, (Ae./)) € D(w).

Since € is a unary predicate, O« is a formula. So Exty, ((Ax.0)) is {V(x) |
My ({(Aa.Oa) (), w) = 1}, where 'V ranges over all valuations relative to M. It
follows from the definition of satisfaction (see Section 3.4) and the definition of
Extu,, (0) (above) that Ext 4, ((Ac.fa)) = Exty,, (6) = 4(0, w).

Now suppose that W is invalid. Hence there is a model M = (W, @, R, D, d),
a world w € W, and a valuation V, such that My(¥,w) = 0. Consider the
model M* = (W,@,R,D,d*), which is exactly like M except that, for all
w* € W, J*(0,w*) = Exty, . ({(Aa.¥)). Since Exty, . ((Aa.y¥)) S D(w*),
J* is well defined. A straightforward induction on the complexity of ® shows that
M3,(P, w) = 0. Hence & is invalid. The proof easily generalizes to cases where
n>1"m

In addition to sanctioning the move from the validity of (11) to that of (12), USPA
also allows us to infer the validity of (14) from that of (13):

(13) IxVy{Alu,v.Ruv)(x,y) — VYyIx{Au,v.Ruv)(x, y),

(14) IxVy{(Au,v.=OFw(Fuw A Gwv))(x,y) — Vydx{(Au,v.~OIw(Fuw A

Gwv))(x,y).
The reader will be able to generate other examples of inferences sanctioned by USPA.

5.2 Replacement (substitution of equivalents) Well-behaved logics typically sup-
port a definition of logical equivalence for formulas and a replacement theorem. Such
theorems generally guarantee that given a formula ¢, replacing any subformula ¢ of
¢ by a formula ¥’ equivalent to ¥, yields a formula ¢’ equivalent to the original ¢.
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In nonmodal first-order logic it is sufficient for this purpose to declare formulas y and
x' logically equivalent if Vo ... Vo, (y < x) is valid, where 1, ..., oy, include
all the variables that have free occurrences in y or y’. But such a definition will not
support substitution of equivalents for modal logics that allow different worlds in a
model to have different domains of individuals. For these logics we need a stronger
notion of logical equivalence.

For a formula ¢, let the YO-closure of ¢ be any sentence formed by prefixing ¢
with a sequence of interspersed universal quantifiers and necessity connectives. This
sequence may be of any finite length and the universal quantifiers and necessity con-
nectives may appear in any order. None of the quantifiers may be vacuous, however,
since vacuous quantifiers are banned by the definition of a formula. A VJ-closure
of a sentence will consist of that sentence prefixed with zero or more necessity con-
nectives.

For a formula ¢ I write lIl- ¢ to indicate that every Y[I-closure of ¢ is valid,
and (extending the corresponding definition for nonmodal first-order logic given two
paragraphs back) I say that two formulas v and v’ are logically equivalent if and
only if I- (¥ < ¥’).*® Armed with this definition the statement and proof of the
replacement theorem are straightforward.”’

Theorem 2 Replacement (Substitution of Equivalent Subformulas)

Let v, ¥/, ¢, and ¢’ be formulas. If lI- (¢ < ¥’), and ¢’ is like ¢ except that ¢’
contains an occurrence of ¥’ at a place where ¢ contains an occurrence of v, then

- (¢ <> ¢).

Proof This is straightforward, adapting the proof of replacement in Mates
[22, pp. 135-36]. First prove the following lemma. If IIF (¥ < '), then
IE (=y < =y"), 1= (¥ A x) < @' A Q) IE (@Y < Oy, lIE (A < Ay,
I (Vay < Yay'), and IF ((Aa.¥) (1) < (Aa.y’) (1)), where ¥, ¥/, and y are
formulas, « is a variable, and 7 is a term.*” Theorem 2 then follows by induction on
the complexity of ¢. B

5.3 Sentences: Closure, validity, consequence, equivalence Two further results con-
cerning sentences are easily established.

Theorem 3 Closure and Validity
For any sentence ¢, ll- ¢ if and only if F ¢.

Proof The “if” part is immediate by the rule of necessitation. For the “only if”
part, suppose ¥ ¢. Then ¢ is false at some world w of some model M. Construct
a model M’ that is exactly like M except for containing an additional world w’ such
that w'Rw. Then O¢ is false at w’, and hence ¥ O¢. So it is false that I ¢. B

Theorem 4 Logical Consequence and Logical Equivalence

For any sentences ¢ and ¢/, the following three conditions are equivalent:

() = (¢ < ¢'),
2 E(p<¢).
3) pF ¢ andd’' F ¢.
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Proof The equivalence of (1) and (2) is immediate by Theorem 3. The equiv-
alence of (2) and (3) holds in view of the standard definition of consequence in
Section 3.6.H

It is noteworthy that, as in standard first-order nonmodal logic, two sentences are
logically equivalent if and only if each is a consequence of the other as (2) and (3) of
Theorem 4 show.

5.4 Deduction theorem A deduction theorem exactly analogous to that of standard
first-order nonmodal logic also holds.

Theorem 5 Deduction Theorem

For any sentences ¢ and ¢’, and any set of sentences I', I' U {¢} E ¢’ if and only if
FE¢—¢.

Proof This is obvious in view of the standard definition of consequence in Sec-
tion 3.6. A

6 Comparisons with Other Systems

Modal logics that are seriously actualistic with respect to afomic sentences have
been studied by several authors, but because the languages considered lack a predi-
cate abstraction operator, none of them support uniform substitution.*' The work of
Plantinga, Jager, and Stephanou is nonetheless noteworthy. I discuss it in Section 6.1.

Stalnaker [31] gives a subtle and insightful discussion of logical form in a first-
order nonmodal language supplemented with a predicate abstraction operator. He
also briefly discusses a seriously actualistic modal extension of this language, empha-
sizing the importance of the scope of the abstraction operator in determining the log-
ical form of a sentence. And he suggests (see [31, pp. 335-36]), but does not prove,
that in this modal extension uniform substitution preserves logical truth. He further
explores this same modal extension in [32].** I discuss his work in Section 6.2. The
work of Garson and Chihara is also discussed briefly in Section 6.2 to help locate
SAT within the literature.

6.1 Actualism and serious actualism: Plantinga, Jager, Stephanou Actualism and
serious actualism have long been advocated by Plantinga. He defines actualism as
the claim that there neither are nor could have been things that do not exist.*? If we
adopt Exists as a predicate for existence, this can be expressed as

(Actl) —(3x— Exists(x) v ¢Ix— Exists(x)),
which is equivalent to
(Act2) OVx Exists(x).

Plantinga’s idea seems to be that actualists and possibilists will agree that Exists
holds of all and only actual objects, and that the dispute between them is over the
scope of the quantifiers. Since actualists can make no sense of objects that are possi-
ble but not actual, they take quantifiers to range over just actual objects. This would
seem to make (Actl) and (Act2) true. But for possibilists quantifiers range over both
actual and merely possible objects, apparently making (Actl) and (Act2) false.
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Unfortunately, if we try to express the foregoing reasoning using standard modal
logics, a problem arises. Since Exists is defined as holding of just actual objects, it
can presumably be expressed as

A& (x)
(where A is an actuality connective and & (x) is defined as Iy(y = x), as in Sec-
tion 4.2). (Act2) should then be expressible as
(Act2*) OVxAE(x).
But (Act2*) does not capture the interpretation of (Act2) that I attribute to Plantinga
in the previous paragraph. For in standard varying domain modal semantics the range
of a quantifier at a world is the domain of that world, and some of these domains are
typically construed as containing possible but nonactual objects.** So in these logics,
SAT included, (Act2*) is false at the actual world element of the intended model. In
view of this, I suggest that actualism is properly expressed by

(Act3) VxA&(x),
which is true at the actual world element of the intended model Mj", defined in
Section 7.

Because an actualist cannot consistently allow nonactual objects to be constituents
of the intended model of his allegedly actualistic modal language, there may seem to
be a problem with this view. But an actualist can, following Menzel [23], construe
possible objects and the possible worlds they inhabit as set-theoretic constructs that
use only actual objects to represent ways things might have been, not as (or having as
constituents) anything that is merely possible. So although actualists deny the exis-
tence of merely possible objects, they need not deny themselves the use of varying
domain semantics.

In spite of the foregoing problem with Plantinga’s account of actualism, there is
much in his work that supports and is supported by SAT. His discussion in [26] of
what he calls predicative and impredicative singular propositions is a case in point.
The former affirm, and the latter deny, a property of an object.* Plantinga’s rebuttal
of what he calls the classical argument for possible but nonexistent objects makes use
of this distinction.*® Specifically, (using his numbering) he distinguishes the impred-
icative

(13*) Socrates does not have the property of existing
from the predicative

(13**) Socrates has the property of nonexistence.*’
Plantinga says, rightly, that (13*) is true in just those worlds in which
(23*) Socrates exists

is false, and that (13**) is false in every world.
Predicate abstraction is ideally suited to mark these distinctions. In SAT
Plantinga’s (13*) and (13**) are naturally expressed as

*) =(Ay.E())(s)

and

) {(Ay. =€) (),
respectively, and their truth values are determined exactly as he says. The sentence
(*) is true at a world in a model just in case s fails to denote at that world, and the
denial of (**) is true at every world in every model. So in SAT
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(=*) = (Ay.—€(¥))(s)
and indeed

(=0™) =O{Ay.—E())(s)
are valid. Not only is it false that Socrates is nonexistent, it is impossible that he be
so. And the use of predicate abstraction makes it clear that this latter claim, embodied
in (={Q™**), is a far cry from

=0=(Ay.6(»))(s),

and from several orthographically similar sentences, all of which are false in the
intended model M. "5

Plantinga also advocates serious actualism, which he expresses as the necessi-
tation of “...no object could have a property without existing.”>’ This cannot be
expressed in a first-order language without quantifying over properties, but it can be
approximated schematically as

(SA) OV O((Aaz.¢(@2)) (1) — E(ar)),
all instances of which are valid in SAT.

Plantinga nowhere formalizes his preferred modal logic; for this he refers his read-
ers to the work of Jager. In [16], Jager presents his system A, in which an atomic
formula is satisfied at a world by an n-tuple of objects only if each of those objects
exists at that world. System A is thus seriously actualistic with respect to atomic
formulas. But it lacks predicate abstraction and thus is not fully seriously actualis-
tic in the way SAT is. A contains the usual connectives and quantifiers, but it lacks
individual constants and an actuality connective. For each model the variables of A
take their values from the domain of that model, and they denote the same object at
each world therein. But the range of quantifiers at a world is limited to the domain of
that world. Thus in its treatment of variables and quantifiers A4 is exactly like SAT.
System A differs from SAT in that negation and necessity are given de re interpreta-
tions, which I will represent with —, and OJ,, and which are easily defined in SAT.
For example, —, Fx and O, F x can be expressed as

(Ay.(E(») A=Fy))(x)
and
(Ay.(E() A Fy AO(E(y) = Fy))(x),
respectively.”’

Jager [17] extends system A to the system he calls D, to facilitate distinguishing
de re and de dicto modalities and negations. He does this by supplementing A4 in a
way that makes it possible to exempt particular occurrences of variables within the
scope of —, or O, from the requirement, described in the previous paragraph, that
they denote an object at the world of evaluation in order for the formula in which
they appear to be satisfied at that world. Specifically, he adds an operator he calls
a dictifier (V) and, for each variable «, infinitely many position variants, o', o2,
a3, ..., of a. (In the semantics of D each position variant of a variable is assigned
the same value as the variable itself.) Thus if Vx!Rx!y! appears within the scope
of =, or O,, x! (but not y!) is exempt from the requirement in question.

Using these resources, and adding individual constants such as s and p to the
language of D to facilitate representing English sentences (as Jager himself does),
the sentences
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Socrates has the property of necessarily-teaching-Plato
and
Plato has the property of necessarily-being-taught-by-Socrates
can be expressed as
O,VpTsp
and

0,VsTsp,

respectively. In SAT these sentences can be expressed, at least as perspicuously, as
(Ax.D(é’ (x) > Txp))(s)

and
(Ax.0(&(x) = Tsx))(p).

respectively.

More generally, it is easy to show that every Jager model and variable assignment
can be exactly replicated by a SAT model and valuation.’® Given this fact, and using
the SAT constructions for expressing Jager’s de re negation and de re necessity given
three paragraphs back, it is easily proved that a formula of system D is satisfied by
a variable assignment at a world of a Jager model if and only if it is satisfied at the
same world of the corresponding SAT model by the corresponding valuation.

