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Packing Index of Subsets in Polish Groups

Taras Banakh, Nadya Lyaskovska, and Dušan Repovš

Abstract For a subset A of a Polish group G, we study the (almost) packing
index pack(A) (respectively, Pack(A)) of A, equal to the supremum of cardi-
nalities |S| of subsets S ⊂ G such that the family of shifts {x A}x∈S is (almost)
disjoint (in the sense that |x A∩ y A| < |G| for any distinct points x, y ∈ S). Sub-
sets A ⊂ G with small (almost) packing index are large in a geometric sense.
We show that pack(A) ∈ N ∪ {ℵ0, c} for any σ -compact subset A of a Polish
group. In each nondiscrete Polish Abelian group G we construct two closed
subsets A, B ⊂ G with pack(A) = pack(B) = c and Pack(A ∪ B) = 1 and
then apply this result to show that G contains a nowhere dense Haar null subset
C ⊂ G with pack(C) = Pack(C) = κ for any given cardinal number κ ∈ [4, c].

1 Introduction

Given a Polish group G and a nonempty subset A ⊂ G with nice descriptive
properties, we study all possible values of the packing index

pack(A) = sup
{
|S| : S ⊂ G and the family {x A}x∈S is disjoint

}
of A, which indicate the smallness of the subset A in a geometric sense. Answering a
problem of Dikranjan and Protasov [4] the first two authors [1] constructed a subset
A ⊂ Z such that pack(A) = ℵ0 but for every infinite subset S ⊂ Z the family
of shifts {x A}x∈S is not disjoint. This example shows that the supremum in the
definition of the packing index pack(A) cannot be replaced with maximum. The
difference between max and sup is caught by the sharp packing index

pack](A) = sup
{
|S|

+
: S ⊂ G and the family {x A}x∈S is disjoint

}
,

which can be equivalently defined as the smallest cardinal κ such that for every subset
S ⊂ G of cardinality |S| ≥ κ the family of shifts {x A}x∈S is not disjoint. The sharp
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packing index pack](A) determines the value of pack(A) because

pack(A) = sup{κ : κ < pack](A)}.

The papers [1], [2], and [8] are devoted to constructing subsets with a given (sharp)
packing index. In particular, for every nonzero cardinal number κ ≤ c one can easily
construct a subset A ⊂ R with pack(A) = κ . A less trivial task is constructing a
subset A ⊂ R with a given sharp packing index pack](A) = κ ∈ [2, c+].

After discussing these results on the topological seminar at Wrocław Univer-
sity, the second author was asked by Omiljanowski about possible restrictions on
the packing index pack(A) of subsets A ⊂ R having good descriptive properties
(like being compact, σ -compact, Borel, measurable, or meager). This question was
probably motivated by the well-known fact that the Continuum Hypothesis (although
irresolvable in ZFC) has a positive solution in the realm of Borel subsets of the real
line: each uncountable Borel subset A ⊂ R has cardinality c of continuum.

In this paper we shall give several partial answers to Omiljanowski’s question.
On the one hand, we shall show that σ -compact subsets A in Polish groups cannot
have an intermediate packing index ℵ0 < pack(A) < c. For a Borel subset A of a
Polish group we get a weaker result: pack](A) cannot take the value on the interval
sq(51

1) < pack](A) ≤ c, where sq(51
1) stands for the smallest cardinality κ such

that each coanalytic subset X ⊂ 2ω
× 2ω contains a square S × S of size |S × S| = c

provided X contains a square of size ≥ κ . The value of the small uncountable
cardinal sq(51

1) is not completely determined by ZFC axioms: both the equality
sq(51

1) = c and the strict inequality sq(51
1) < c are consistent with the Martin

Axiom (see [10]).
On the other hand, for every infinite cardinal number κ ≤ c in each nondiscrete

Polish Abelian group G we shall construct a nowhere dense Haar null subset A ⊂ G
with pack(A) = Pack(A) = κ . Here

Pack(A) = sup{|S| : S ⊂ G and {x A}x∈S is almost disjoint}

is the almost packing index of A. In the above definition, a family of shifts {x A}x∈S
is said to be almost disjoint if |x A ∩ y A| < |G|, for all distinct x, y ∈ S.

