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Negation-Free and Contradiction-Free Proof of the
Steiner–Lehmus Theorem

Victor Pambuccian

Abstract By rephrasing quantifier-free axioms as rules of derivation in sequent
calculus, we show that the generalized Steiner–Lehmus theorem admits a direct
proof in classical logic. This provides a partial answer to a question raised by
Sylvester in 1852. We also present some comments on possible intuitionistic
approaches.

1 Introduction

One of the late additions to the collection of elementary geometry theorems, first for-
mulated in 1840 by Daniel Christian Ludolph Lehmus, and proved that same year by
Jakob Steiner (but published only in 1844), states that a triangle with two congruent
internal angle bisectors must be isosceles. Many proofs have been offered over the
course of the more than 170 years since it was first stated, but all synthetic proofs,
where one could meaningfully ask for a direct proof, appeared to be indirect, that is,
to find some fault with a scalene triangle having two congruent internal bisectors.

As early as 1852, Sylvester [28] believed that all proofs of the theorem must be
indirect:

“My reader will now be prepared to see why it is that all the geometrical demon-
strations given of this theorem [: : :] are indirect, I believe I may venture to say
necessarily indirect. It is because the truth of the theorem depends on the nec-
essary non-existence of real roots (between prescribed limits) of the analytical
equation expressing the conditions of the question; and I believe that it may be
safely taken as an axiom in geometrical method, that whenever this is the case
no other form of proof than that of the reductio ad absurdum is possible in the
nature of things. If this principle is erroneous, it must admit of an easy refutation
in particular instances.” (pp. 394–95)
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All arguments for and against this thesis brought right after Sylvester’s paper (see
Adamson [2]), all the way to the twenty-first century, suffer from the absence of a
clear logical formulation of the problem, which ensures muddled conclusions “sig-
nifying nothing.” In fact, the first serious analysis of the question of indirectness
itself that I am aware of, in the context of propositional logic, can be found in Ekman
[9], [10]. Indirect proofs and their relations to direct ones are also the subject of
Orevkov [21, Chapter 4].

Our aim is to present a proof of the existence of a direct proof of a certain formal
expression of a generalization of the Steiner–Lehmus theorem first inside an axiom
system of dimension-free absolute geometry, then, based on the recent proof (see
Pambuccian, Struve, and Struve [25]) in standard ordered metric planes, in a certain
axiom system for a fragment of absolute geometry.

2 The Generalized Steiner–Lehmus Theorem in Tarski’s Axiom System for
Dimension-Free Absolute Geometry

2.1 The Skolemized axiom system with Makarios’s changed five-segment axiom An
axiom system with very few axioms for dimension-free absolute geometry (i.e., there
are no dimension axioms, neither one stating that the dimension is at least n, nor one
stating that the dimension is at most n, and there is no axiom stating that there is
only one parallel from a point outside of a given line to that line) was provided by
Tarski in Schwabhäuser, Szmielew, and Tarski [26]. One of Tarski’s axioms was
shown by Makarios [16] to be superfluous, if a small change is made to another
one of Tarski’s axioms. This brought their number down to six. The language in
which the Skolemized axiom system is expressed has only one sort of individual
variables, to be referred to as points, as well as: (i) two relation symbols, a ternary
one B , for betweenness, with B.abc/ to be read as “point b lies between a and
c” (and b may be a or c, and a D b D c is also allowed), a quaternary one �

for equidistance, with ab � cd to be read as “b is as distant from a as d is from
c” (or “ab is congruent to cd”), and (ii) two operation symbols, arising from the
Skolemization of the two axioms that contain existential quantifiers, a quaternary
one S , with S.abcd/ producing, if a ¤ b, the point on the ray opposite to

!

ba for
which bS.abcd/ is congruent to cd , and, if a D b, any point with that congruence
property (thus S corresponds to a segment transport operation), and a 5-ary one, �,
with �.ceadb/ being, if B.cea/ and B.dba/, a point that is both between b and c
and between e and d , else an arbitrary point. The axioms are:

T 1 ab � pq ^ ab � rs ! pq � rs,

T 2 ab � cc ! a D b,

T 3 B.qaS.qabc// ^ aS.qabc/ � bc,

T 4 B.abc/ ^ B.a0b0c0/ ^ ab � a0b0 ^ bc � b0c0 ^ ad � a0d 0 ^ bd � b0d 0

! .dc � c0d 0 _ a D b/,

T 5 B.aba/ ! a D b,

T 6 B.cea/ ^ B.dba/ ! B.e�.ceadb/d/ ^ B.b�.ceadb/c/.

Axiom T4 is usually referred to as the five-segment axiom and can be considered to
be, in case the points a, b, and d are noncollinear, and c ¤ b, stating an angle-free
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Figure 1 Inner and outer forms of the Pasch axiom, IP and OP.