Finally, it should be noted that Stephanou [38] has given a long and subtle defense
of serious actualism. Although, like Plantinga, he understands serious actualism as
quantifying over properties and relations as well as individuals, he recognizes that it
is partially expressed by first-order formulas of the form

(SA]) ValEl(gb(oel) —> E|Ol2(0{1 = Olz)),

where ¢ (o) is an atomic formula in which «;, and perhaps other variables, have
free occurrences. He calls the schema (SA1) predicate actualism, and he is keenly
aware that it is plausible only when ¢ (1) is construed as an atomic formula. For he
notes that from (SA1) and

Yo O(=¢ (1) = Jaa(ay = a2))

it follows that
VOl1|:E|Ol2(Ol1 = 062),

a result he wants to avoid.

In [38] Stephanou does not present a system of formal semantics, although he
considered such systems in [36] and [37]. And although (SA1) is a valid schema
in the systems he presents in the latter two papers, uniform substitution of complex
formulas for atomic formulas does not preserve validity in any of them. For none
of these systems contains predicate abstraction or any means of obtaining its effect.
So while Stephanou’s semantic systems treat primitive predicates in accordance with
serious actualism, they lack a mechanism for passing that treatment on to more com-
plex formulas.
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6.2 Names and abstraction: Garson, Chihara, Stalnaker Of all the systems discussed
by Garson [8] in his encyclopedic survey of modal logics SAT is most similar to
Q3.% Both are free logics in which quantifiers are world-relative, variables are rigid,
and individual constants are nonrigid. They differ in that SAT contains predicate
abstraction and embodies serious actualism, features that Q3 lacks.

Because it contains predicate abstraction SAT supports a straightforward free-
logic version of universal instantiation: (UI) given in Section 4.3. The version of uni-
versal instantiation Garson gives for Q3 (due to Hintikka) is considerably more com-
plex. And although the individual constants of SAT and Q3 are nonrigid, in both sys-
tems they can be made to approximate rigid designators. For the individual constant d
all that is required is the stipulation AxC(d = x), or Ix(O(d = x) AOO(d = x)),
or Ix(d(d = x)AOO(d = x)AOOO(d = x)), and so on.”* We can thus stipulate
that d denotes one and the same object in all possible worlds (including the actual
world), or that it does this in all possible worlds and in all possibly possible worlds,
and so on. (In SAS4 and SASS this entire set of sentences can be replaced by the
single sentence Ix(d = x).)

Chihara’s systems M; and M* are similar to SAT in that they are seriously actu-
alistic free logics with world-relative quantifiers. They differ from it in that their
individual constants are model-wide rigid designators. They also differ in lacking
predicate abstraction and identity. SAT is closer to My, since M* is simply M; plus
Chihara’s (seemingly false) Principle of Compossibility.>

More importantly for my purposes Stalnaker [32] develops a quantified modal
logic with predicate abstraction that is similar to, but interestingly different from,
SAT.”® A striking feature of this approach is that quantifiers apply directly to predi-
cate abstracts (and to unary predicates) rather than to formulas. Stalnaker says this:

... gives a clearer representation of the logic of quantification because it separates two
conceptually distinct operations that are performed by variable-binding operators. First
is the implicit formation of complex predicates from complex sentences by introducing
blanks—free variables—in the sentences. The second is generalization: the formation
of general claims from predicates—the claims that everything in the domain, or at least
one thing in the domain, satisfies the predicate that is implicitly represented by the open
sentence. In our language, the abstraction operator makes the first of these operations
explicit, turning an open sentence into an expression that has the syntactic role as well as
the semantic function of a predicate. Then the quantifier has only the job of expressing
generality.’

Stalnaker’s predicate abstraction operator (represented by a cap over a variable) plays
the same role as the lambda operator plays in SAT. Where S is a unary predicate,
xSx and XSxd correspond to (Ax.Sx) and (Ax.Sx)(d). The sentences VxS x and
VS correspond to Vy{Ax.Sx)(y) and VySy. I will focus on his T-based system,
which I will call Stal-T, to facilitate comparison with SAT.”®

In addition to predicate abstraction and quantifiers Stal-T, like SAT, contains the
usual truth-functional and modal connectives. Indeed SAT and Stal-T are nearly
identical logics. Yet even though Stalnaker is clearly interested in the proper rep-
resentation of logical form, he does not discuss uniform substitution for predicate
abstracts (cf. Section 5.1 above). Neither does he discuss substitution of equivalent
subformulas for one another (cf. Section 5.2 above). His main focus is on show-
ing how to combine extensional first-order free logic and propositional modal logic
without having to retract anything from either and adding only “...two principles
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that concern the interaction of modality with predication, and modality with iden-
tity.”>” He gives slightly different axiomatizations of this logic in the two versions of
the paper, and in both versions he claims soundness and completeness. But neither
soundness nor completeness is proved in either version.

SAT and Stal-T are alike in that the extensions of predicates and predicate
abstracts at a world are restricted to objects in the domain of that world. Both are
thus seriously actualistic with respect to all predicates, unlike the systems of Jager
and Stephanou (discussed in Section 6.1) that are seriously actualistic only with
respect to primitive predicates. They are also alike in that the domain of a world in
a model may be empty, an individual constant need not denote at a world and may
denote different objects at different worlds, and the denotation (if any) of an indi-
vidual constant at a world must be in the domain of that world. They differ mainly
in that Stal-T, but not SAT, counts vacuous predicate abstracts as well formed, and
applies the terms “valid” and “invalid” to formulas containing free occurrences of
variables. If the syntax and semantics of Stal-T are modified to be like those of SAT
in these two ways, and if we restrict attention to formulas of SAT not containing
the actuality connective (which Stal-T lacks), corresponding sentences of the two
languages will take the same truth value at each world of each model.®”

The sentences of Stal-T are unambiguous, but inserting ( and ) as additional brack-
ets to mark off predicate abstracts will improve readability and facilitate compari-
son with SAT. So, for example, where S is a primitive unary predicate I will write
3(S) for 3S, I(xSx) for IxSx, =V(X—Sx) for =Vi—Sx, and V(xO(ySy)x) for
VXOpSyx.°! The transformations that preserve equivalence are as follows.

Starting with a sentence of SAT replace subformulas of the form Va¢ with V{G¢),
Jap with (@), and (Aa.¢)(B) with (@¢)B. To go in the other direction first insert
( and ) around predicate abstracts as in the previous paragraph. Next, working from
the inside out, replace subformulas of the form V() and 3(y) with Vo (¥ ) and
da (), respectively, where the variable o does not appear in ¥. Then replace
subformulas of the form {&¢)B with (La.¢)(B). This will yield a sentence of SAT.
Under these transformations the resulting sentence will be equivalent to the original,
given the modifications of Stal-T syntax and semantics noted two paragraphs back.

Stalnaker points out that both the Barcan Formula and its converse have invalid
instances when expressed in his language as

vVxOe¢ — OVig
and
OVxi¢ — VxOe.

But he does not mention that all instances of the following form of the Converse
Barcan Formula

AxHp — OAxe
are valid in Stal-T.

For example, taking ¢ to be Sx (where S is a primitive unary predicate) this
becomes

AxOSx — OIxSx,
and adding brackets yields
xOSx) — OI(xSx).
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The transformation process given above then yields

Ay {Ax.08x)(y) = Oy {Ax.Sx)(y),

which is equivalent to

Ay O (Ax.Sx)(y) = Oy {Ax.Sx)(y).

an instance of the valid schema (CBF) given in Section 4.4 above.
Indeed, where ¢ (a2) is a formula containing free occurrences of a, (but no free
occurrence of any other variable) all sentences of the form

(CBF*) 36 Qda¢(az)ar — (I 162 (a2)ay
are valid in Stal-T. But not all sentences of the form
(faux CBF*) DV&1&2¢(a2)a1 —> V&1D&2¢(a2)a1

are. And (CBF*) and (faux CBF*) are equivalent to the translations into Stal-T of
(CBF) and (faux CBF) of Section 4.4. So Stal-T distinguishes between the two ver-
sions of the Converse Barcan Formula just as SAT does.

7 Truth Simpliciter and Actualism

Thus far I have been concerned almost exclusively with matters of logic: logical
truth, logical consequence, logical equivalence. These notions were defined, using
models, in a way that embodies serious actualism. Indeed we have seen that serious
actualism is reflected in a logically true sentence of the language. (Recall (SA) from
Section 6.1.) But as yet I have said almost nothing about truth simpliciter.

Given model-theoretic semantics it is natural to designate a particular model as
the intended model and then identify truth simpliciter with truth at the actual world
element of this model. A modal realist would specify the intended model, My (4
for intended), as (Wy, @4, Ry, Dy, d4), where Wy really is the set of all possible
worlds, @ is the actual world, Ry is the relation of relative possibility among the
worlds, Dg(@y) is the set of all actual individuals, D, is the set of all actual
and possible individuals, and so on. Truth simpliciter would then be truth at @
of My. But such an approach is anathema to actualists, who eschew all talk of
possible worlds, possible objects, and alleged relations among such alleged entities.
So construed My does not exist.

Fortunately Menzel [23] has shown in considerable detail how the foregoing
approach can be shorn of metaphysical excess and made acceptable to actualists.
Actualists need only acknowledge that they understand and accept as primitive basic
modal terms (like those italicized in this paragraph). Menzel’s innovation is based
on construing selected pure sets as surrogates for actual and possible objects and
using them to create an actualistically acceptable model that would be isomorphic to
My if My existed.”” Under this approach @ is replaced by a set-theoretic construct
that accurately models the world, how things are. The other members of W, are
replaced by similar set-theoretic constructs, each of which might have been a model
of the world. Dy (@ 4) becomes the set of surrogates of all actual things, and for each
w; € Wy, Dg(w;) becomes the set of things that would be surrogates of the actual
things if w; were a model of how things are. In this way an actualist who accepts
modal terms as primitive can construct a model that would be isomorphic to My if
the latter existed.®’
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I will call this actualistic intended model Mj" = ("Wf’, @f’, Rf", JDJ‘A’, d j;") (A
for actualistic, J for intended). 'Wf" is thus the set of all possible world surrogates,
@j" the actual world surrogate, 1)']""“(@34’) the set of all actual individual surrogates,
and so on. Truth simpliciter is now just truth at @f. Necessary truth is truth at all
wj" € 'Wj"’ such that @j"ﬁj"w:f".

Given this terminology the sentence (Act3) of Section 6.1, which expresses actu-
alism, is true but not necessary:

(Act3) VxA&(x)

(Act3) is true because it says that everything is actual, an obvious—indeed an a
priori—truth. But on the plausible assumption that there might have been things that
do not actually exist, it is not true at every wj" € 'Wj" such that @f’ﬁj“w:j", and
hence not necessary. So (Act3) is an example of a contingent a priori truth.®

It should also be noted that because I define validity as general validity (truth at
every world in every model) (Act3) is not valid. Were validity defined as real-world
validity (truth at the actual-world element of every model) things would be different.
(Act3) would be classified as valid, but the rule of necessitation would no longer
preserve validity. In [11] and [12] I have argued at length that general validity has a
better claim to the title of logical truth than does real-world validity.

8 Tableaus

In this section I develop a system of tableau proofs for SAT and its kindred systems.®
In the Appendix I prove that these systems are sound and (weakly) complete with
respect to the corresponding notions of logical consequence. These tableau systems
follow closely those of Fitting and Mendelsohn [7].

8.1 The Basics

8.1.1 &%, the language of tableaus The language £* is a slight extension of the
language & presented in Section 2. It differs from £ only in containing additional
individual symbols called grounded terms. Grounded terms will be explained shortly,
but first I need to describe the prefixes that appear in tableau nodes.

Each tableau node consists a formula of £* preceded by a prefix, this prefix
being a sequence of (numerals for) positive integers and the symbol @ separated by
periods. The first symbol in a sequence is always 1 or @. Thus the following are
sequences: 1, @.1.1.3, 1.4.5.2, 1.1.2. If o is a prefix and » is a positive integer, then
o.n is o followed by a period followed by n. Thus if o is 1.3.4 or @.1.1, and n is 2,
then o.n is 1.3.4.2 or @.1.1.2, respectively. Intuitively, tableau prefixes play the role
of the worlds of a model, and if nodes containing the prefixes o and o.n appear on a
tableau branch it means that o Ro.n.

The grounded terms of £* are individual symbols that have the prefixes of tableau
nodes as subscripts. Grounded terms are of two different kinds, grounded names
and parameters. Grounded names are the same symbols as the individual constants
of £ (the lower case letters a through j), each with a tableau prefix as subscript.
Parameters are the lower case letters k through ¢ (not used in £) with this same kind
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Parameters are used by Fitting and Mendelsohn [7] in tableau proofs. They are
introduced by the tableau rule for negated universally quantified sentences (and by
some other rules) to ensure that the individual term with which a sentence is instan-
tiated is new to the branch in which the sentence appears. Although not essential
(grounded names that are new to a branch could be used instead) they are conve-
nient. They make it easy to tell at a glance which terms appearing on a branch are
part of the sentences of £ with which the tableau began and which were introduced
by applying tableau rules.

