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Definable Open Sets As Finite Unions
of Definable Open Cells

Simon Andrews

Abstract We introduce CE-cell decomposition, a modified version of the usual
o-minimal cell decomposition. We show that if an o-minimal structure R admits
CE-cell decomposition then any definable open set in R may be expressed as
a finite union of definable open cells. The dense linear ordering and linear o-
minimal expansions of ordered abelian groups are examples of such structures.

Fix an o-minimal structure R = (R, <, . . .). It is true of any o-minimal structure
that definable, open sets in one variable are expressible as finite unions of definable
open cells. Whether this is true of any definable open set X ⊆ Rm has not yet been
decided for all o-minimal structures. If any definable open set in R can be expressed
as a finite union of definable open cells, then R is said to admit the open cell property
(OCP).

It has been shown that definable, bounded, open sets are equal to finite unions of
definable open cells in expansions of the real closed field (see Wilkie [4]) and non-
linear o-minimal expansions of ordered abelian groups (see Edmundo [2]). Wilkie
mentions in [4] that boundedness is necessary. Gareth Jones provided me with the
example that {

(x, y) ∈ R2
: x 6= 0 ∧ y = |

1
x
|

}
∪ (0 × (0, +∞))

is definable in (R, +, −, · , 0, 1) and is not expressible as a finite union of definable
open cells.

Notation 1 “Definable” abbreviates “definable in R with parameters from R.” We
write 0( f )C =

{
(x, y) ∈ Rm+1

: x ∈ C ∧ y = f (x)
}

for the graph of a function
f : C → R and ( f, g)C =

{
(x, y) ∈ Rm+1

: x ∈ C ∧ f (x) < y < g(x)
}

for the
interval between functions f, g : C → R. We write π : Rm

→ Rm−1 for the
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projection map onto the first m − 1 coordinates and π∗
: Rm

→ R is projection onto
the last coordinate. We write ∂ X := cl X \ X for the frontier of a set X . For the
purposes of this paper, a stratification S of a set X ⊆ Rm is a finite partition of X
into cells so that, for all A, B ∈ S, B ⊆ cl A whenever B ∩ cl A 6= ∅. A function
f : C → R defines a cell, or is a cell-defining function, if 0( f )C is a cell or there is
a definable function g : C → R so that ( f, g)C or (g, f )C is a cell.

CE-cell decomposition A definable continuous function f : C ⊆ D → R has a
continuous extension to D if there is a definable continuous function F : D → R
such that F �C= f . We define continuous extension cells, or CE-cells, induc-
tively. In R the CE-cells are exactly the points and definable open intervals.
0( f )C , (g, h)C ⊆ Rm+1 are CE-cells if C is a CE-cell and there exist continuous
extensions of f, g, and h to cl C . We say that an o-minimal structure admits CE-cell
decomposition if any cell decomposition admits a refinement by CE-cells.

The main result of this paper is the following theorem.

Theorem 2 If R admits CE-cell decomposition, then R admits OCP.

Example 3 (R, <) admits CE-cell decomposition. By §1.6.3 of [1], cell decom-
position in (R, <) is equivalent to partitioning by constant functions and projection
maps. Such functions are globally definable and continuous.

Example 4 Linear o-minimal expansions of (R, <,+) admit CE-cell decomposi-
tion. By §1.7.4 of [1], cell decomposition in linear expansions of (R, <,+) yields
cells whose defining functions are restrictions of affine (linear) functions. Such func-
tions are globally definable and continuous.

The Trichotomy Theorem and the above examples show that the o-minimal structures
for which OCP remains to be decided are the trivial structures, excluding (R, <).
Defined in [3], R is trivial if it admits no locally definable group structure.

This work began as an attempt to extend the results of Wilkie and Edmundo to
trivial and linear o-minimal structures. However, it was suggested to me through
correspondence with Pantelis Eleftheriou that, in these cases, boundedness may not
be necessary. It turns out that my original proof is amenable to the unbounded case;
this is due to the following lemma.

Lemma 5 If C is a CE-cell, then cl πC = π cl C.

Proof π cl C ⊆ cl πC is always true for cells. For the other direction, suppose
C = 0( f )πC and let F be the continuous extension of f to cl πC . If x ∈ cl πC ,
then (x, F(x)) ∈ cl C by continuity. Hence x ∈ π cl C . The same argument works
for the case C = ( f, g)πC . �

Lemma 6 If C ⊆ Rm is a definable CE-cell, then there exists a global retraction
H : Rm

→ cl C.