Figure 2 The generalized Steiner–Lehmus theorem.

variant of the side-angle-side congruence axiom, as triangles bcd and b0d 0c0 have
to be congruent if they have two congruent sides, bc � b0c0 and bd � b0d 0, and
the angles between those sides congruent (since there are no angle variables, this is
expressed by means of the side-side-side congruence of triangles abd and a0b0d 0).

Axiom T6 (see Figure 1) is a form of the Pasch axiom, referred to as the inner
form of the Pasch axiom (IP), for it states, in case a, b, and c are three noncollinear
points, that, if a line intersects the side ac and the extension, past b, of another side,
ab, of triangle abc, then it must intersect the third side bc as well (in a point f ,
whose Skolemized name is �.ceadb/). The axiom also contains several degenerate
cases, in case a, b, and c are collinear, or in case e does not lie strictly between a and
c, or b does not lie strictly between a and d . These degenerate cases are essential
in proving most universal properties of betweenness (enabling us to have only one
universal betweenness axiom, namely T5).

2.2 The generalized Steiner–Lehmus theorem The generalized version of the
Steiner–Lehmus theorem, that can be proved on the basis of these axioms (see
[25]), can be stated as (see Figure 2; some of the points drawn are needed for a
formulation we will encounter later on):

:
�
B.abc/ _ B.bca/ _ B.cab/

�
^ B.amc/ ^ B.anb/ ^ ad � ab ^ B.amd/

^ sb � sd ^ B.bsm/ ^m ¤ c ^m ¤ a ^ B.csn/ ^ cn � bm^ ! d D c: (1)
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It is a generalization of the Steiner–Lehmus theorem, as it states that, if
!
as is

the internal angle bisector of the angle bbac (which can be expressed by stating that

s is equidistant from two distinct points on the rays
!

ab and
!
ac that are themselves

equidistant from a (we chose those two points to be b, an already existing point

on
!

ab, and d , a (new) point on
!
ac, so as not to needlessly increase the number of

variables used)), s does not lie on bc (a condition expressed in the form m ¤ c) and
is different from a (a condition expressed by m ¤ a), and if the segments bm and

cn, the segments formed by intersecting the rays
!

bs and
!
cs with the sides ac and ab

of the triangle abc, are congruent, then triangle abc must be isosceles; that is, ab

must be congruent to ac. In the original Steiner–Lehmus theorem,
!

bs and
!
cs had to

be the angle bisectors of babc and bacb.

2.3 Rules of derivation replace axioms In Negri and von Plato [18] (see also Negri
and von Plato [19], [20]) axiom systems in classical logic (see [18, Proposition 2.6])
consisting of quantifier-free axioms are turned into (logic-free) rules of inference, in
which from a certain sequent another sequent may be inferred, and a certain sequent
in which no logical symbols appear is provable if and only if it can be derived as the
endsequent of a chain of inferences, where only the inference rules corresponding
to the axioms and two logical axioms (� and � are arbitrary multisets of formulas
(repetitions are allowed))

P;� ) �;P and ?; � ) � (2)

—where P is any atomic formula, and ? is the logical symbol for falsity—are
allowed to appear.

In our case, we first obtain two rules of inference, corresponding to the equality
axioms, namely:

a D a; � ) �

� ) �
; (3)

s D t;Q.s/;Q.t/; � ) �

s D t;Q.s/; � ) �
; (4)

where s and t are terms, and Q.a/ is an atomic predicate from our language, in
which the variable a occurs.

Next, the axioms T1–T6 are turned into rules of derivation according to the fol-
lowing principle. Each axiom

P1 ^ � � � ^ Pm ! .Q1 _ � � � _Qn/ (5)

becomes
P1; : : : ; Pm;Q1; � ) � : : : P1; : : : ; Pm;Qn; � ) �

P1; : : : ; Pm; � ) �
: (6)

They become the following rules of derivation:
ab � pq; ab � rs; pq � rs; � ) �

ab � pq; ab � rs; � ) �
; (7)

ab � cc; a D b; � ) �

ab � cc; � ) �
; (8)
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B.qaS.qabc//; � ) �

� ) �
; (9)

aS.qabc/ � bc; � ) �

� ) �
; (10)

†; dc � c0d 0; � ) � †; a D b; � ) �

†;� ) �
; (11)

where † stands for B.abc/, B.a0b0c0/, ab � a0b0, bc � b0c0, ad � a0d 0,
bd � b0d 0;

B.aba/; a D b; � ) �

B.aba/; � ) �
; (12)

B.cea/; B.dba/; B.e�.ceadb/d/; � ) �

B.cea/; B.dba/; � ) �
; (13)

B.cea/; B.dba/; B.b�.ceadb/c/; � ) �

B.cea/; B.dba/; � ) �
: (14)