L£* is like £ except that the new grounded terms function like rigidly designating
names. Syntactically, they behave exactly like the individual constants of £. That is,
they may appear in atomic formulas and as the terms that follow predicate abstracts.
(Thus if (Aa.¢) is a predicate abstract and 7, is a grounded term, (Ax.¢)(75) is a
formula of £* . The free variable occurrences in (Aa.¢b) (7, ) are the same as those in
(Aa.¢p).) But grounded terms never play the variable-binding role in quantification
or predicate abstraction.

Semantically, the grounded terms of £* behave like the variables of £ in that
they are assigned their designata by a valuation 'V rather than by an interpretation
d of a model M = (W,@,R,D,d). So given a grounded term 7,, a model
M= (W, @ R,D,d), and a valuation 'V relative to M, V(z,) is an element of
Dy. Thus unlike an individual constant, whose denotation (if any) at a world is
always drawn from the domain of that world, a grounded term is assigned a single,
model-wide denotation from the domain of the model.®’

With these stipulations in place, the definition of satisfaction of a formula of £*
by a valuation V at a world w of a model M is exactly like that given for £ in Sec-
tion 3.4. Similarly for the definitions of the satisfiability of a formula of £* and
satisfiability of a set of formulas of £*. But Sections 3.5 and 3.6 define terms (truth
at a world in a model, truth in a model, validity, consequence, and equivalence)
that apply only to sentences of £. These terms are also undefined for formulas of
L£* that are not sentences of £ for the reason given in Section 3.5. Formulas of
£* containing grounded terms are like formulas of £ containing free occurrences
of variables. Calling such a formula true would be tantamount to prefixing the for-
mula with possibilist universal quantifiers and calling the resulting sentence true (cf.
Section 3.5).

8.1.2 The general structure of tableaus The purpose of tableaus is to generate proofs
of logical consequence and validity for arguments and sentences, respectively, of £.
Hence the formulas that appear as parts of the initial nodes of a tableau are always
sentences of L.

A tableau test for an argument of £ with premises y1, ¥z, ..., ¥» and conclusion
¢ begins with the following n + 1 nodes:

1y
1y
1 yn
1 —¢
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A tableau test for a single sentence ¢ of £ begins with the single node
1 —¢

The result of applying a tableau rule to a node or nodes of a tableau will be the
addition of one or more nodes, each a prefixed formula of 2* to the tableau. None
of these formulas will contain free occurrences of variables.

Some tableau rules produce branching. The construction of a branch terminates
when no more rules can be applied to any node on the branch, or when some prefixed
formula and the negation of this formula with the same prefix (o ¢ and 0 —¢) appear
as nodes on the branch. In the latter case the branch is said to be closed. A branch
that is not closed is open. A tableau is closed if all of its branches are closed.

A closed tableau beginning with 1 y1, 1 y2,...,1 y,, and 1 —¢ (where the
yi (1 <i < n) and —¢ are, as specified above, all sentences of L) is a derivation of
¢ from {y1,y2,...,yn}. If T is a set of sentences of £, each y; (1 <i <n) € T,
and there is a derivation of ¢ from {y1, y2, ..., ¥n}, ¢ is said to be derivable from
I" (abbreviated I - ¢). Similarly, a closed tableau beginning with 1 —¢ (where,
again, ¢ is a sentence of £) is a proof of ¢. If there is such a proof, ¢ is said to be a
theorem (abbreviated - ¢).

In the Appendix I prove that a tableau is closed if and only if the sentences of £
with which it begins are inconsistent (i.e., there is no interpretation under which all
of these sentences are true). Thus validity coincides with theoremhood and, for finite
sets of premises, logical consequence coincides with derivability. The foregoing
holds for each of the five systems under consideration. These proofs are based on
the fact that an open tableau branch mimics a model cum valuation of £*. The
intuitive idea is that node prefixes designate worlds (@ designates the actual world),
o ¢ asserts that formula ¢ is satisfied by the valuation at world o, and the appearance
of o.n as a node prefix indicates that o Ro.n.

8.2 Tableau rules

8.2.1 Truth-functional connectives Rules for conjunction, negated conjunction, and
double negation are standard and can be represented as follows:

ocPAY oY) o~
o¢ o-¢lo -y o ¢
oy

The conjunction and double negation rules add the indicated nodes to each branch
in which the top node appears. The negated conjunction rule produces branching in
the usual way. Rules for the other truth-functional connectives are also standard and
can be derived from those given here.

8.2.2 Modal and actuality connectives The SAT rules for necessity and negated
necessity are the standard ones for T. The negated necessity rule is

o —¢ o.n is new to the branch
on —¢

For each branch containing 0 —[¢ this rule is applied just once, and integer n is
chosen so that prefix o.n is new to the branch. The necessity rule for SAT takes two
forms.

(1) o O¢
o¢
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(2) o O¢ if the prefix o.n appears somewhere on the branch
on ¢

Form 2 generally adds multiple nodes to a branch. And as new prefixes come to
appear on a branch form 2 is reapplied, using these prefixes, to nodes to which it has
already been applied using other prefixes.

Tableau rules for the other logics under consideration are also standard. SAK uses
only form 2 of the necessity rule. For SAB, SAS4, and SASS three additional forms
are needed.

3) onO¢
o9

(4) o O¢ if the prefix o.n appears somewhere on the branch
o.n O¢

) onO¢p
o O¢

SAB retains forms 1 and 2 and adds form 3. SAS4 uses forms 1 and 4. SASS5 uses
forms 1, 4, and 5. Since ¢ and [J are interdefinable, rules for ) and —¢ can be
derived from the ones given here.%®

Rules for the actuality connective reflect the idea that a sentence is actually true
at a world just in case it is true at the actual world.

o A¢g o —A¢
@¢ @ —¢

8.2.3 Quantifiers Where « is a variable, let ¥ () be a formula of £* containing
at least one free occurrence of o (but no free occurrence of any other variable).
Let 7, and 7, be a grounded term and a parameter, respectively, each subscripted
with the tableau prefix . The formula v (z,) stands for the result of replacing
all free occurrences of « in ¥ (o) with 7, and similarly for ¥ (7,) and 7s. The
universal quantifier and negated universal quantifier rules are as follows, where 7 is
any grounded term that already appears on the branch, and 7, is a parameter that is
new to the branch.

o Yay () 14 appears somewhere o =Vay () 7y isnew
o Y¥(ts) on the branch o =Y (ms) tothe branch

For each branch containing the node o Yo («), and each grounded term 7, that
appears as part of a node on that branch, the universal quantifier rule adds o V¥ (z4) to
the branch. (If no grounded term appears with the tableau prefix o as subscript in any
node on a branch containing o Yo («), the universal quantifier rule is not applied
to 0 Yay (o) on that branch. This reflects the fact that the domain of a world may
be empty.) For each branch containing the node 0 —=Va v (), the negated universal
quantifier rule is applied just once, and the parameter 77, must be chosen so that it is
new to the branch.

The universal quantifier rule (and the dual negated existential quantifier rule)
reflect the fact that SAT is an actualistic free logic. Actualism requires quantification
to be world-relative, and a free logic permits instantiation at a world only with terms
that denote objects in the domain of that world. The negated universal quantifier rule
(and the dual existential rule) also reflect actualism in requiring that the term being
instantiated denote an object in the domain of the world in question.
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8.2.4 Predicate abstraction According to serious actualism, an attributive sentence
is true at a world only if the object denoted by the term to which the abstract applies
exists at that world. To fully reflect this requirement, the (unnegated) predicate
abstraction rule takes three forms. Form 1 “grounds” or “rigidifies” an individual
constant governed by a predicate abstract, thus transforming it into a grounded name.
Forms 2 and 3 apply to terms that are already grounded. But since the subscript of a
grounded term may not be the same as the prefix of the node in which the sentence
containing it appears, two rules are needed.

Suppose o and o] are distinct prefixes, ¢ is an individual constant, and 7, and
74, are grounded terms. Forms 1 and 2 instantiate the predicate abstract with ¢, and
T4, respectively. Form 3 instantiates it with 74,, and it introduces a second node.
This second node reflects the fact that, since (Aa.y ())(7q,) is true at world o0, 7,
denotes an object that exists in o as well as in ;.7

1 o Moe.l//(a)}(L) ¢ is an individual constant of £

o Y(y) (1o is thus a grounded name of £*)
() o (Aa.y(@))(zs) 7o is a grounded term
o Y(to)
3) o ()Lot.l//(ot))(rgl) g, is a grounded term, and o # 0}
o Y(ts,)
o (g = Tg,) 7o is a parameter that is new to the branch

It should be noted that form 1 of the predicate abstraction rule and form 1 of the
atomic formula rule are the only rules that introduce grounded names into tableaus.

The rule for negated predicate abstraction also has three forms. Each form applies
to a tableau node that, except for the negation sign, is the same as the node in the
correspondingly numbered form of the positive predicate abstraction rule.”!

(1) o ={Aa.¥(2))(t) ¢isan individual constant, and the grounded name 5
o Y (ly) appears somewhere on the branch

(2) o0 ={Aa.y(2))(t5) 7o is a grounded term
o =Y (t5)

(3) o0 ={Aa.y(2))(t5,) 7o, is a grounded term, and o # o
02 (Vo = Tg,) 05 is any prefix; vy is any term grounded with o
o Y (t4)

In form 1 the presence of the grounded name ¢, somewhere on the branch assures
us that the individual constant ¢ designates, at world o, a member of the domain of
0. (The individual constant ¢ need not appear with subscript o in the premise of
the rule.) If ¢, did not appear on the branch, we could not be sure that ¢ designates
anything in the domain of o. But then we could not be sure that =y (¢) is true in o.
For suppose 0 is a primitive predicate, ¢ does not designate at o, and ¥ (¢) is = 0(1).
Then 6(¢) is false at o and so is = (¢).

The rationale for form 2 should be obvious. Form 3 is similar to from 1 in that
the predicate abstract applies to a term that is not grounded in o. Thus assurance is
needed that 7, really does denote an object in the domain of world o. The appear-
ance of 03 (Vs = 74, ) somewhere on the branch provides this. If 7, did not denote
an object in the domain of world o, =/ (75, ) might be false at o, as in the case of
form 1.
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8.2.5 Identity The self-identity rule reflects the fact that in SAT a sentence of the
general form B = f is true at a world only if 8 designates an object that exists at
that world. Since the appearance of a grounded term 7, in any node on a branch
indicates that the object it denotes exists at world o, that object must be self-identical
at 0. Thus where 7, is any grounded term, the self-identity rule takes the following
form:’?
75 appears somewhere on the branch
o (¢ = 1)

As usual, the substitutivity of identity rule sanctions substituting coreferential
rigid designators for each other, but in SAT it requires some new notation and takes
a rather complicated form. Suppose o1, 03, 03, and 04 are prefixes of branch nodes
(not necessarily distinct), 75, and v,, are grounded terms, and ¢ and y are formulas
of £* that contain no free occurrences of any variable. Suppose also that ¢ and v/
are alike except that ¥ contains occurrences of vy, at one or more places where ¢
contains occurrences of 74,. If 75, = Ug, holds at any world, V assigns the same
member of D to 74, and vg,. So if 75, = vy, holds at o1 and ¢ holds at o2, ¥
also holds at 0;. (And the object denoted by 75, and vy, exists in the domains of
worlds o1, 03, and 04, and possibly in the domain of world 0,.) The substitutivity

rule is thus
01 Toz = Ugy
X
o2y
This rule is the only one that has two premises. Thus it can be applied only when
both of these premises appear on the same branch.

8.2.6 Atomic formulas of £* An atomic formula is satisfied by an n-tuple of objects
at a world only if all those objects exist at that world. So each individual term
that appears in such a formula, whether grounded or ungrounded, must designate
an object that exists at that world. This fact must be reflected in the tableau rules,
and so, unlike other tableau systems, SAT has a rule for atomic formulas. The rule
has three forms, and some additional notation will facilitate understanding. Where
0 is an n-ary predicate and t and v are terms, 6(...t...) will stand for an atomic
formula in which t has one or more occurrences, and 6(...v...) for the result of
replacing each occurrence of 7 in (...t ...) with v.”?
The first two forms of the rule are:
(1) o#6(..t...) tisanindividual constant of £
060(..lyg...) (i is thus a grounded name of £*)

2) 06(..7...) T4 isagroundedterm, and o # o0,
0 (me = 15,) 7o is a parameter that is new to the branch

These two forms of the rule reflect the fact that an atomic sentence is true at a
world only if each of the terms it contains denotes an object that exists at that world.
As noted in Section 8.2.4, form 1 of the predicate abstraction rule and form 1 of the
atomic formula rule are the only rules that introduce grounded names into tableaus.”*

The third form of the atomic formula rule is unlike any other tableau rule in that
it allows a subscript to be removed from a grounded name.” It is also unlike the first
two forms in that it may be applied to some but not all occurrences of an individual
symbol in an atomic formula. Let ¢ be an individual constant, and let ¢, be that same
individual constant subscripted with 0. (4 is thus a grounded name. If ¢, appears in
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an atomic formula as part of a tableau node with prefix o, one or more occurrences
of (, may be replaced with . To call attention to the fact that form 3 of the rule
allows replacement of some but not all occurrences of a term in an atomic formula,
I will use a new notation. Let 6(ty) and 8(¢) stand for atomic formulas that are alike
except that 6(¢) contains occurrences of ¢ at one or more places where (i) contains
occurrences of (5.