To construct the nowhere dense Haar null subset A ⊂ G with a given (almost)
packing index, in each nondiscrete Polish Abelian group G we first construct a closed
nowhere dense Haar null subset C ⊂ G with Pack(C) = 1. The set C , being nowhere
dense and Haar null, is small in the sense of category and measure, but it is large in
the geometric sense because for any two distinct points x, y ∈ G the shifts xC and
yC have intersection of cardinality |xC ∩ yC | = c.

In particular, CC−1
= G and thus C is a closed nowhere dense Haar null subset

that algebraically generates the group G. This result can be seen as an extension
of a result of Solecki [11] who proved that each nonlocally compact Polish Abelian
group G is algebraically generated by a nowhere dense subset.

It also extends some results of [9, §13]. In fact, the closed Haar null subset C ⊂ G
with Pack(C) = 1 is constructed as the union C = A ∪ B of two closed subsets
A, B ⊂ G with pack(A) = pack(B) = c. This shows that the packing index is
highly nonadditive.
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Notation By ω we shall denote the first infinite ordinal; N = ω \ {0} stands for
the set of positive integers. Cardinals will be identified with the initial ordinals of
given cardinality; c stands for the cardinality of continuum. All topological groups
G considered in this paper will be supplied with an invariant metric ρ generating the
topology of G. By e we shall denote the identity element of G. For a point x ∈ G
and a real number r by B(x, r) = {g ∈ G : ρ(g, x) < r} we shall denote the open
r -ball centered at x . Also for x ∈ G we put ‖x‖ = ρ(x, e). The invariance of ρ
implies ‖x−1

‖ = ‖x‖ and ‖xy‖ ≤ ‖x‖ + ‖y‖, for all x, y ∈ G.

2 The Packing Indices of σ -Compact Sets in Polish Groups

In this section we shall show that the packing index of a σ -compact subset in a Polish
group cannot take an intermediate value between ω and c. First we shall prove the
following useful result (proved in analogy with Proposition 5 of [3]).

Lemma 2.1 Let A be a subset of a Polish group G. If pack](A) ≤ c, then the
closure of AA−1 contains a neighborhood of the neutral element e of G.

Proof Fix any complete metric ρ generating the topology of the Polish group G.
Assuming that AA−1 is not a neighborhood of e, we shall construct a perfect subset
K ⊂ G such that the indexed family {x A}x∈K is disjoint, which will imply that
pack](A) = |K |

+
= c+.

Taking into account that the closed subset AA−1 is not a neighborhood of e in G,
we can find for any open neighborhood U of e, a point b ∈ U \ AA−1 and an open
neighborhood V of e such that V −1bV ⊂ U\AA−1.

Using this fact, construct by induction a sequence (bn)n∈ω of points in G and
sequences (Un)n∈ω and (Vn)n∈ω of open neighborhoods of e in G such that

1. bn ∈ Un = U−1
n ;

2. V −1
n+1bn Vn+1 ∩ AA−1

= ∅;

3. bn /∈ Vn+1V −1
n+1;

4. diamρ(bVn+1) < 2−n , for any point
b ∈ Bn =

{
bε0

0 · · · bεn
n : ε0, . . . , εn ∈ {0, 1}

}
; and

5. U 3
n+1 ⊂ Vn+1 ⊂ Un .

Define a map f : {0, 1}
ω

→ G by assigning to each infinite binary sequence
Eε = (εi )i∈ω the infinite product

f (Eε) =

∞∏
i=0

bεi
i = lim

n→∞
fn(Eε)

where fn(Eε) =
∏n

i=0 bεi
i .