The generalized Steiner–Lehmus theorem (1) becomes, when written as a sequent,
B.amc/; B.anb/; ad � ab;B.amd/; sb � sd; B.bsm/; B.csn/; cn � bm

) d D c;m D c;m D a;B.abc/; B.bca/; B.cab/: (15)
That (1) holds in absolute geometry was first noticed by Tarry [30]. In fact, the

proof presented in Descube [8] can be turned into one true in a geometry weaker than
that axiomatized by T1–T6, as shown in [25]. Thus, given the equivalence (see [18]–
[20]) of the two formalisms (proof of a quantifier-free sentence from quantifier-free
axioms and proof from the axioms (2) of a sequent using rules of derivation inside
the sequent calculus), we have the following.

Theorem 2.1 The sequent (15) can be deduced from the axioms (2) by using (3),
(4), and (7)–(14) as rules of derivation.

3 Direct and Indirect Proofs

When deriving a sequent from the axioms (2) by using rules of derivation, there
are never negation symbols, as our sequents are logic-free; that is, there are neither
logical connectives nor quantifiers. So, how do we decide whether a proof is direct
or indirect?

Indirectness is commonly understood to arise when the contrapositive of a desired
sentence is proved or when one arrives at a contradiction from alternatives to the
statement to be proved.

The notion of “contrapositive” makes no sense in our sequent calculus setting,
given that each proposition gets turned in an essentially unique manner into a rule
of derivation or a sequent, none of which includes the negation sign. So, one cannot
make any tricks with the sequent to be proved. The only variation allowed is in the
order in which the terms occurring in the multisets are listed.

Contradictions, on the other hand, can appear in the sequent to be proved (which
may have a ? after the ) sign), do appear in all axioms of the second type in (2),
and in some rules of derivation with whose help we are to prove the given sequent.
A sequent corresponding to a sentence to be proved will have a ? after the ) sign
only if the sentence cannot be written solely in terms of the connectors ^, _, and !.
A rule of derivation reflects a contradiction only if it holds with an empty premise.
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For example, suppose that we had the lower dimension axiom in our axiom
system, which states that three individual constants a0; a1; a2 (which belong to
an extended language) are such that :.B.a0a1a2/ _ B.a1a2a0/ _ B.a2a0a1//

holds. To appear as in (5), the axiom needs to be first broken up into three axioms,
namely, :B.a0a1a2/, :B.a1a2a0/, and :B.a2a0a1/, and each of these needs to
be expressed without the negation symbol as B.a0a1a2/ !?, B.a1a2a0/ !?, and
B.a2a0a1/ !?. The rules of derivation that would correspond to them, would,
according to (6), be (for i D 0; 1; 2, addition modulo 3)

B.aiaiC1aiC2/;?; � ) �

B.aiaiC1aiC2/; � ) �
: (16)

However, given the second class of axioms in (2), the premises in (16) are true, so
(16) holds with an empty premise; that is, it actually is

B.aiaiC1aiC2/; � ) �
:

A rule of derivation with an empty premise acts like an additional axiom, beyond
those in (2). Had we needed, for example, the lower dimension axiom in our proof
(e.g., as it is needed in the proofs employing Pasch’s axiom of certain betweenness
properties in Hilbert [13, Section 4]), then the proof would have been indirect. We do
not, however, need it, given that the generalized Steiner–Lehmus theorem mentions
that the triangle abc ought to be isosceles only if it is a nondegenerate triangle; that
is, in case there is no noncollinear triple available, the theorem is vacuously true.

If we were to write the lower dimension axiom as a sequent to be proved, then we
would get B.aiaiC1aiC2/ )?.

Indirectness in the proof of a sequent without ? in its multisets can thus occur
only if one of the following takes place: (i) ?; � ) � is used as an axiom, or (ii) a
rule of derivation with empty upper sequent is used.

In general, we conclude that each quantifier-free axiom not containing ? that can
be written only with ^, _, and ! as logical connectors can be transformed into a
rule of derivation with a nonempty premise, and each sentence which can be thus
written can be transformed into a sequent without an occurrence of ?. Thus, if
a quantifier-free axiom system AS and a quantifier-free sentence � which can be
proved from AS are such that all can be written solely with ^, _, and !, then the
proof of � from AS is a direct proof.

To see that this holds in the special case of the result in Theorem 2.1, note that
an axiom of the form ?; � ) � cannot appear in the derivation of (15), given that,
in all our rules, ? can appear only in � , and � carries over from the upper sequent
to the lower sequent in every rule of derivation, so ? would have to be present in
the antecedent of (15), which is not the case. No rule of derivation has an empty
premise, so we have the following result.

Theorem 3.1 The deduction of (15) from axioms of the first kind in (2) by using
(3), (4), and (7)–(14) as rules of derivation is a direct one.