The third form of the atomic formula rule is:

(3) 0 0(iy) Lo is a grounded name of £*
o 0(t)  (¢is thus an individual constant of £)

Like the first two forms, form 3 also reflects the fact that an atomic sentence is
true at a world only if each of the terms it contains denotes an object that exists at
that world.”®

8.3 Examples of tableaus In the following examples tableau rules are referred to by
abbreviated names. For example, = — denotes the negated conditional rule, —A2
denotes the second form of the negated abstraction rule, and Subs= denotes the
substitution of identity rule.

8.3.1 The Converse Barcan Formula (CBF) The Converse Barcan Formula is SAT
valid, as the following tableau for a simple instance of (CBF) shows.

1 ﬁ(EIxO(ky.Fy)(x) — (}EIx(Ay.Fy)(x)) 1.
1 IxO(Ay.Fy)(x) 2. (From 1by = —.)

1 =03x(Ay.Fy)(x) 3. (From1by——.)

1 QY. Fy)(p1) 4. (From 2 by 3.)

1.1 (Ay.Fy)(p1) 5. (From 4 by ¢).)

1.1 Fpy 6. (From 5 by 13.)

1.1 (g1.1 = p1) 7. (From 5 by 13.)

1.1 =3x{(Ay.Fy)(x) 8. (From 3 by —{)2.)
1.1 ={(Ay.Fy)(q1.1) 9. (From 8 by —3, using ¢1.1.)

1.1 =Fqy, 10. (From 9 by —A2.)
1.1 =Fp; 11. (From 7 and 10 by Subs =.)
X

The use of variables other than x and y would not affect this proof. And since
none of the rules for atomic formulas have been applied, replacing Fy with any
complex formula ¢ (y) would not avoid closure.

8.3.2 An imposter (faux CBF) In Section 4.4 I dubbed formulas of the form

OV (Aas.¢(@2))(@r) = Yo O(he.¢(aa))(er)
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(faux CBF). Not all formulas of this form are SAT valid, as the following tableau
shows.

1 ﬂ(DVx()Ly.Fy)(x) — VxD(Ay.Fy)(x)) 1.
1 OVx{(Ay.Fy)(x) 2. (From 1 by = —.)

1 —=VxO{Ay.Fy)(x) 3. (From1by— —.)

1 Vx(Ay.Fy)(x) 4. (From 2 by O1.)

1 —=O(Ay.Fy)(p1) 5. (From3by —V.)

1 (Ay.Fy)(p1) 6. (From 4 by V, using py.)
1 Fpy 7. (From 6 by A1.)

1.1 =(Ay.Fy)(p1) 8. (From 5 by —[1.)
1.1 Vx{Ay.Fy)(x) 9. (From 2 by [2.)

(e]

8.3.3 Predicate abstraction applied to atomic formulas is inessential A main theme
of this article is the importance of predicate abstraction for a coherent account of
logical form in quantified modal logic. The tableaus in this section and the next
illustrate this by showing that while

(Ax.Fx)(a) < Fa

is SAT valid,
(Ax.—Fx)(a) < —Fa

is not. Here is the first tableau.
1 —-(()Lx.Fx)(a) <~ Fa) 1.

1 (Ax.Fx)(a) 2. 1 —=(Ax.Fx)(a) 4.

1 —=Fa 3. 1 Fa 5.

1Fa1 6. 1Fa1 8.

1 Fa 1. 1 =Fa; 9.
X X

In the left branch A1 applied to line 2 yields line 6, and Atomic 3 applied to line
6 yields line 7. In the right branch Atomic 1 applied to line 5 yields line 8, which
is the first node in the right branch that contains a;. The appearance of a; makes it
possible to apply —A1 to line 4, which yields line 9 and closure. If a; did not appear
on the right branch, —A1 could not be applied to line 4. And if the only appearances
of a on the right branch were as parts of nonatomic sentences, Atomic 1 could not be
applied and a; would not come to appear on the branch. So the right branch closes
only because a appears on it as part of an atomic sentence. The next section contains
a tableau (for a sentence with a similar form) that fails to close for exactly this reason.

8.3.4 Predicate abstraction applied to nonatomic formulas is essential If Fx and
Fa in (Ax.Fx)(a) <> Fa are replaced by nonatomic formulas ¢(x) and ¢(a), the
tableau for the resulting formula may not close. For example, consider the tableau
for (Ax.—Fx)(a) < —Fa.
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1 —|((Ax.—|Fx)(a) <~ —|Fa)) 1.

1 (Ay.—=Fy)(a) 2.
1 =—=Fa 3.
1 Fa 6.
1 Fa1 7.
1—-Fa1 8.

X

1 =(Ax.—Fx)(a) 4.
1 —Fa 5.

(¢]

The left branch is essentially the same as that of the tableau in the previous section
except for the use of double negation. But on the right branch no rule can be applied
to line 4 or line 5. Since the sentence on line 5 is not atomic the grounded name a;
cannot be introduced, and in its absence —A1 cannot be applied to line 4. The right
branch is thus open.

8.3.5 Other imposters Consider the formulas Ix) Fx — QIxFx and IxH—Fx —
{3Ix—Fx. In most systems of quantified modal logic both are considered instances
of the Converse Barcan Formula, and either both are valid or both invalid. But in SAT
neither is an instance of (CBF) because neither contains predicate abstracts. Yet in
view of Sections 8.3.1, 8.3.3, and 8.3.4, it should not be surprising that the tableau for
Ax O Fx — (IxFx closes but the one for Ix(—Fx — ($Ix—F x does not. (I leave
it to the reader to verify that the former tableau is nearly identical to the one given in
Section 8.3.1 but requires only nine steps.) The tableau for Ax)—Fx — QIx—Fx
follows.

1 —@x0—-Fx - Oax—Fx) 1.

1 IxO—-Fx 2. (From 1 by = —.)
1 —=03ax—=Fx 3. (From1by—-—.)
1 O—Fp; 4. (From 2 by 3.)

1.1 =Fp, 5. (From 4 by ¢.)

1.1 =3x—=Fx 6. (From 3 by ={2.)
1 —3Ix—Fx 7. (From 3 by ={1.)
1 —==Fp; 8. (From 7 by —3.)

1 Fp; 9. (From 8 by——.)

o

It is instructive to compare line 5 of the tableau in Section 8.3.1 with line 5 of the
above tableau. Each is inferred from line 4 of its respective tableau by the ¢) rule. In
the tableau of Section 8.3.1 the A3 rule is applied to line 5, which leads ultimately to
closure. But here no rule can be applied to line 5, and the tableau does not close.”’

8.3.6 A tableau for an instance of (faux Ul) In the discussion of the logical properties
of quantifiers in Section 4.3 I mentioned sentences of a form I called (faux UI), and
I gave an instance of it that I claimed is not SAT valid. Here is the sentence:

vxOSx — (6(d) — OSd).
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Its invalidity is shown by the following tableau.

1 —|(VxDSx—> (Ely(y :d)—)DSd)) 1.

1 vxOSx 2. (From 1 by = —.)
1 =(3y(y =d)— 0O8d) 3. (From 1 by = —.)
1 y(y=4d) 4. (From 3 by — —.)
1 —-0O8d 5. (From 3 by = —.)

1 (p1=d) 6. (From 4 by 3.)

1 (p1=dy) 7. (From 6 by Atomic 1.)

1 OSpy 8. (From 2 by V.)

1 0OSd,; 9. (From 2 by V.)

1 Spy 10. (From 8 by OJ1.)

1 Sd; 11. (From 9 by O1.)

1.1 =Sd 12. (From 5 by —=[.)

1.1 Spy 13. (From 8 by [J2.)

1.1 Sd; 14. (From 9 by [12.)

1.1 (911 = dy) 15. (From 13 by Atomic 2.)
1.1 (r;1.1 =d;)  16. (From 14 by Atomic 2.)

(e]

This tableau is not complete. The rules for self-identity, substitution of iden-
tity, and universal quantifier can be applied in several additional ways. But the
tableau will not close. Indeed its single branch suggests a simple countermodel
to faux (UI). In this model, M = (W, @, R, D, d), W contains two worlds, w;
and w1, such that wy Rwy, w1 Rw1.1, and wiRwy.1; @ may be either wy or
wi.1. The domains of these worlds will be the same one-membered set. Antic-
ipating the strategy employed in the completeness lemma (see Section A.2), let
D(wy) = D(wr1) = {{p1.d1.91.1.r1.1}}- (Where a1, 03, and o3 are tableau
prefixes and 7, and vy, are grounded terms, {{p1, d1,q1.1.71.1}} is the set of equiv-
alence classes of grounded terms determined by formulas of the form (75, = vg;)
such that, for some 01, 01 (tg, = VUg;) is a node on the branch.) The extension of
the predicate S at each world is the domain of that world, which in this case is also
the domain of the model. That is, (S, w;) = 4(S,w1.1) = {p1.d1.91.1-71.1}}-
The individual constant d denotes {p1,d1,¢1.1,71.1} at wy, but does not denote at
wi.1. Thatis, J(d,wq) = {p1.d1,91.1,r1.1}, but d(d, wy 1) is undefined. For any
valuation V relative to this model M (since the domain of the model has only one
member there is only one such valuation) My (VxOSx — (8(d) — OSd)) = 0.7
8.3.7 Atableau for (Act3) 1argued in Section 6.1 that actualism is properly expressed
in SAT as
(Act3) VxAE&(x).

Although (Act3) is true in the intended model it is not SAT valid, as the following
tableau shows.

I =VxAdy(y =x) L

1 —=A3y(y = p1) 2. (From 1 by —V.)

@ —3y(y = p1) 3. (From 2 by —A.)

o

The negated existential rule cannot be applied to line 3 because no parameter with
subscript @ appears on the branch. But this tableau can be used to provide insight
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into the distinction between logical truth and a priori truth. For suppose we want to
prove that (Act3) is actually true. A plausible way of proceeding would be to use the
tableau method but start by supposing that (Act3) is false in the actual world. So we
would get:

@ =VxAdy(y =x)) 1L
@ —-A3dy(y = pe)) 2. (From1by —V.)
@ —-3y(y = pe) 3. (From 2 by —A.)
@ —(pe = pe) 4. (From 3 by —3.)
@ (pe = pe) 5. (By Self=.)

X

The assumption that (Act3) is actually false leads to a contradiction. So if one
knows, independently of experience (as we all do), that the world one inhabits is the
actual world, then the reasoning embodied in the preceding tableau is an a priori
proof of (Act3).”” (Act3) is true a priori even though it is not necessary and not
logically true.

9 Conclusion

I have shown that an actualistic and seriously actualistic quantified modal logic with
desirable formal and philosophical properties is possible. These properties include,
most notably, uniform substitution of complex predicate abstracts for simple ones
in logical truths, replacement of logically equivalent subformulas within sentences
salva veritate, and a sound and complete proof system. Indeed by defining SAT
and proving that it has these properties I have shown that such a logic is actual.
I have also compared SAT with several other treatments of the issues with which it
deals. I believe it deserves serious consideration in ongoing logical and philosophical
discussions of modality.

Appendix: Soundness and Completeness

It is not difficult to verify that the soundness and completeness results given here for
SAT hold also for SAK, SAB, SAS4, and SASS.

A.1 Soundness The intuitive idea behind the soundness proof is simple. To demon-
strate soundness of the tableau proof system it is sufficient to show that if a set of
prefixed formulas of £* appearing on a tableau branch is satisfiable in a certain
sense, then the set obtained by adding prefixed formulas that result from applying
tableau rules to members of that set is satisfiable in this same sense. Satisfiability of
a set of formulas of £ was defined in Section 3.4. The expanded notion of satisfia-
bility of a set of prefixed formulas of £*, used in the soundness proof, is defined as
follows.®

A set S of prefixed formulas of % ig satisfiable in a model M = (W, @, R, D,
d) relative to a valuation 'V if there is a function @ that assigns to each prefix o
occurring in S a world ® (o) € ‘W such that:

(1) Forevery prefix o in S @ (0)RE(0), and if 0.n also appears as a prefix in S,

O(0)RO(0.n).
(2) If @ occurs as a prefixin S, O(@) = @.
(3) If the parameter 7y occurs in S, then V(1) € D(O(0)).
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(4) Let ¢ be an individual constant of £, and let ¢y be the grounded name of
L£* that results from subscripting ¢ with the tableau prefix o. If ¢ and 14
both appear in S, then d(¢, ®(0)) is defined, (¢, @(0)) € D(O(0)), and
V(i) = 41, O(0)).%!