Proof We proceed by induction on m. For m = 1:
1. C = {a}. Define H(x) := a.
2. C = (a, b). Define

H(x) :=


a, if x ≤ a;
x, if x ∈ C ;
b, if b ≤ x .
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Assume m > 1 and that the lemma holds for all lower values of m. Let
Hind : Rm−1

→ cl πC = π cl C be the retraction from the inductive assump-
tion. We write (x ′, xm) ∈ Rm−1

× R. For f, g : πC → R defining CE-cells we
write F and G for their continuous extensions to cl πC .

1. C = 0( f )πC . Define H(x ′, xm) := (Hind(x ′), F(x ′)).
2. C = ( f, g)πC . Define

H(x ′, xm) :=


(Hind(x ′), F ◦ Hind(x ′)), xm

≤ F ◦ Hind(x ′);

(Hind(x ′), xm), F ◦ Hind(x ′) < xm < G ◦ Hind(x ′);

(Hind(x ′), G ◦ Hind(x ′)), G ◦ Hind(x ′) ≤ xm .

H partitions Rm into the following cells:

D1 := (−∞, F ◦ Hind)Rm−1 ,

D2 := 0(F ◦ Hind)Rm−1 ,

D3 := (F ◦ Hind, G ◦ Hind)Rm−1 ,

D4 := 0(G ◦ Hind)Rm−1 ,

D5 := (G ◦ Hind, +∞)Rm−1 .

Since Hind, F and G are continuous functions, H is continuous on each of these
sets. To see that H is continuous, suppose (x ′

i , xm
i )i∈N → (y′, ym) ∈ Rm . If

(y′, ym) ∈ Dk (k = 1, 3, or 5) then (x ′
n, xm

n ) ∈ Dk for all sufficiently large n
by convergence, openness of D1, D3, and D5 and the preceding remarks. Since
H is continuous on these sets the result follows. For the final cases we as-
sume, without loss of generality, that ym

= F ◦ Hind(y′). Since Hind is con-
tinuous we have Hind(x ′

i ) → Hind(y′), so it suffices to consider the sequence
π∗(H(x ′

i , xm
i ))i∈N. If (x ′

n, xm
n ) ∈ Dk (k = 1, 2, or 3) for all sufficiently large

n then, because F ◦ Hind(x ′

i ) → ym and xm
i → ym , we have the desired re-

sult. If G ◦ Hind(x ′

i ) ≤ xm then we have the following inequality over cl πC :
F ◦ Hind(x ′

i ) < π∗(H(x ′

i , xm
i )) = G ◦ Hind(x ′

i ) ≤ xm
i . Since F ◦ Hind(x ′

i ) → ym

and xm
i → ym , the result follows. �

Corollary 7 If f defines a CE-cell, then there is a global definable continuous
extension of f .

Proof If f : C ⊆ Rm
→ R defines a CE-cell and F is its continuous extension to

cl C then, letting H : Rm
→ cl C be given by Lemma 5, take F ◦ H . �

Fix a definable open set X ⊆ Rm .

Proof of Theorem 2 Induction on m. The result holds for m = 1 by o-minimality.
Assume m > 1 and that the theorem holds for all lower values of m. Let E ′ be a CE-
cell decomposition of Rm compatible with X and let F denote the set containing the
global continuous extensions of all defining functions of the cells in E ′, as well as
+∞ and −∞. Refine πE ′—the set of cells in Rm−1 which are the images of the
cells in E ′ under the projection π—to D , a CE-cell decomposition of Rm−1 that is a
stratification and compatible with F . That is, if D ∈ D and g, h ∈ F , then, when g
and h are restricted to D, exactly one of g < h, g = h, or g > h is true. Now refine
E ′ to E so that πE = D .
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Fix a nonopen cell N ∈ E that is also a subset of X . We claim that N is contained
in a finite union of definable open cells, all of which are contained in X ; this claim
proves the theorem.

Case 1 π N is open.

Then N = 0( f )π N for a definable continuous function f : π N → R. Since X is
open, there are cells (g, f )π N , ( f, h)π N ∈ E that are also subsets of X . Taking the
open cell (g, h)π N gives the desired result.