However, this kind of directness applies to a very large class of universal statements
that are theorems of absolute geometry, so within the direct-indirect dichotomy the
vast majority of theorems belong to the direct camp.
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A potential critique of this approach to directness would be one emphasizing the
fact that not (1) was proved, a sentence with a very simple, indeed atomic, conclu-
sion d D c, but rather (15), whose conclusion is a disjunction of no less than six
atoms. Although the transformation of (1) into (15) happened along algorithmic
lines, required for the transformation of Hilbert-style expressions into Gentzen-style
expressions, the transformation itself is sound only because it happens within classi-
cal logic. Is the transformation itself not obscuring the very essence of directness, is
it not unduly enlarging the set of directly provable sentences?

One remedy we have for this state of affairs is to drop classical logic altogether,
and turn to intuitionism, one of whose main critiques was precisely the incorrect
way several theorems are phrased in mathematics, giving an impression of a positive
achievement when only a negative result has been actually proved. This appears to be
the case for the Steiner–Lehmus theorem, in which the statement is very neat, stating
that a certain congruence implies another congruence, yet the existing proofs prove
that a certain segment inequality implies another such inequality.

Turning to intuitionist reasoning for an answer, we are faced with some major
problems. One approach, very far removed from Brouwer’s intentions, is to work
within intuitionistic logic, regardless of whether the primitives and axioms are intu-
itionistically justifiable. This is, for example, the approach through which one arrives
at intuitionistic Zermelo–Fraenkel.

If we were to follow that route, then the answer is simple. First, let us recall that a
formula in the language of first-order logic is called geometric if it does not contain
! or 8 (i.e., if it can be written using ^, _, and 9 only—since :' is considered
to be an abbreviation of ' ! ?). A geometric implication is a sentence of the
form .8x/A ! B , where A and B are geometric formulas, and 8x stands for
.8x1/.8x2/ � � � .8xn/. A geometric theory is a theory axiomatized by geometric
implications. Equivalently, a theory is geometric if its axioms are sentences of the
form

.8x/
� m̂

iD1

'i .x/ !

n_
j D1

.9yj /

lj^
kD1

 j;k.x; yj /
�
; (17)

where the formulas 'i and  j;k are atomic formulas (including > and ?), the x and
yj or the antecedent itself could be empty (i.e., m D 0) and the yj are not free in
the 'i .

A Glivenko-style theorem (see Palmgren [22, Lemma 2.2, p. 298], Negri [17,
Theorem 6, p. 399] for proofs) tells us that if T is a geometric theory and � a geo-
metric implication such that T `c � , then T `i � , where `c and `i designate the
fact that the underlying logic used for the derivation is classical (resp., intuitionistic).
Now the axioms T1–T6 are all geometric implications, and (1) becomes one if we
rewrite it as

B.amc/ ^ B.anb/ ^ ad � ab ^ B.amd/ ^ sb � sd ^ B.bsm/ ^ B.csn/ ^ cn

� bm^ !
�
d D c _ B.abc/ _ B.bca/ _ B.cab/ _m D c _m D a

�
: (18)

So, from the well-known fact that ¹T1–T6º `c (18), we conclude that ¹T1–T6º `i

(18). This means that, in the form (18), the generalized Steiner–Lehmus theorem is
provable in intuitionistic logic.

If we now look at a genuinely intuitionistic axiomatization of elementary geom-
etry, we find that the only paper in which Brouwer referred to elementary geometry
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was [7], in which he showed that one cannot conclude intuitionistically that two
lines that are known to be distinct and not parallel must intersect, and that Heyting
axiomatized only projective and affine geometry. The first axiom system for plane
Euclidean geometry that claimed to be intuitionistic in the choice of the primitive
and the axioms as well as the underlying logic, was put forward by Lombard and
Vesley [15]. It has only one six-place relation Dist, with points as the only sort
of individual variables. The meaning of Dist(a; b; c; d; e; f ) is that the sum of the
lengths of the segments ab and cd is positively greater than that of the segment cd ,
that is, that one can find a natural number n such that ab C jcd j > jef j C 2�n.
A four-place relation ı is then defined by setting ı.a; b; c; d/ to be an abbreviation of
Dist(a; b; b; b; c; d ); that is, ı.a; b; c; d/ stands for the length of ab being positively
longer than that of cd . Segment congruence � is then defined as ab � cd if and
only if :ı.a; b; c; d/ and :ı.c; d; a; b/. Since the usual proofs of the generalized
Steiner–Lehmus theorem show that if jacjı > jabj, then jcnjı > jbmj, that is, that
if ı.a; c; a; b/, then ı.c; n; b;m/, and, by symmetry, also that if ı.a; b; a; c/, then
ı.b;m; c; n/. Since .p ! q/ ! .:q ! :p/ is valid intuitionistically, the usual
proof, going back to [8], thus proves that :ı.c; n; b;m/ implies :ı.a; c; a; b/, as
well as that :ı.b;m; c; n/ implies :ı.a; b; a; c/. With the above definition of �,
the usual proof shows intuitionistically that bm � cn implies ab � ac, so that
Sylvester’s problem never existed to start with!