(5) For any prefix o and formula ¢, if 0 ¢ isin S (i.e., if the pair consisting of ¢
prefixed with o is a member of §), then My (¢, @(0)) = 1.

A branch of a tableau is satisfiable if the set of prefixed formulas appearing on that
branch is satisfiable in some model relative to some valuation. A tableau is satisfiable
if one or more of its branches is.

The connection between a set of prefixed formulas appearing on an open tableau
branch and a model-valuation pair (M, V) that satisfies them, relative to a function
O, is straightforward. Given a branch that is satisfiable in this sense, ® maps tableau
prefixes to worlds of M in a way that induces on the prefixes the roles of relation
R and world @ (clauses 1 and 2). Clauses 3 and 4 require that a term grounded
with a given prefix denotes an object in the domain of the world associated with that
prefix.®” Clause 5 requires that each prefixed formula on the branch be satisfied at
the world corresponding to its prefix.

The soundness lemma is the heart of the soundness proof. Once it is established,
the soundness theorem itself follows easily. Proof of the soundness lemma (and
of the completeness lemma in the next section) will be facilitated by the following
substitution lemma for £*.

Substitution lemma (for £%);

Let M = (W, @, R, D,J) be amodel of £*, and let 'V be a valuation relative to
M. Where ¥ (e) is a formula of £* containing at least one free occurrence of the
variable o (but no free occurrence of any other variable), and w € 'W:

Part 1. Let 7, be a grounded term of %, V(z,) € D(w), and ¥ (1) the result of
replacing all free occurrences of & in ¥ () with 5. Suppose U is the «-variant-at-w
of V such that U () = V(75). Then My (¥ («), w) = My (Y (t5), w).

Part 2. Let t be an individual constant of £, ¢, be a grounded name of £* (that s,
Ly is the grounded name of £* that results from subscripting ¢ with the tableau-node
prefix o), V(iz) € D(w), and ¥ (1) the result of replacing all free occurrences of
a in ¥ (o) with ¢,. Suppose U is the a-variant-at-w of V such that U(x) = V(ix).
Then My (V¥ (@), w) = My (¥ (to). w).

Proof of the Part 1 is straightforward by induction on the complexity of ().
Since a grounded name is a grounded term, Part 2 is a special case of Part 1. It is
convenient to have the Lemma stated in this form in some of the following proofs. H

Soundness lemma: Tableau rules preserve satisfiability.

If a tableau rule is applied to a satisfiable tableau, the result is another satisfiable
tableau.

Proof It is sufficient to restrict attention to application of a tableau rule to a node
or nodes that appear in a satisfiable branch of a tableau, and to show that at least one
satisfiable branch results from application of the rule. So suppose B is a branch of
a tableau 7', S is the set of prefixed formulas of £* that appear on 8B, and there is
a model M, a valuation V, and a function @ that together satisfy 1-5. B is thus a
satisfiable branch of 7. We want to show that whenever a rule is applied to a member
of B, the result is at least one branch B’ that extends B and is such that, for the set



Actualism, Serious Actualism, and Quantified Modal Logic 267

S’ of prefixed formulas of £* that appear on B’, there is a model M’, a valuation
V’, and a function ®’ that together satisfy 1-5.

Proofs of the cases for truth-functional and modal connectives are simple and
straightforward, as in Fitting and Mendelsohn [7, pp. 58-9]. The cases for the actu-
ality connective are trivial.

For the universal quantifier case, assume that the prefixed formula 0 Vo (o)
is in S, that clauses 1-5 hold, and hence that My (Vo (x), ®(c)) = 1. By
clause 10 of Section 3.4, My (¥ (), @(0)) = 1, for every valuation U that is an
a-variant-at-@ (o) of V. By 3 and 4, V(z5) € D(O(0)), for each grounded term t,
that appears on B (i.e., for each parameter or grounded name with subscript o that
appears on B). So part 1 of the substitution lemma yields My (¥ (t5), @(0)) = 1,
for each grounded term 7, that appears on 8. So the branch B’ that results from
one or more applications of the universal quantifier rule to ¢ Va1 («) is satisfiable
in M relative to V and ©.

For the negated universal quantifier case, assume that the prefixed formula
o —Vay(x) is in S, that clauses 1-5 hold, and hence that My (—Vay(x),
O()) = 1. So My(Vay(x),®(c)) = 0. By clause 10 of Section 3.4,
My (), ®(c)) = 0, for some valuation U that is an «-variant-at-© (o) of
V. Since each node on a tableau branch is just finitely many steps from the origin,
for any given node only finitely many distinct parameters appear in the nodes up
to and including it. So a parameter 7, that does not appear on B will always be
available for application of the negated universal quantifier rule. Let U’ be the
7g-variant-at-@ (o) of U such that U (75) = U (). So by part 1 of the substitution
lemma, My (¥ (75), @(0)) = 0. Hence My (=¥ (75),@(0)) = 1. Then U
satisfies clauses 1, 2, and 4, since 'V does. And U’ satisfies clause 3 because it
makes all the same assignments to parameters other than 7, as V does, and because
U (ns) € D(O(0)). So the branch B’ that results from application of the negated
universal quantifier rule to ¢ —Va ¥ («), and thereby adds the node ¢ =y (7,) to
B, is satisfiable in M relative to U’ and O.

For the predicate abstraction cases, recall that a predicate abstract (Ax.y (o))
is satisfied by a term at a world if and only if the term denotes an object in the
domain of that world and the object satisfies ¥ (). Form 1 of the rule for unnegated
predicate abstraction applies to prefixed formulas of the form o (Aa.v¥(«))(t),
where ¢ is an individual constant. In this case the predicate abstract is instantiated
with the grounded name (;, which may or may not already appear somewhere
on B. If 1, does already appear on B, it was introduced either by form 1 of the
atomic formula rule or by a previous application of the very rule under consider-
ation. So suppose o {Aa.y¥(«))(¢) is in S, that clauses 1-5 hold, and hence that
My (A ¥ (@) (1), O(0)) = 1.

There are two subcases as follows.

(a) If ¢, already appears on B, J(t, ®(0)) is defined, d(¢, @(0)) € D(O(0)),
and V(i) = 4(t,0(0)) (by clause 4). Since My({(Aa.¥(x))(),O(c)) = 1,
there is an ¢-variant-at-® (o) of V, U, such that U(x) = (V » 4)(t, ®(0)) and
My («), ©(0)) = 1 (clause 12a of Section 3.4). But since ¢ is an individual con-
stant, (V » )(t, ®(c)) = 4(1, P (0)), and so by the identities already established
U(a) = V(). So by part 2 of the substitution lemma, My (V¥ (ts), @(0)) = 1.
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(b) If s does not appear on B, then, since My({(Aa.¥(x))(1), O(0)) = 1,
J (¢, ®(0)) is nonetheless defined and J (¢, @(c)) € D(O(0)) (clause 12a of Sec-
tion 3.4). Furthermore My (¥ (), @(0)) = 1, where U is the a-variant-at-® (o)
of V such that U(x) = (V x )(t,O(c)) = J(,O(0)) (by clause 12a of Sec-
tion 3.4 and the definition of (V x d) in Section 3.3). But there is no guaran-
tee that V(i5) = (¢, @(0)). So let V' be the (,-variant-at-@ (o) of V such that
V(i) = (1, 0(0)). Clearly M, V', and O satisfy clauses 1-3 of the definition
given at the beginning of the present section, and when the node o V¥ (1y) is added
to B by application of form 1 of the unnegated predicate abstraction rule, clause 4
is also satisfied. Let U’ be the a-variant-at-@ (o) of V' such that W (a) = V'(iy).
So by part 1 of the substitution lemma (with V' as V, 1, as 15, ®(0) as w, and
U as W), M (¥(@), O0)) = My (¥ (i0), O(0)). Since My (¥ (@), O(0)) = 1
and U’ differs from U only in what it assigns to ¢, which does not appear in ¥ (),
My (Y (), ©(0)) = 1. Hence My (¥ (10), @(0)) = 1.

So the branch B’ that results from application of form 1 of the rule for unnegated
predicate abstraction to o (Aa.y¥(«))(t), and thereby adds o ¥ (t5) to B, is satisfi-
able in M relative to 'V and O, or satisfiable in M relative to 'V’ and ©®, depending
on whether (, already appears on 8.

Having given detailed proofs for the quantifier rules and one of the predicate
abstraction rules, I will just sketch the proofs for the remaining cases.

The proof for form 2 of the predicate abstraction rule is similar to that for form 1,
but simpler, since the grounded term t, that is instantiated appears in the premise.
The proof for form 3 combines features of the proofs for form 2 and the negated
quantifier rule.

The proofs for the first two forms of the negated predicate abstraction rule are
straightforward in view of the explanation given in Section 8.2.4, where they are
introduced, and the proofs for predicate abstraction. Form 3 does not require a sepa-
rate proof since it can be treated as a derived rule.

The proofs for the two identity rules are straightforward.

Forms 1 and 2 of the atomic formula rule are similar, respectively, to forms 1 and
3 of the predicate abstraction rule, and their proofs are similar. The proof for form 3
of the atomic formula rule is trivial. H

Theorem 6 Tableau Soundness for £

If ¢ is a sentence of £ and I is a set of sentences of £, then if ¢ is derivable from T,
¢ is a consequence of I'. In abbreviated form, if I' I ¢, then I" & ¢.

Proof  Suppose that ¢ is not a consequence of I". Then I" U {—¢} is satisfiable.
Hence there is a model M = (W, @, R, D, d), and a world w € ‘W, such that for
any valuation 'V relative to M and each sentence ¥ € I' U {—¢}, Myp(¥,w) = 1.
So for any finite subset IV of I" and each ¢ € TV U {—¢}, My (¥, w) = 1. For any
such I’ consider the set of ordered pairs S = {(1,v¥) | ¢ € '} U{(1,—¢)}. Sisa
set of prefixed formulas of £ and hence of £*. If we define the function @ so that
O (1) = w, clauses 1-5 at the beginning of this section are satisfied. Thus S is a set
of prefixed formulas of £* that is satisfiable in M relative to V. Since S is finite,
its members constitute the initial sentences of a tableau. Call this tableau S7. By
definition, S7 is a satisfiable tableau.
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By the soundness lemma, any application of a tableau rule to S7 results in another
satisfiable tableau. This means that in every such extension of S7 there is a branch
B, a model M, and a valuation V such that, for every node o ¢ appearing on B,
My (¢, ®(a)) = 1. But by the definition of satisfaction, no formula and its negation
can both be assigned the value 1. Hence 8 is not closed, and thus ¢ is not derivable
fromI'. &

A.2 Completeness Although the details of the completeness proof are complex, the
basic idea behind it is simple. If a tableau has an open branch in which all the rules
that can be applied have been applied, that branch contains information sufficient to
determine an interpretation and a valuation under which all the formulas of £* on
the branch are satisfied. The worlds of this interpretation are the prefixes of nodes
appearing on the branch, and the individuals are the equivalence classes of grounded
terms determined by the identity statements appearing on the branch. The atomic
formulas and grounded names appearing on the branch determine the assignment of
extensions to predicates and individuals to individual constants, respectively. The
valuation assigns to a grounded term the equivalence class of which that term is a
member, and it makes an arbitrary assignment of these equivalence classes to vari-
ables.

As is common in tableau proof systems, some tableaus will contain infinitely long
branches. This is because some rules may have to be applied repeatedly to the same
node (or pair of nodes) of a tableau. The rules for necessity, universal quantifier, and
substitutivity of identity fall into this category. I will call a branch complete if all
applicable rules have been applied to all its nodes.

Consider a complete and open branch 8B of a tableau 7, and define a categorical
model M = (W, @, R, D, d) and a categorical valuation 'V (relative to M) induced
by B8 as follows:

‘W: ‘W is the set of prefixes that appear on B
@: @ is @, if @ appears as the prefix of a node on $B; otherwise @ is 1
R: R ={{0,0) | o appears on B} U {{(0,0.n) | o and o.n both appear on B}.