Let us show that the latter limit exists. It suffices to check that ( fn(Eε))n∈ω is a
Cauchy sequence in (G, ρ).

The condition (5) implies that U 2
i+1 ⊂ Ui for all i . This can be used as the

inductive step in the proof of the inclusion Un · · · Um ⊂ U 2
n for all m ≥ n. Then for

every m ≥ n

fm(Eε) ∈ fn(Eε) · Un+1 · · · Um ⊂ fn(Eε) · U 2
n+1 ⊂ fn(Eε)Vn+1
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and thus
ρ( fm(Eε), fn(Eε)) ≤ diamρ( fn(Eε) · Vn+1) < 2−n

by the condition (4). Therefore, the sequence ( fn(Eε))n∈ω is Cauchy and the limit
f (Eε) = limn→∞ fn(Eε) exists.

Moreover, the upper bound ρ( fm(Eε), fn(Eε)) ≤ 2−n implies that the map
f : {0, 1}

ω
→ G is continuous. On the other hand, the inclusions fm(Eε) ∈ fn(Eε)·U 2

n ,
m ≥ n, imply that

f (Eε) ∈ fn(Eε) · U 2
n ⊂ fn(Eε) · U 3

n ⊂ fn(Eε) · Vn+1.

This inclusion will be used for the proof of the injectivity of f . We shall prove a little
bit more: for any distinct vectors Eε and Eδ in {0, 1}

ω, we get f (Eε)A ∩ f (Eδ)A = ∅.
Find the smallest number n ∈ ω such that εn 6= δn . We lose no generality by as-

suming that δn = 0 and εn = 1. It follows that f (Eε) ∈ fn(Eε)U 3
n+1 ⊂ fn−1(Eε)bn Vn+1

while f (Eδ) = fn(Eδ)Vn+1 = fn−1(δ) · e · Vn+1 = fn−1(Eε)Vn+1. Then(
f (Eδ)

)−1 f (Eε) ∈ V −1
n+1bn Vn+1 ⊂ G \ AA−1

by the condition (2) and hence f (Eε)A ∩ f (Eδ)A = ∅.
Thus for the set K = f ({0, 1}

ω) the indexed family {x A}x∈K is disjoint. The
injectivity of f implies that pack](A) ≥ |K |

+
= c+. �

Now we can prove the main result of this section.

Theorem 2.2 If A is a σ -compact subset of a Polish group G, then pack](A)
∈ N ∪ {ℵ0, ℵ1, c+}. Moreover, if the set A is compact, then

1. pack](A) = c+ provided G is not locally compact;
2. pack](A) ∈ {ℵ1, c+} provided G is locally compact but not compact;
3. pack](A) ∈ N ∪ {c+} provided G is compact.

Proof If A is σ -compact, then so is the set AA−1
= {xy−1

: x, y ∈ A} and then
the set (G \ AA−1) ∪ {e} is a Gδ-set in G. In its turn, the subset

X =
{
(x, y) ∈ G × G : y−1x ∈ (G \ AA−1) ∪ {e}

}
is of type Gδ in G × G, being the preimage of the Gδ-subset (G \ AA−1)∪{e} under
the continuous map g : G × G → G, g : (x, y) 7→ y−1x .

Assuming that pack](A) > ℵ1, we can find an uncountable subset S ⊂ G with
disjoint family {x A}x∈S , which implies that S × S ⊂ X . Since the Polish space X
contains the uncountable square S × S, we can apply Theorem 2.2 of [7] to conclude
that X contains the square P × P of a perfect subset P ⊂ G (the latter means that P
is closed in G and has no isolated point). It follows from P × P ⊂ X that the family
{x A}x∈P is disjoint and thus c+ = |P|

+
≤ pack](A) ≤ |G|

+
= c+.