Two other intuitionistic axiomatizations, that have been put forward in Beeson
[4], [5], adopt “Markov principles” for equality, betweenness, and equidistance; that
is, ::x D y ! x D y, ::B.abc/ ! B.abc/, and ::ab � cd ! ab � cd .
By [5, Theorem 11.1], if a statement � is deducible by using classical logic from
the axiom system of theory T , formulated inside intuitionistic logic with Markov
principles axiomatized in [5], then the double negation of � is deducible inside
T itself. This renders the generalized Steiner–Lehmus theorem in almost its (1)
form, which is (1) with :B.abc/ ^ :B.bca/ ^ :B.cab/ ^ b ¤ c instead of
:.B.abc/ _ B.bca/ _ B.cab//, which is equivalent to its double negation, prov-
able in Beeson’s T (in Beeson’s T , the predicate B is defined by the axioms for
strict betweenness, that is, B.abc/ holds if b is strictly between a and c, which is
why we have to add ^b:c to :B.abc/ ^ :B.bca/ ^ :B.cab/; we may also drop
m ¤ c ^ m ¤ a from (1), as these are implied by B.amc/, which is part of the
hypothesis). Such a proof would still be suspicious, as one could claim that the indi-
rectness got swept under the rug with the use of Markov principles.

However, one can prove the existence of a direct proof of the generalized
Steiner–Lehmus theorem, expressed as in (1), but with 0 < abc < � instead
of :.B.abc/_B.bca/_B.cab//^m ¤ c ^m ¤ a—where 0 < abc < � should
be read as abc is a positive angle and is positively different from a straight angle,
both notions being defined in [6] in terms of B—from an axiom system for plane
Euclidean geometry in terms ofB and �, withB to be interpreted as “strict between-
ness,” with all axioms intuitionistically meaningful, without the use of any Markov
principle (thus inside purely intuitionistic logic)! This follows directly from: (i) the
syntactic form of the generalized Steiner–Lehmus theorem, (ii) the fact established
above that it is deducible inside Euclidean geometry with the Markov principles
allowed in T , and (iii) Theorem 14 of [6]. This represents proof of the existence of
an entirely unobjectionable direct proof of the generalized Steiner–Lehmus theorem.
This result and Theorem 3.1 thus present possible solutions to the question raised by
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Sylvester. These are solutions “in principle,” as we do not present line-by-line proofs
of the generalized Steiner–Lehmus theorem, we just know that such proofs must
exist, both in the classical and in the intuitionistic setting. The actual line-by-line
formal proofs would likely contain thousands of lines.

Although our main problem has thus found a solution, we will also indicate the
availability of a direct proof from even weaker assumptions.

When asking ourselves what the likely minimal requirements are under which the
generalized Steiner–Lehmus theorem holds, we find that there is no need for free
mobility, such as the ability to lay off a segment on any ray, or for the existence of the
midpoint of any segment, both of which are true in Tarski’s absolute geometry. What
is needed to express the generalized Steiner–Lehmus theorem is a notion of segment
congruence and one of betweenness. The axioms that they need to satisfy so that we
can prove (15) were the subject of [25]. It thus turns out that there is a direct proof of
the generalized Steiner–Lehmus theorem from a significantly weaker set of axioms.

4 The Axiom System for Metric Planes

4.1 Quantifier-free axioms for metric planes The concept of a metric plane grew
out of the work of Hessenberg, Hjelmslev, and Schmidt and was provided with a
simple group-theoretic axiomatics by Bachmann [3, Section 3.2, p. 33]. It can be
understood as the common orthogonality core of plane Euclidean, hyperbolic, and
elliptic geometry (see Pambuccian [24]).

For the purpose of this note we will choose among the many possible axiomati-
zations of nonelliptic metric planes one that is quantifier-free and was first proposed
in Pambuccian [23]. It is expressed in a language L with only one sort of individual
variables, to be interpreted as “points,” three individual constants a0, a1, a2 to be
interpreted as three noncollinear points, and with two operation symbols, F and � .
F.abc/ is the foot of the perpendicular from c to the line ab, if a ¤ b, and a itself if
a D b, and �.abc/ is the fourth reflection point whenever a; b; c are collinear points
with a ¤ b and b ¤ c, and arbitrary otherwise (although it could have been defined
even in case a D b or b D c, the axioms do not specify a value in this case, as there
is no need to specify one). By fourth reflection point we mean the following. If we
designate by �x the mapping defined by �x.y/ D �.xy/, that is, the reflection of
y in the point x, then, if a; b; c are three collinear points, by [3, Section 3.9, Satz
24b], the composition �c�b�a is the reflection in a point, which lies on the same line
as a; b; c. That point is designated by �.abc/. Had midpoints existed, then �.abc/
would have been the reflection of b in the midpoint of ac (see Figure 3).