Case 2 π N is nonopen and N = ( f, g)π N for definable continuous functions f, g
on π N ⊆ Rm−1.

Note that, since X is open and E is compatible with X , there are functions f ′, g′

such that 0( f ′), 0(g′) ∈ E , 0( f ′ �π N ), 0(g′ �π N ) ⊆ ∂ X , and N = ( f, g)π N
⊆ ( f ′, g′)π N = N ′. Replacing N by N ′ if necessary, we may assume that 0( f �π N )
and 0(g �π N ) are contained in ∂ X . We proceed by constructing a neighborhood U
of π N and continuous extensions F, G : U → R of f and g such that F < G on U
and (F, G)U ⊆ X . Define

U := {C ∈ D : cl C ∩ π N 6= ∅} and U :=

⋃
U.

Note that U is open, since D is a stratification, and connected, by the definition
of U.

Remark 8 For each C ∈ U, the set (C × R) ∩ X consists of finitely many
connected components. Label these components ( f1, g1)C , . . . , ( fn(C), gn(C))C
such that (gk, fk+1)C ⊆ X c for any 1 ≤ k < n(C) − 1 (either of f1 = −∞,
gn(C) = +∞ is possible). Since X is open, N ⊆ cl( f j (C), g j (C))C for exactly
one j (C) ∈ {1, . . . , n(C)}. For each C ∈ U we will write FC and GC for
the global continuous extensions of f j (C) and g j (C). We denote by f̄ and ḡ the
global continuous extensions of f and g. Note that all of these global functions
belong to F .

Proposition 9 For any C ∈ U there exist definable functions P, Q ∈ F satisfying
P < Q on C, P �π N = f̄ , Q �π N = ḡ, and (P, Q)C ⊆ X.

Proof Fix C ∈ U. Using the notation in Remark 8, we must have ḡ ≤ GC on π N .
Otherwise, choose (x, y) ∈ (GC , ḡ)π N . By continuity, for any open set y ∈ V ⊆ R
there is an open set x ∈ UV ⊆ Rm−1 so that GC (x) < y for all x ∈ UV . Since
π N ⊆ cl C we have (UV × V ) ∩ (GC , ḡ)C 6= ∅. However, by definition of GC , we
then have (UV × V ) ∩ (GC , ḡ)C ∩ X c

6= ∅. Since X is open, this is a contradiction.
A similar argument shows that FC ≤ f̄ on π N . Since (FC , GC )C ⊆ X and all
functions are globally continuous, at least one of the following four combinations
satisfies the last three conditions: P = f̄ or FC and Q = ḡ or GC . P < Q follows
from continuity and the fact that π N ⊆ cl C . �

Now on C ∈ U define cells (PC , QC )C where QC := min {T ∈ F : T �π N = ḡ},
PC := max

{
S ∈ F : S �π N = f̄

}
and the maximum and minimum are taken with

respect to the linear ordering of the functions in F over C . By Proposition 9 we
have that (PC , QC )C ⊆ X for each C ∈ U. Now define F, G : U → R by
F(x) := PC (x) and G(x) := QC (x) for x ∈ C ∈ U.

Proposition 10 F and G are continuous on U.
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Proof We prove the claim for G, the proof for F being similar. Take C1, C2 ∈ U
with C2 ⊆ cl C1. Suppose G is not continuous on C1 ∪ C2. Then, on C1, ei-
ther QC1 < QC2 or QC2 < QC1 . Since QC2 �π N = G = QC1 �π N , the first
case contradicts the definition of QC2 and the second case contradicts the definition
of QC1 . �

Finally, recall that U is open and connected and F and G are continuous on U . From
Proposition 9 and the definitions of F and G we have F < G on U , from which
it follows that (F, G)U is connected and open and a subset of X . By the inductive
assumption, U may be written as a finite union of open cells O1, . . . ,On . Case 2 is
completed by writing N ⊆ (F, G)U =

⋃n
i=1(F, G)Oi .

Case 3 π N is nonopen and N = 0( f ) for a definable function on π N ⊆ Rm−1.

The argument from Case 1 gives a cell (g, h)π N ⊆ X with N ⊂ (g, h)π N ⊆ X . We
have reduced to Case 2. �
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