Assuming that A ⊂ G is compact, we shall now prove the assertions (1)–(3) of the
theorem. The compactness of A implies the compactness of AA−1. If AA−1 is not a
neighborhood of e, then we can apply Lemma 2.1 to conclude that pack](A) = c+.
This holds if the group G is not locally compact. So, we assume that AA−1 is a
neighborhood of e. In this case the group is locally compact and we can take a
neighborhood U ⊂ G of e with UU−1

⊂ AA−1.
Therefore, for every B ⊂ G with B−1 B ∩ AA−1

= {e} we get B−1 B ∩ UU−1
=

{e}, which implies that the indexed family {xU }x∈B is disjoint and the set B is at
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most countable, being discrete in the Polish space G. This gives the upper bound
pack](A) ≤ ℵ1.

If the group G is not compact, then using the Zorn Lemma, we can find a maximal
set B ⊂ G with B−1 B ∩ AA−1

= {e}. We claim that B AA−1
= G.

Assuming to the contrary, we can find a point b ∈ G \ B AA−1. Then the set bA is
disjoint from the set B A and hence we can enlarge the set B to the set B̃ = B ∪ {b}

so that (x A)x∈B̃ is disjoint.
The latter is equivalent to B̃−1 B̃∩AA−1

= {e} and this contradicts the maximality
of B. The compactness of AA−1 and noncompactness of G = B AA−1 implies that
B is infinite and thus pack](A) ≥ |B|

+
≥ ℵ1. This completes the proof of the second

assertion of the theorem.
To prove the third assertion, assume that G is compact. In this case G carries a

Haar measure µ which is a unique probability invariant σ -additive Borel measure on
G. If AA−1 is not a neighborhood of e, then pack](A) = c+ by a preceding case. So
we assume that AA−1 is a neighborhood of e and take another neighborhood U of e
with UU−1

⊂ AA−1.
Since finitely many shifts of U cover the group G, we get µ(U ) > 0. Now given

any subset B ⊂ G with B−1 B∩AA−1
= {e}, we get B−1 B∩UU−1

= {e}. The latter
equality implies that the family {xU }x∈B is disjoint and then 1 = µ(G) ≥ µ(BU ) =

|B|µ(U ) implies that |B| ≤ 1/µ(U ). Consequently, the packing index pack(A) ≤

1/µ(U ) is finite and so is its sharp version pack](A). �

The equality pack(A) = sup{κ : κ < pack](A)} and Theorem 2.2 imply the follow-
ing.

Corollary 2.3 If A is a σ -compact subset A of a Polish group G, then pack(A)
∈ N ∪ {ℵ0, c}. Moreover, if the set A is compact, then

1. pack(A) = c provided G is not locally compact;
2. pack(A) ∈ {ℵ0, c} provided G is locally compact but not compact;
3. pack(A) ∈ N ∪ {c} provided G is compact.

In light of Corollary 2.3, the following two open questions arise naturally.

Question 2.4 Are there a compact group G and a σ -compact subset A ⊂ G with
pack(A) = ℵ0?

Question 2.5 Are there a Polish group G and a Borel subset A ⊂ G with
ℵ0 < pack(A) < c?

The latter question does not reduce to the σ -compact case because of the following
example (in which T = R/Z stands for the circle).

Proposition 2.6 The countable product G = Tω contains a Gδ-subset A ⊂ G
such that pack(A) = c; however, each σ -compact subset B ⊂ Tω containing A has
pack(B) < ℵ0.

Proof Let q : R → T = R/Z denote the quotient map, J = q
(
[0, 1

2 )
)

be the half-
circle, I = J = q([0, 1

2 ]) be its closure, and D = q({0, 1
2 }) be two opposite points

on T. It is clear that D−1 D ∩ J J−1
= {e} while I · I −1

= T.
It follows that A = Jω is a Gδ-subset of Tω with pack(A) = |Dω

| = c because
(Dω)−1 Dω

∩ AA−1
= {e}.
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Now given any σ -compact subset B ⊃ A in Tω, we must check that pack(B) < ℵ0.
Replacing B by B ∩ I ω, if necessary, we can assume that B ⊂ I ω. Since B ⊂ I ω

contains the dense Gδ-subset Jω of I ω, the standard application of the Baire Theo-
rem yields a nonempty open subset U ⊂ I ω with U ⊂ B. Without loss of generality
we can assume that U is of the basic form U = V × I ω\n for some n ∈ ω and some
open set V ⊂ I n . Observe that