To improve the readability of the axioms, we will use the following abbreviations:
�.ab/ WD �.aba/; (19)
R.abc/ WD �

�
F.abc/c

�
; (20)

L.abc/ W$ F.abc/ D c _ a D b; (21)

a b c

r r rr
�.abc/

Figure 3 The meaning of �.abc/ when a, b, and c are three collinear points.
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where � has the same meaning as above, R.abc/ stands for the reflection of c in ab
(a line if a ¤ b, the point a if a D b), and L.abc/ stands for “the points a; b; c are
collinear (but not necessarily distinct).”

The axiom system consists of the following axioms:

C 1 F.aab/ D a,

C 2 �.aa/ D a,

C 3 �.a�.ab// D b,

C 4 �.ax/ D �.bx/ ! a D b,

C 5 L.aba/,

C 6 L.abc/ ! L.cba/ ^ L.bac/,

C 7 L.ab�.ab//,

C 8 L.abF.abc//,

C 9 a ¤ b ^ F.abx/ D F.aby/ ! L.xyF.abx//,

C 10 a ¤ b ^ c ¤ d ^ F.abc/ D c ^ F.abd/ D d ! F.abx/ D F.cdx/,

C 11 :L.abx/ ^ F.xF.abx/y/ D y ! F.abx/ D F.aby/,

C 12 a ¤ b ^ a ¤ c ^ F.abc/ D a ! F.acb/ D a,

C 13 a ¤ x ^ x ¤ y ^ F.axy/ D x ! F.a�.ax/�.ay// D �.ax/,

C 14 �.�.xa/�.xb// D �.x�.ab//,

C 15 u ¤ v ^ a ¤ b ^ F.abc/ D a ! F.R.uva/R.uvb/R.uvc// D R.uva/,

C 16 :L.oba/ ^ :L.obc/

! �.F.xR.ocR.obR.oax///o/x/ D R.ocR.obR.oax///,

C 17 :L.oba/ ^ :L.obc/ ^ �.mx/ D R.ocR.obR.oax///^

�.ny/ D R.ocR.obR.oay/// ! L.omn/,

C 18 a ¤ b ^ b ¤ c ^F.abc/ D c ^ a ¤ a0 ^ b ¤ b0 ^ c ¤ c0 ^F.aba0/ D a

^F.bab0/ D b ^ F.cbc0/ D c

! �.F.xR.cc0R.bb0R.aa0x///�.abc//x/ D R.cc0R.bb0R.aa0x///

^F.�.abc/cF.xR.cc0R.bb0R.aa0x///�.abc/// D �.abc/,

C 19 :L.a0a1a2/.

The axioms make the following statements. C1 defines the value of F.abc/ when
a D b—it is an axiom with no geometric function (we could have opted to leave
it undefined, but that would have lengthened the statements of the axioms C16 and
C18); C2: the point a is a fixed point of the reflection �a; C3: reflections in points
are involutory transformations (or the identity); C4: reflections of a point in two
different points do not coincide; C5: a lies on the line determined by a and b;
C6: collinearity of three points is a symmetric relation; C7: the reflection of b in
a is collinear with a and b; C8: for a ¤ b, the foot of the perpendicular from
c to the line ab lies on that line; C9 states the uniqueness of the perpendicular
to the line ab in the point F.abx/; C10: the foot of the perpendicular from x to
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the line ab does not depend on the particular choice of points a and b that deter-
mine the line ab; C11: if x is a point outside of the line ab, and y is a point on
the perpendicular from x to ab, then the feet of the perpendiculars of x and y to
the line ab coincide; C12 states that perpendicularity is a symmetric relation (if
ca is perpendicular to ab, then ba is perpendicular to ac); C13: if yx is perpen-
dicular to xa, then so are �a.y/�a.x/ and �a.x/a; C14 states a certain preserva-
tion of the operation � under reflections in points; C15: reflections in lines pre-
serve the orthogonality relation; C16 and C17 together state the three reflections
theorem for lines having a point in common; C18 is the three reflections theorem
for lines having a common perpendicular; C19: a0; a1; a2 are three noncollinear
points.

As shown in [23], with † D ¹C1–C19º, we have: † is an axiom system for
nonelliptic metric planes; in every model of †, the operations F and � have the
intended interpretations.