In order to define D, the function that assigns sets of individuals to the worlds in ‘W,
some further notation is needed. As before, let 0y, 03, 03, ... be prefixes of nodes
that appear on B, and let t5,, 7g,, Tos, - - . and Vg, Ug,, Ugs, - - . be grounded terms.
Also, let § be the set of grounded terms that appear on B, and let & be the set of
formulas of £* of the form (75, = Ug,) such that, for some o1, 01 (T, = Ug;)
is a node on B. Since B is a complete branch, and in view of the tableau rules for
identity in Section 8.2.5, & defines an equivalence relation on §. Let ¥ be the set
of equivalence classes (of members of §) determined by &. If T € §, let T denote
the member of ¥ of which 7 is a member. (Thus for any tableau prefixes 0, and o3,
and grounded terms 74, and Vg;, Ty, = Ug; if and only if there is a prefix o such
that 01 (75, = Ugs) is a node on B. For example, if 1.2 (¢1.2.e = p1.1.2) is a node
on B, then a12.@ = P1.1.2- That is, the grounded name a; ».@ and the parameter
P1.1.2 denote the same individual, namely, the equivalence class of grounded terms
of which both are members.)

D: D(o1) ={y | y € Y and at least one member of y is a grounded term with
subscript o7 }.
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So the domain of world o; consists of all and only those members of ¥ that contain
at least one grounded term with subscript 0. Since the domain of a model is the
union of the domains of its worlds (see Section 3.1), Dy = Y. That is, the domain
of the model is the set of equivalence classes of grounded terms defined on § by &.
Thus for every prefix o7 € W, D(01) € Dy

The interpretation d of model M makes assignments to the individual constants
and predicates of £.%° Let ¢ be an individual constant of &, let oy be a prefix of a node
that appears on B, and let ¢, be the grounded name (and hence grounded term) that
results from subscripting ¢ with 7.

J: If 15, appears as part of a formula on B, d(t,01) = 75,. Otherwise 4 (¢, 071)
is undefined.

Since i, € D(o01), 4 satisfies the constraint imposed by clause 1 of Section 3.2,
namely, that if an individual constant of £ designates at a world, its designation is a
member of the domain of that world.

Next, let 6 be an n-ary predicate (perhaps =), o1 a prefix that appears on B
(perhaps @), 75, a grounded term, 75, the equivalence class of grounded terms such
that 75, € T,, (..., Ty, . . .) an n-tuple of equivalence classes of grounded terms of
which 75, is the m'” member, and 6. .. 75, ...) an atomic formula of £* in which
all the individual symbols are grounded terms with subscript o and of which 7, is

the m*h.

J: 4(0,01) ={(....7,....) |01 O(... 75 ...) is anode on B}.
If 0 is the identity predicate, this becomes

J: d(=,01) = {{T6,. Vs,) | 01 (16, = Vg,) is anode on B}.

In view of the definitions of set ¥ and function D, for each 0y € W, 4(0,07)
assigns an n-ary relation on £ (o) to the predicate 6. So d satisfies the first part of
clause 2 of Section 3.2, namely, the requirement that the extension of a predicate at
a world contain only objects from the domain of that world. Furthermore, if 0 is =,
J (=, 01) is the set of ordered pairs (75, , 7g, ), Where 75, is an equivalence class of
grounded terms, and 75, € £ (o01). Thatis, foreach o, € W, d(=, 01) is the identity
relation on D(o1). So 4 also satisfies the second part of clause 2 of Section 3.2.
This completes the definition of a categorical model M induced by a complete and
open branch 8.

Given such a model M, the categorical valuation V relative to JM is easily defined.
Recall (see Section 8.1.1) that grounded terms of £* (i.e., parameters and grounded
names) are treated semantically like variables and thus have their values assigned
by V. Where &, as before, is the set of grounded terms that appear on 8, and #4 is
the set of variables of &£, V is a function from § U «4 into D¢ such that

V: For every grounded term 75, € §, V(15,) = 7o,

V: For every variable o € #, V() is some arbitrarily selected member of D 4.
This completes the definition of a categorical valuation V induced by a complete and
open branch B (relative to a categorical model M induced by this same branch 8).%*

Completeness lemma: A categorical model and valuation satisfy all the formu-
las on the branch that induces them.
Let B be a complete and open branch of a tableau 7, and let M = (W, @, R, D, d)
be a categorical model and 'V a categorical valuation (relative to M) induced by B.
For any formula ¢ of £*, and any prefix o'
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Part 1. If o ¢ is anode on B, then My (¢,0) = 1;

Part 2. If 6 —¢ is a node on B, then My (¢p,0) = 0.

Proof is by induction on the number of connectives and quantifiers in ¢.

Basis: Part 1.

Case a. Suppose that ¢ is an atomic formula made up of the n-ary predicate 6 and
n grounded terms, 74, all of which have o as their grounding subscript. Represent
¢ as 0(...t5...). By hypothesis B is complete. So, by the definition of d, the
extension of 6 at o contains (..., 7,,...) ifand onlyifo 6(... 7, ...) isanode on B.
And by the definition of V, V(t5) = To. Soif 0 ¢ is anode on B, My(¢p,0) = 1.

Case b. Suppose that o ¢ is a node on 8B, where ¢ is an atomic formula made up
of the n-ary predicate 6 and n terms, and where these terms may include individual
constants of £ as well as grounded terms (parameters and grounded names). Individ-
ual constants of £ are ungrounded (and hence have no subscripts), and parameters
and grounded names may be subscripted with tableau prefixes other than o, the pre-
fix of the node o ¢ with which we are concerned. By hypothesis 8B is complete,
so all possible applications of all rules will have been made to all nodes on 8. So
if the formula ¢ of node o ¢ contains individual constants, repeated application of
form 1 of the atomic formula rule will have added a node o ¢*, where ¢* is like
¢ except that each occurrence of an individual constant ¢ has been replaced by the
corresponding grounded name (. So t, Will appear as part of a formula on 8, and
thus by the definition of 4, d(¢,0) = 15.

Similarly, if ¢* contains (one or more occurrences of) a grounded term t with
a subscript other than o, application of form 2 of the atomic formula rule will have
added a node of the form o (m, = t), where 7, is a parameter that has not pre-
viously appeared on B. So by the definitions of ¥ and V, @, = 7, and thus
V(r) = 7,. And application of the substitutivity of identity rule will have added a
node o ¢*"o, where ¢+ is like ¢ except that T has been replaced by 77, through-
out ¢*. Since B is complete, this will have happened for each term appearing in
o ¢ that is grounded with a subscript other than o, and occurrences of distinct
terms of this kind will have been replaced by distinct parameters, each of which was
new to the branch when it appeared. Call the resulting formula ¢**. So the node
o ¢+ will appear on B. Each term that appears in ¢ == is subscripted with o, and
so as in Case (a) above My (¢**,0) = 1. And since V() = V(r), for each
parameter 77, that was substituted for a grounded term t in the creation of ¢** from
¢x*, ¢+x will contain, at each of its individual-term positions, a term that denotes
the same member of D (o) as is denoted by the term in the corresponding position
in ¢gx. So My (¢dp*,0) = My(¢**,0), and hence My (¢p*,0) = 1.

Finally, recall that ¢* was defined as differing from ¢ only in containing the
grounded name (, at places where ¢ contains the corresponding individual con-
stant (. By the definition of J, if ¢ is an individual constant of £ and the grounded

name (; appears as part of a formula on B, then J(t,0) = 75. Thus since
My (p*,0) = 1, it follows that My(p,0) = 1. So if 0 ¢ is a node on B,
My(p,0) = 1.

Basis: Part 2.

Case a. As in Case (a) of Part 1, let ¢ be an atomic formula made up of the
n-ary predicate 6 and n grounded terms ty, all of which have o as their grounding
subscript. Represent ¢ as (... 75 ...). Suppose 0 —0(...75...) is a node on B.
By hypothesis 8B is open, so 0 6(...175...) is a not a node on B. Suppose for
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reductio that My (0(...7s...),0) = 1. Since 0(... 7, ...) is an atomic formula of
L£* by clause 2 of Section 3.2 each term 7, in ¢ denotes a member of D (o). And
by the definition of J of the categorical model given earlier in this section, a node
of the form o 6(... 7, ...) appears on B. B is thus closed, which contradicts the
assumption of the completeness lemma. So by reductio My (0(...175...),0) = 0.

Case b. Let ¢ be as in Case (b) of Part 1. That is, ¢ is an atomic formula made up
of the n-ary predicate 6 and n terms, where these terms may include individual con-
stants of £ as well as parameters and grounded names that are subscripted with o or
with tableau prefixes other than o. Suppose 0 —¢ is a node on 8. By hypothesis B
is open, so o ¢ is a not a node on B. Again suppose for reductio that My (¢p,0) = 1.
Since ¢ is an atomic formula of *, by Sections 3.2 and 3.4 each term in ¢ denotes a
member of D (o), even though those terms may be unsubscripted or subscripted with
prefixes other than 0.%> And by the definition of J of the categorical model M given
earlier in this section, a node of the form o (... 1, ...) appears on B, where each
term 7y in O(... 7, ...) is grounded with o and denotes the same member of D (o)
as the term at the corresponding position in ¢ (even though the latter terms may be
unsubscripted or subscripted with a prefix other than o). It can then be shown that
o ¢ is anode on B, which contradicts the assumption that B is open. So by reductio
My (p,0) = 0.

The proof that o ¢ is a node on B is straightforward but complex. Rather
than giving a fully general proof, I give an example that should be sufficient to
convince the reader of its truth. Let 6 be the five-place predicate F, and let ¢
be the atomic formula Fa; by, p1.1bc. Also, let o be the tableau prefix 1.1.
Then by our assumptions 1.1 —Faj by, p1.1 b ¢ is a node on B, and (for reductio)
My(Fay b1 pribc, 1.1) = 1. Since the individual constants b and ¢ appear
in an atomic formula that has the value 1 at world 1.1, by the semantics of £ (see
Sections 3.2 and 3.4 above) J (b, 1.1) and d(c, 1.1) are defined and each is a member
of D(1.1). And since the members of D(1.1) are equivalence classes of grounded
terms that appear on B, by 1 and c;.; must both appear somewhere on B, by the
definition of interpretation 4 of the categorical model M given earlier in this section.
But then by this same definition, 4(b, 1.1) = by ; and d(c,1.1) = ¢11. Similarly,
by the definition of the valuation V associated with the categorical model M defined
earlier in this section, V(ay) = ag, V(b12) = b1, and V(p1.1) = P1.1- So by the
semantics of £ (see Sections 3.2, 3.4 above)

(1) (a1, bia, Pi1, bra, €i1) € 4(F, 1.1).

But then there must be grounded terms subscripted with 1.1 that are members of
the equivalence classes a; and m For the semantics of £ (see Sections 3.2 and
3.4 above) states that a predicate is satisfied by an n-tuple of objects at a world,
only if each of those objects is a member of the domain of that world. Suppose
these grounded terms are the parameter ¢ ; and the grounded name d; ;, respec-
tively. Then ¢1.; and d;; will appear on 8 in nodes of the form o1 a; = ¢1.1 and
03 b1 = di.1, where o1 and 0, may be any prefixes. Thus

(2) a1 =qrrandbya = di.1.
Substituting g7 for a; and m for m in 1 yields
() (@1, di1. Pri. bi, ©ip) € J(F, L.1).

But then by the definition of d of the categorical model M given earlier in this section
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(4) 11 Fql.l dl.l pl.l b1_1 C1.1 is anode on :B

From 4 and the fact that o7 a; = ¢1.1 and 02 b1, = dq.1 appear on B, the tableau
rule for substitutivity of identity yields

(5) 1.1 Fay by p1.1b1.1c1.1 is anode on B.
Finally, by two applications of form 3 of the tableau rule for atomic formulas,
(6) 1.1 Fa; b1 p1.1bcisanode on B.

Hence B is closed, which contradicts the assumption that it is open. So by reductio
My(Fay b1 p1.1bc, 1.1) = 0. This completes the proof for Case (b) when ¢ is
Fay by, p1abce,oisl.l,and 0 —¢ is anode on B.

It should be clear that an analogous proof can be given for any atomic formula
made up of an n-ary predicate and n terms, where these terms may include individual
constants as well as parameters and grounded names that are subscripted with o
or with tableau prefixes other than o. Proof of the basis of the induction is thus
complete.

Inductive step Assume the result holds for formulas with fewer than n logical oper-
ators, and show that it holds for formulas with n operators. Cases for the connectives
and the universal quantifier are straightforward and are left to the reader. (The uni-
versal quantifier case is facilitated by use of part 1 of the substitution lemma.)

Predicate abstraction: ¢ is (Aa.y(«)). So we must show the following.

Where ¢ is an individual constant:

(1) ifo (Aa.(a))(v) is anode on B, then My ({Aa.y(@))(1),0) = 1;

2)if 0 =(Aa. ¥ («)) (1) is a node on B, then My ((Aa. ¥ (x))(t),0) = 0.

Where 7, is a grounded term:

3)ifo (Ao (a))(zs) is anode on B, then My ((Ao. Y ())(75),0) = 1;

@) if o = {(Aa.¥ (a))(7s) is a node on B, then My ({(Aa. ¥ (x))(75),0) = 0.