The theory of nonelliptic metric planes can also be axiomatized with points as the
only individual variables, in terms of the notions of collinearity, L, and equidistance
�, as shown in Sörensen [27]. One could thus ask for a definition of � in terms of
the notions of the axiom system †. A generally valid definition is not known and
will likely be rather involved. It is easy, however, to define ab � cd if any of the
segments ac, bc, ac, or ad have a midpoint. One first defines

ab � ac W, b D c _ �
�
F.bca/b

�
D c; (22)

and then, for the case in which, say, ac has a midpoint o, one has

ab � cd W, c�.ob/ � cd; provided that �.oa/ D c: (23)

The cases in which bc, ac, or ad have a midpoint are treated analogously. All
congruent segments appearing in the generalized Steiner–Lehmus theorem will have
midpoints for some pairing of endpoints, and so the absence of a general definition
of segment congruence presents, for our purposes, no problem.

These axioms become the following rules of derivation (we omit the rule corre-
sponding to axiom C19, as it will not be needed in the proof of the Steiner–Lehmus
theorem):

F.aab/ D a; � ) �

� ) �
; (24)

�.aa/ D a; � ) �

� ) �
; (25)

�.a�.ab// D b; � ) �

� ) �
; (26)

�.ax/ D �.bx/; a D b; � ) �

�.ax/ D �.bx/; � ) �
; (27)

F.aba/ D a; � ) �

� ) �
; (28)

F.baa/ D a; � ) �

� ) �
; (29)

F.abc/ D c; F.cba/ D a; � ) � F.abc/ D c; c D b; � ) �

F.abc/ D c; � ) �
; (30)
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F.abc/ D c; F.bac/ D c; � ) �

F.abc/ D c; � ) �
; (31)

F.ab�.ab// D �.ab/; � ) �

� ) �
; (32)

F.abF.abc// D F.abc/; � ) �

� ) �
; (33)

�1 ) � �2 ) � �3 ) �

†;� ) �
; (34)

where �1 stands for †; a D b; �; �2 for †;F.xyF.abx// D F.abx/; �; �3 for
†; x D y; � , and † for F.abx/ D F.aby/;

�1 ) � �2 ) � �3 ) �

†;� ) �
; (35)

where �1 stands for †; a D b; �; �2 stands for †; c D d; �; �3 for †;F.abx/ D

F.cdx/; � , and † for F.abc/ D c; F.abd/ D d ;
�1 ) � �2 ) � �3 ) �

†;� ) �
; (36)

where �1 stands for †;F.abx/ D x; �; �2 for †; a D b; �; �3 for †;F.abx/ D

F.aby/; �; and † for F.xF.abx/y/ D y;
F.abc/ D a; F.acb/ D a; � ) �

F.abc/ D a; � ) �
; (37)

F.axy/ D x; F.a�.ax/�.ay// D �.ax/; � ) �

F.axy/ D x; � ) �
; (38)

�.�.xa/�.xb// D �.x�.ab//; � ) �

� ) �
; (39)

�1 ) � �2 ) �

F.abc/ D a; � ) �
; (40)

where �1 stands for F.abc/ D a; F.R.uva/R.uvb/R.uvc// D R.uva/; �; and �2

for F.abc/ D a; u D v; �;
�1 ) � �2 ) � �3 ) �

� ) �
; (41)

where �1 stands for †;F.oba/ D a; �; �2 for †;F.obc/ D c; �; �3 for
†; o D b; �; and † for �.F.xR.ocR.obR.oax///o/x/ D R.ocR.obR.oax///;

�1 ) � �2 ) � �3 ) � �4 ) � �5 ) �

†;� ) �
; (42)

where �1 stands for †;F.oba/ D a; �; �2 for †;F.obc/ D c; �; �3 for
†; o D b; �; �4 for †;F.omn/ D n; �; �5 for †; o D m;�; and † for
�.mx/ D R.ocR.obR.oax///; �.ny/ D R.ocR.obR.oay///; and, for i D 1; 2

�1i ) � �2i ) � �3i ) � �4i ) � �5i ) �

†;� ) �
; (43)

where �1i stands for †;„i ; a D b; �; �2i for †;„i ; b D c; �; �3i for †;„i ; a D

a0; �; �4i for †;„i ; b D b0; �; �5i for †;„i ; c D c0; �; † for F.abc/ D c,
F.aba0/ D a, F.bab0/ D b, F.cbc0/ D c;
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„1 for �.F.xR.cc0R.bb0R.aa0x///�.abc//x/ D R.cc0R.bb0R.aa0x///; and
„2 for F.�.abc/cF.xR.cc0R.bb0R.aa0x///�.abc/// D �.abc/.