Where 5, is a grounded term, and 07 # o

(5)ifo (Aa.y(@)) (75, ) is anode on B, then My ({(Aa. (o)) (t5,),0) = 1;

(6) if 0 —=(Aa. () (74, ) is a node on B, then My ((Aa. ¥ («))(ts,),0) = 0.

The case where 7, is a grounded term (involving 3 and 4 above) is the simplest.
If o (Aa.¥())(75) is a node on B, then, since B is a complete branch, a node of
the form o ¥ (7,) also appears on B (from application of form 2 of the predicate
abstraction rule). So by the inductive hypothesis My (¥ (75),0) = 1, and by part 1
of the substitution lemma Mq; (Y («),0) = 1, where U is the o-variant-at-o of V
such that U(«) = V(7). But then by the semantics of predicate abstraction (clause
12a of Section 3.4) My ({(Aa. ¥ («))(ts),0) = 1. So 3 is established.

On the other hand if 0 —(Aa.¥(a))(ty) is a node on B, then, since B is
complete, a node of the form o —y(7,) also appears on B (from application of
form 2 of the negated predicate abstraction rule). So by the inductive hypothesis
My (¥ (t5),0) = 0, and by part 1 of the substitution lemma Mq; (¥ (), 0) = 0,
where U is the a-variant-at-o of 'V such that U () = V(175). But then by the seman-
tics of predicate abstraction (clause 12a of Section 3.4) My ({(Aa.¥ (a))(75),0) = 0.
So 4 is established.

Consider next the case where ¢ is an individual constant. The proof of 1 is exactly
like that of 3 except that it appeals to form 1 of the predicate abstraction rule and
part 2 of the substitution lemma. The proof of 2 divides into two cases depending
on whether or not ¢, appears on B. If it does, the proof is like that of 4, except that
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it uses form 1 of the negated predicate abstraction rule and part 2 of the substitution
lemma. If ¢, does not appear on B, then in particular ¢ (i, = (5) is not a node
on B, and so by definition of the canonical model M, J(¢,0) is undefined for all
o € W. So by clause 12b of Section 3.4 My ({(Aa. ¥ («))(t),0) = 0.

To prove 5, consider the case where o (Ac.y(«)) (75, ) is a node on B, 74, is
a grounded term, but o7 # o. By form 3 of the predicate abstraction rule, both
o0 ¥ (15,) and 0 (s = 74,) are nodes on B. So by the substitution of identity rule
o Y (g, ) is anode on B, and thus by the inductive hypothesis My (Y (75),0) = 1.
Since 0 (s = 14,) is on B, it follows from the basis case of the induction that
My ((ty = T4,),0) = 1, and hence that My (¥ (ts,),0) = 1. But then by part 1 of
the substitution lemma and clause 12a of Section 3.4 My ({(Ao.¥ («))(t5,).0) = 1.

Finally, the proof of 6 is similar to that of 2 in that it divides into two cases depend-
ing on whether there is a grounded term v, and a prefix o, such that 04 (Vs = 74,)
is anode on B. If there is, 0 ~{Ax.v¥ (a))(vy) is a node on B, by the substitution of
identity rule, since 8 is complete. Also if 04(vs = 74,) is a node on B, V5 = 7q,,
by the definition of the set ¥ that is the domain D of the categorical model M.

So by case 4 above My({Aa.¥(a))(vs),0) = 0. And since Vg = T4,
My ({(Aa. ¥ (@))(ts,),0) = 0. On the other hand, if there is no grounded term vy
and no prefix o, such that 0« (vs = 75,) is a node on B, then for all grounded terms
Vs, Us # Tg,. by the definition of ¥. So by the definition of D, V(14,) ¢ D(0),
and thus by 12b of Section 3.4, My ({(Ae. ¥ (¢))(75,).0) = 0. A

Weak completeness follows immediately from the completeness lemma.

Theorem 7 Completeness for £

Let ¢ be a sentence of £ and T a finite set of sentences of £. If ¢ is a consequence
of T, then ¢ is derivable from I". In abbreviated form, if I" is finite and I" F ¢, then
'k o¢.

Proof  Suppose ¢ is not derivable from I". Thus by the definition of derivability
(in Section 8.1.2) no tableau beginning with the members of I' and —¢, all prefixed
with 1, is closed. Hence every such tableau has a complete and open branch.

Let 8 be a complete and open branch of such a tableau. By the completeness
lemma, B induces a categorical model M = (W, @, R, D, d) and a categorical
valuation V (relative to JM ) such that, for any formula ¢ of * and any prefix o

If 0 ¢ is anode on B, then My (p,0) = 1; and

If 0 —¢ is anode on B, then My (p,0) = 0.

Since —¢ and each member of I' is a sentence of £ that appears on B with the
prefix 1, ¢ is not a consequence of I'. W

Notes

1. Itis so called and endorsed by Plantinga [28, p. 93], [27, p. 316] and by Stephanou [38].
Burge [1, p. 313] also endorses it. He does not use the term “serious actualism,” but
he presents the core idea using a nonmodal first-order schema that applies to primitive
predicate and relational terms. Of this schema he says, “It expresses a deep and widely
held intuition that the truth of simple singular sentences (other than those implicitly
embedded in intensional contexts) is contingent on the contained singular terms’ having
adenotation. The pre-theoretic notion seems to be that true predications at the most basic
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level express comments on topics, or attributions of properties or relations to objects:
lacking a topic or object, basic predications cannot be true.” (Emphasis added.)

See the quotation from [1] in the previous footnote. I discuss serious actualism in more
detail in Section 6.1.

More precisely, I understand actualism to be the claim that everything actually exists,
not the necessitation of this claim, and not the claim that necessarily everything exists.
Plantinga understands actualism in this last way. My account, unlike his, involves use of
an actuality connective. I discuss actualism and argue for my account in Section 6.1.

Modal languages with a predicate abstraction operator can be found in Stalnaker and
Thomason [35], Thomason and Stalnaker [39], Fitting and Mendelsohn [7], and Fitting
[6], but none of the logics discussed by these authors are seriously actualistic. Similarly,
the nonmodal logic studied by Lambert and Bencivenga in [21] contains a predicate
abstraction operator, but it is not seriously actualistic. In [32] (reprinted with slight
modifications and a postscript in [33]) Stalnaker presents the logic of a quantified modal
language cum abstraction operator that is seriously actualistic. He also gives axioms and
rules of inference which he tacitly assumes, but does not prove, are sound and complete
with respect to his semantics. He does not consider uniform substitution. In the present
article I give a set of tableau proof rules and prove that they are sound and complete
with respect to validity in SAT. I also prove a uniform substitution theorem for SAT.
Stalnaker’s system is compared with mine in Section 6.2.

I discuss the work of several authors on actualism and serious actualism in Section 6
below.

[19, p. 86], emphasis in the original.

Modal languages augmented with an actuality connective have been widely studied.
(See, e.g., Hodes [13], [14], and more recently Gilbert and Mares [10].)

I have discussed formulas of propositional logic with a structure similar to that of (7) in
[11] and [12].

See Hodes [13]-[15].

In logicians’ jargon SAT is a negative universally free logic. It is free because (as is
now common) primitive predicates may have a null extension and because universal
instantiation for individual quantifiers is not valid, universally free because it includes
interpretations in which individual quantifiers range over the empty domain, and negative
because atomic sentences containing nondenoting singular terms are always false. (For
these terms, and a comprehensive account of free logic, see Lambert [20, especially
pp. 124-27, 131].)

Subscripts can be used to ensure an infinite supply of names, predicates, and variables;
superscripts to indicate the arity of predicates. In practice I will have no need for sub-
scripts, and I will let context indicate arity. The lower case letters k through ¢ are reserved
for use in tableau proofs. (See Section 6.)
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Clauses 4 and 5 do not allow vacuous quantification or vacuous predicate abstraction.
There is no point in allowing either, and vacuous quantification yields anomalies when
empty domains are allowed. For example, although VxFx — Fa is false if the domain
of quantification is empty, Vy(VxFx — Fa) is true.

A variable occurs free in a term t only if 7 is a variable. Clause 6 is stated so as to
facilitate expansion of the class of terms to include function symbols and description
operators.

. The Fitting and Mendelsohn system to which SAT is most similar is the one they develop

in [7, Chapter 11].

Thus an interpretation need not assign anything to an individual constant at a world w.
In models in which O (w) is empty, this will be so for all individual constants.

If D (w) is empty, all predicates, including =, are assigned the null set at w.

The serious actualism embodied in clause 2 is exactly the same as that of Menzel and
Stephanou. (See Menzel [24, clause (M2), p. 361] and the definition of a model in
Stephanou [36, p. 197] and [37, p. 383].) But the actualism of clause 1 is more liberal
than that of either. In his preferred system, G, Menzel limits the denotations of indi-
vidual constants to objects in the domain of the real-world element of a model (see [24,
clause (M1"), p. 361]). Stephanou does the same on the previously referenced pages.
The actualism of SAT, on the other hand, allows individual constants to denote differ-
ent objects at different worlds, requiring only that an object denoted at a world be a
member of the domain of that world. Thus it allows, but does not require, individual
constants to function like definite descriptions, referring to nothing in the actual world
but to “something” in some other possible world. Although the previous sentence may
sound incompatible with actualism, I argue in Section 7 that the idea behind it can be
given an entirely actualistic expression.

Clause 1 includes the case where 0 is = and ¢ is (11 = 12).

Fine has shown in his “Postscript” to Prior and Fine [29, pp. 142-45] (reprinted in [5,
pp. 154-56]) that when a modal logic with world-relative quantifiers, like SAT, is supple-
mented with Vlach [41] connectives possibilist quantifiers can be defined. (One Vlach
connective is like the actuality connective, but more fine-tuned. When applied to a for-
mula within the scope of a modal connective, it shifts evaluation back to the world in
which the modal connective was evaluated, not back to the actual world. The second
Vlach connective keeps track of worlds in which shifts caused by the first Vlach connec-
tive are initiated.) Possibilist quantifiers are rejected by actualists, but introducing them
as primitive or defining them using the Vlach connectives at least makes them explicit.
Introducing them in one of these ways is at least more straightforward and honest than
allowing them to creep into the language disguised as free variables.

See [11], [12]. These two kinds of validity were first distinguished by Davies and Hum-
berstone [3] and have received much discussion. For an object language that does not
contain an actuality connective (or any other logical operator that makes special refer-
ence to a designated world) they coincide.
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It may be tempting to think that the sort of difference noted in this section, in which
the truth value of a sentence depends on whether a negation sign is placed inside or
outside a predicate abstract, is due entirely to the fact that the sentences involved contain
individual constants. But this is not true. Consider the sentences Ix(Ay.—Sy)(x) and
AxO—(Ay.Sy)(x), and further specify the model under consideration so that for every
world w* € ‘W such that wRw*, D(w™) is disjoint from D(w). The first sentence is
false at w and the second true.

Individual constants can nevertheless be made to approximate rigid designators using
suitable assumptions. (See Section 6.2 for details.)

In the sentence schema given in this and subsequent sections ¢, &1, @2, ..., are vari-
ables, ¥ («), ¥ (1), ¥ (a2), ..., are formulas containing one or more free occurrences
of the indicated variable but no free occurrence of any other variable, ¢, (1,2, ..., are
individual constants, and ¥ (¢), ¥ (¢1), ¥ (¢2), . . ., the results of substituting ¢, ¢1, (2, ...,
for each free occurrence of the indicated variable in ¥ (o), ¥ (a1), ¥ (@2), . ...

The label (ND), for necessity of distinctness, is borrowed from Stalnaker [32]. Necessity
of distinctness is valid in SAT even though none of the versions of necessity of identity

listed here are.

This approach to identity, including the logical equivalence of &(¢) and (t = ¢), is
endorsed by Burge [1].

See [24, especially pp. 359-64].
Kripke notes a closely related distinction in [19, p. 90].

An example of such an argument is

(Gibb) (g =1).0@3x(x=1)— (I =1)) £EO@x(x =1) > (g =1)).

I call this argument (Gibb) because it plays a pivotal role in Gibbard’s argument (see [9,
p- 200 ft]) for contingent identity. Gibbard’s reasons for favoring a contingent identity
logic are very different from mine. I will not consider his work here except to note that a
crucial step in his argument is illuminated by the use of predicate abstraction.

It is important for Gibbard’s purposes that (Gibb) not be a valid argument. He
explains its invalidity as follows:

[The conclusion] follows from [the premises] by Leibniz’s law, then, only
if the context

O@x(x=1)—>(..=1) @)
attributes a property. We can block the inference to [the conclusion], then,
simply by denying that the context (7) attributes a property.

Gibbard does not make use of predicate abstraction, but by its use we can see more
clearly what he means by “attributing a property.” The property he denies (7) attributes
is expressible in my notation as

(AyO@x(x=1)— (y =1)) (7%)
And in view of (Subl) the following variant of (Gibb)
(g=0D.(p0Ex(x=0)— G =00FHAOEx=1)— (y=0))e)

is a valid argument. So from my perspective Gibbard’s criticism of (Gibb) amounts to
denying that (7*) “attributes a property.”
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Indeed similar reasoning shows that o1 O {Aaa.d(e2)) (o) — OFag (Aaz.d(az)) (1)
is valid.