5 Order and the Steiner–Lehmus Theorem in Standard Ordered Metric Planes

Since the Steiner–Lehmus theorem (and thus its generalized version) is no longer true
if the pointsm and n lie just on the lines ac and ad rather than on the respective seg-
ments, for the theorem does not hold if bm and cnwere to be external angle bisectors
(as shown in Abu-Saymeh and Hajja [1], Hajja [11], Henderson [12], Kharazishvili
[14], van Yzeren [31]), we do need an order notion for it to hold.

The order axioms are expressed in terms of the ternary relation B of betweenness
we encountered earlier. A 5-ary operation symbol !, providing the point of intersec-
tion stipulated by the outer form of the Pasch axiom is also added to the language.

Since our lines cannot have exactly four points on them, given the result of
Szmielew [29, Section 7.2], it suffices to add to the axioms for metric planes the
axiom T5 and

A 1 B.aab/,

A 2 F.abc/ D c ! .B.abc/ _ B.bca/ _ B.cab//,

A 3 B.abc/ ! .a D b _ F.abc/ D c/,

A 4 B.ba�.ab//,

A 5 B.abc/ ! B.cba/,

A 6 B.acb/ ^ B.abd/ ! B.cbd/,

A 7 B.abd/ ^ B.bec/ ! .B.a!.abcde/c// ^ B.de!.abcde//,

A 8 F.oab/ D o ^ o ¤ b ^ o ¤ a ^ B.�.ab/ac/ ^ F.abo/ D c ! B.acb/.

A1 and A2 state that one of three (not necessarily distinct) collinear points must be
between the other two, A3 that if b lies between a and c, then the points a, b, and c
must be collinear, A4 that the midpoint of a segment lies between its endpoints, A5 is
a symmetry axiom, A6 a transitivity axiom, A7 is the outer form of the Pasch axiom
(OP; see Figure 1) stating that, if a line intersects the side bc and the extension, past
b, of the side ab of triangle abc, then it must intersect the third side, ac, as well (in
a point f , whose Skolemized name is !.abcde/), and A8 states that the foot of the
altitude to the hypotenuse lies between the endpoints of the hypotenuse.

In this language, the generalized Steiner–Lehmus theorem becomes

:L.abc/ ^ B.amc/ ^ B.anb/ ^ ad � ab ^ B
�
�.ac/ad

�
^ sb � sd ^ B.bsm/

^ B.csn/ ^ cn � c�.om/ ^ �.pm/ D n ^ �.ob/ D c ! d D c: (44)

There are several differences between (44) and (1): (i) mn is now said to have a
midpoint p; (ii) bc is now said to have a midpoint o; (iii) instead of bm � cn, we
now have cn � c�.om/. The raison d’être of (i) and (ii) is that, while in Tarski’s
absolute geometry the existence of all midpoints is guaranteed (if three noncollinear
points exist; if such points do not exist, then (1) vacuously holds), no such existence
can be proved in standard ordered metric planes, and our proof in [25] needed those
midpoints, so they became part of the hypothesis (they are probably not needed, but
we do not have a proof which avoids their use). That (iii) does not represent an actual
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change can be seen from our definition (23) of � for segments without a common
endpoint.

As shown in [25], (44) follows from C1–C18 and A1–A8.
When turning the order axioms into rules of derivation, we get

B.aab/; � ) �

� ) �
; (45)

';B.abc/; � ) � ';B.bca/; � ) � ';B.cab/; � ) �

';� ) �
; (46)

where ' stands for F.abc/ D c,
B.abc/; a D b; � ) � B.abc/; F.abc/ D c; � ) �

B.abc/; � ) �
; (47)

B.ba�.ab//; � ) �

� ) �
; (48)

B.abc/; B.cba/; � ) �

B.abc/; � ) �
; (49)

B.acb/; B.abd/; B.cbd/; � ) �

B.acb/; B.abd/; � ) �
; (50)

B.abd/; B.bec/; B.a!.abcde/c/; � ) �

B.abd/; B.bec/; � ) �
; (51)

B.abd/; B.bec/; B.de!.abcde//; � ) �

B.abd/; B.bec/; � ) �
; (52)

†; o D b; � ) � †; o D a; � ) � †;B.acb/; � ) �

†;� ) �
; (53)

where † stands for F.oab/ D o;B.�.ab/ac/; F.abo/ D c.
In this language, (44) turns into the following sequent:

B.amc/; B.anb/; ad � ab;B
�
�.ac/ad

�
; sb � sd; B.bsm/; B.csn/;

cn � c�.om/; �.pm/ D n; �.ob/ D c

) B.abc/; B.bca/; B.cab/; d D c: (54)

Given the equivalence of the Hilbert-style and the Gentzen-style formalisms men-
tioned earlier (see [18]–[20]), we conclude with the following result.

Theorem 5.1 The sequent (54) can be deduced from the axioms (2) by using (3),
(4), (24)–(43), (12), and (45)–(53) as rules of derivation. The deduction is a direct
one.
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