Kripke [19] gives a counterexample to the [1V-form of the Converse Barcan Formula.
It assumes that false predications using monadic predicates can be made of objects at
worlds in which those objects do not exist. And the semantics of [19] also allows the
kind of counterexample given above to (CBF), an instance of the 3(-form of the Con-
verse Barcan Formula, in which true predications using monadic predicates are made
of objects at worlds in which those objects do not exist. Yet in this same paper Kripke
expresses misgivings about this latter allowance, as the passage quoted in Section 1 above
shows.

Consider a model with just two worlds, w and w’, in which R is reflexive, wRw’,
D(w) = {0}, and D(w’) = {1}. If the predicate F is assigned {0} at w and {1} at w’,
then at wOVx(Ay.Fy)(x) is true but VxO(Ay.Fy)(x) is false.

The model given in the previous footnote, modified only by changing the extension of
F at w from {0} to the null set, makes {3x(Ay.Fy)(x) true but IxO(Ay.Fy)(x) false
at w. And the model of the previous footnote, modified by changing £ (w’) from {1}
to {0, 1} and the extension of F at w’ from {1} to {0}, makes VxO(Ay.Fy)(x) true but
OVx(Ay.Fy)(x) false at w.

All the results given in Sections 5.1-5.4 for SAT hold as well for SAK, SAB, SAS4, and
SASS.

In systems without predicate abstraction both of these sentences count as instances of
the Converse Barcan Formula. By an argument similar to the one given for (CBF) in
Section 4.4, the first sentence is valid in SAK and hence in SAT, SAB, SAS4, and SASS.
But the second sentence is invalid even in SASS and hence in the other systems.

As I mentioned in an earlier footnote, Stalnaker [31] noticed this problem in a slightly
different context. He gives an interesting example on pp. 335-336, but there is no uni-
form substitution theorem in [31] or his later [32]. I discuss [32] in Section 6.2.

By a primitive predicate abstract I mean one like (Ay.Fy), in which the formula follow-
ing the dot is atomic.

Where n = 2, again define Ext 4, (6) as 4 (0, w). Hence Ext 4, (0) € D(w) x D(w)).
Define Ext g, ((Aa1, a2.9)) as {(V(a1), V(e2)) | My((Aar, a2.¥) (a1, 02), w) =
1}, where 'V ranges over all valuations relative to M. It follows that Ext e, ((Aa1,

az.9)) € D(w) x D(w).

This definition of logical equivalence applies to all formulas. If ¥ and ¥ are sentences,
it reduces to the definition given in Section 3.6.

Since SAT bans vacuous quantifiers, the result of replacing an occurrence of ¥ by ¥’ in ¢
may not be a formula. (Let ¢, ¥/, and ¢ be FxV—=Fx, Fav—Fa,and Vx(FxVv—Fx).)
Hence the limitation of Theorem 2 to those cases where ¢’ is a formula.

It is sufficient to consider just these cases since all the SAT logical operators can be
defined using =, A, O, A, V, and A.



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Actualism, Serious Actualism, and Quantified Modal Logic 279

See Plantinga [26]-[28], Fine [4], Jager [16], [17], Menzel [24], and Stephanou [36],
[37].

Stalnaker [32] is reprinted with minor changes in [33].

See [28, pp. 91-92], [27, p. 314]. Plantinga apparently does not use the term “actualism”
in [26], but on p. 149 he states the denial of what he calls actualism in the previously
cited passages, and he argues against it on pp. 149-53.

The quantifiers of varying domain logics are sometimes called actualist quantifiers,
while those of constant domain logics are called possibilist quantifiers. (Fitting and
Mendelsohn use the terms in this way in [7, pp. 95, 101].) World bound and world
independent would be more accurate terms.

See [26, pp. 136, 149].
See [26, p. 133].
See [26, p. 151].

For example, =(Ay.0—=E (»))(s), (Ay.—=0—=8E(¥))(s), and =)—E(s) are also false in
M.
d

In a recent paper [25] Percival discusses many issues concerning actualism and the
use of predicate abstraction. Space prevents me from going into details, but I sug-
gest that using a distinction I drew earlier in Section 6.1 may help us understand his
position. In [25, p. 414, footnote 45] he seems to endorse the view that “... some
existing object is such as to exist contingently” and also that “(s)omewhat confusingly

. it is metaphysically possible for there to be objects that do not exist.” If “exist”
is construed as &(x) in the former sentence but as A&(x) in the latter, they become
Ax(E(x) A —mO&(x)) and $Ix—AE (x), respectively. Neither of these is valid in SAT,
but both are true (i.e., true at the actual world element of the intended model). (If on the
other hand, “exist” is construed as A& (x) in the former and as & (x) in the latter, both of
the results—3x (A& (x) A mOAE(x)) and $Ix—E (x)—are the negations of valid sen-
tences.) Perhaps the distinction between, roughly, existence and actual existence is the
key to understanding Percival’s position.

See [27, p. 316]. In [28, p. 93] he expresses it as “...no object x has any property in
any world in which x doesn’t exist,” not as the necessitation of this claim. Since the
discussion of serious actualism in [27, p. 316] is more detailed than that in [28, p. 93],
and since [27] and [28] were both published in the same volume, it is reasonable to
assume that what he intends in [28] is the necessitation of what he says there.

For the formula Rxy, —,Rxy can be expressed in SAT as (Az,w.(8(z) A
E(w)A—Rzw))(x, y)and O, Rxy as (Az, w.(E(2)AE(W)ARzwAO((E (2)AE (w)) —
Rzw)))(x, y), and similarly for formulas, atomic or complex, with free occurrences of
three or more variables.

The only complication is that SAT must be augmented by infinitely many position vari-
ants of each of its variables, and, for each SAT-model-plus-valuation, each position vari-
ant of a variable must be assigned the same object as the variable itself.
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See [8, pp. 278-80].

For SAK (d = d) would be added. The sentences in this list that are existential gener-
alizations of conjunctions are similar to, but in general stronger than, the sentences used
by Hintikka in formulating a rule of universal instantiation for Q3. The latter sentences
are conjunctions of existential generalizations. (See Garson [8, pp. 279-80] for details.)

For M, M*, and the Principle of Compossibility, see Chihara [2, pp. 220-24].

Stalnaker [32] is reprinted in [33], with a change in the axiomatization and a brief post-
script responding to a point made by Williamson. Subsequent references are to [33].
Further work by Stalnaker on modal languages with an abstraction operator can be found
in [31], [40], and [34]. His work has been criticized by Williamson, who espouses neces-
sitism, the view that necessarily everything is necessarily something. (In my notation:
OVxOE& (x).) For Williamson’s work see [42] and the references contained therein.

See [33, p. 146].

Stalnaker [33, p. 157] says his results hold if the underlying propositional modal logic is
K, D, T, KB, B, K4, S4, or S5. The similarities and differences noted in the text between
SAT and Stal-T also hold when the underlying modal logic is any of those listed.

See [33, p. 157].

In the postscript to the version of the paper that appears in [33], Stalnaker considers some
effects of adding the actuality connective. For ease of comparison I restrict my attention
here to formulas that do not contain it.

In Stal-T quantifiers apply directly to unary predicates, whether simple or complex, so
VS and 3§ are well formed.

Although Menzel’s ontology includes properties and relations, and he uses them in defin-
ing the model in question, that model consists only of pure sets. In [30] Ray argues that
pure sets alone suffice for defining such a model. I believe Ray is correct, but I will not
address the issue here.

If in constructing such a model we attempt to represent “all of reality,” including both the
physical world and the entire set-theoretic universe, cardinality problems will of course
arise. But I can see no barrier to constructing models of this kind that, while not com-
pletely comprehensive, are large enough to be interesting.

I have discussed related matters elsewhere. In [11] I argue that sentences of the form
(Ap — p) (where p is not itself a necessary truth) are contingent yet true a priori. In
[12] I argue that such sentences are also synthetic. (See especially [11, p. 447] and [12,
Section 2.3].)

Namely, SAK, SAB, SAS4, and SASS.
The individual constants and variables of £, as defined in Section 2.1, may be indexed

with numerical subscripts as a way of ensuring that their supply is unlimited. Strictly
speaking, the new grounded terms of % should have this feature as well. In practice,
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one seldom needs more than a few such symbols of either language and thus seldom
needs these purely indexical subscripts. When such a need arises, indexical and tableau-
node-prefix subscripts can be distinguished by placing the latter in parentheses after the
former. Thus b557(1.2.@.2.1) counts as a grounded name, and p3(;.1.1) as a parameter.
In general, a grounded term can be represented as 7 (5), Where 7 is one of the lower case
letters a through 7, « is an indexical subscript, and o is a tableau prefix.

Subscripting an individual constant T with a prefix is similar to applying Kaplan’s [18]
operator dthat to t.

For more on tableau rules for K, T, B, S4, and S5 see [7, pp. 51-55].
Thus 7 is either a parameter or a grounded name.

Form 3 can be simplified so as to introduce only the second conclusion stated here. The
first conclusion can be derived using form 2 and the substitutivity of identity rule (see
Section 8.2.5).

Form 3 need not be taken as primitive. Its conclusion can be obtained using the substitu-
tivity of identity rule (see Section 8.2.5) and form 2 of the negated predicate abstraction
rule.

The blank space above the horizontal line indicates that this rule has no premise.

Although atomic formulas other than identities do not contain parentheses (see Sec-
tion 2.2), the use of parentheses in the metalinguistic representation of atomic formulas
enhances readability.

It is important to notice that forms 1 and 2 apply to the case where 6 is the identity
predicate. If ¢ is an individual constant, (...¢...)is (¢t = ...) or (... = ¢). Similarly, if
7o, is a grounded term, 0(... 75, ...)is (tgy =...) Or (... = Tgy).

This form does not apply to parameters, since the result of removing the tableau-prefix
subscript from a parameter is not a symbol of either £ or £*.

As in the case of forms 1 and 2, it is important to notice that form 3 applies where 6 is
the identity predicate, ¢y is a grounded name, and (¢ ) is thus (tg = ...) or (... = tg).

This tableau suggests a two-world SASS model that falsifies IxO—Fx — (Ix—Fx.
The domain of one world contains a single object, and the predicate F' holds of that
object at that world. The domain of the other world is empty. Alternatively the second
world can contain a distinct object, with F' also holding of that object at that world.

The model M and valuation V given here apply to the language €. Since grounded terms
(i.e., grounded names and parameters) are not symbols of £ they are assigned no values
by either M or V. But if we add the stipulation that 'V assigns {p1,d1,91.1,71.1} to
p1.d1,91.1, and r1 1, and we leave M unchanged, the result is a model and a valuation
of X that falsify faux (UI).
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Possibilists may complain that line 2 begs the question against them because it assumes
that the object denoted by pe is an actual object. But if quantifiers are given a possibilist
interpretation (Act3) is valid, a result that possibilists presumably do not want.

The definitions and proofs concerning soundness are similar to those of Fitting and
Mendelsohn [7, pp. 57-60, 121-24, 152-53].

As specified in Section 8.1.1, all grounded terms of 2* are treated semantically like

variables. Given a model M and a valuation V relative to M, V assigns to each grounded

term a single, model-wide denotation from the domain of the model, Djs. Clauses 3

and 4 reflect this, since together they require that any term grounded with o designates,

at each world of the model, a member of D (@ (0)). And of course D(O(0)) S Dy
Note that 4 (¢, @ (o)) may be defined even if (s does not appear in S.

For example, clause 3 requires that the parameter p; designates, throughout the model,
an object from the domain of world ©(1). Clause 4 requires that the grounded name
c1.1 designates, throughout the model, an object from the domain of world @(1.1). By
contrast, if no occurrence of the individual constant ¢ has a tableau prefix as a subscript,
clause 4 does not require that ¢ be given an assignment by M cum V. Individual con-
stants are not required to denote at every, or even any, world.

4 does not, however, assign values to the grounded terms of % or to the variables of £.
These are given their values by V.

It is important to bear in mind in what follows that individual constants and grounded
names are treated very differently in the semantics of £*. In the categorical model
and valuation (M and V) just defined, this difference may manifest itself in initially
surprising ways. For example, if the grounded names b1, b1.1, and b1.1.1 appear on a
branch, each will have been introduced by application of a tableau rule to the individual
constant b. Yet it may turn out that, under M and 'V, by # b1.1 # b1.1.1-

Strictly speaking, Sections 3.2 and 3.4 present only the semantics of £. £*, introduced
in Section 8.1.1, is £ plus grounded names and parameters, which are treated like vari-
ables.
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