UU−1
= V V −1

× I ω\n(I ω\n)−1
= V V −1

× Tω\n

is an open neighborhood of e in Tω. Consequently, B B−1
⊃ UU−1 is also a neigh-

borhood of e in Tω. Proceeding as in the proof of the last assertion of Theorem 2.2,
we can see that

pack(B) ≤ 1/µ(V × Tω\n) < ℵ0. �

3 The Packing Indices of Analytic Sets in Polish Groups

In this section we shall give a partial answer to Question 2.5 related to the packing
indices of Borel subsets in Polish groups. It is well known that each Borel subset
of a Polish space is analytic. We recall that a metrizable space X is analytic if X is
a continuous image of a Polish space. A space X is coanalytic if for some Polish
space Y containing X the complement Y \ X is analytic. The classes of analytic and
coanalytic spaces are denoted by 61

1 and 51
1, respectively. It is well known that the

intersection 11
1 = 61

1 ∩51
1 coincides with the class of all absolute Borel (metrizable

separable) spaces. By Kσ and Gδ we denote the classes of σ -compact and Polish
spaces, respectively.

We shall say that a subset X ⊂ 2ω
× 2ω contains a square of size κ if there is a

subset A ⊂ 2ω with A × A ⊂ X and |A × A| = κ .
Given a class C of spaces denote by sq(C) the smallest cardinal κ such that each

subspace X ∈ C of 2ω
× 2ω that contains a square of size κ contains a square of

size c. Theorem 2.2 of [7] (applied in the proof of Theorem 2.2) guarantees that
sq(Gδ) = ℵ1. On the other hand, sq(Kσ ) ≥ min{ℵ2, c}; see [6]. It is clear that
sq(Kσ ) = sq(61

1) = sq(51
1) = c under the Continuum Hypothesis. Yet, the strict

inequality sq(51
1) < c is consistent with ZFC+MA (see [10, 1.9, 1.10]).

Proposition 3.1 Let A be an analytic subset of a Polish group G. If pack](A) >
sq(51

1), then pack](A) = c+ and pack(A) = c.

Proof Using the fact that each Polish space is a continuous one-to-one image of a
zero-dimensional Polish space, we can show that sq(51

1) coincides with the smallest
cardinal κ such that for any Polish space X a coanalytic subset C ⊂ X × X contains
a square of size c provided that C contains a square of size ≥ κ .

Given an analytic subset A of a Polish group G we can see that both sets AA−1

and AA−1
\ {e} are analytic and thus the set C =

{
(x, y) ∈ G × G : y−1x /∈

AA−1
\ {e}

}
is coanalytic.

Assuming that pack](A) > sq(51
1), we can find a subset S ⊂ G of size

|S| ≥ sq(51
1) such that the family {x A}x∈S is disjoint. The latter is equivalent to

S−1
· S ⊂ G \ (AA−1

\ {e}) and to S × S ⊂ C . By the equivalent definition of
sq(51

1) (with 2ω replaced by any Polish space), the coanalytic subset C ⊂ G × G
contains a square K × K of size c (because it contains the square S × S of cardinality
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|S × S| ≥ sq(51
1)). It follows from K × K ⊂ C that the family {x A}x∈K is disjoint

and thus pack](A) ≥ |K |
+

= c+ and pack(A) = c. �

A similar result holds for the almost packing index

Pack(A) = sup{|S| : S ⊂ G and {x A}x∈S is almost disjoint}

and the sharp almost packing index

Pack](A) = sup{|S|
+

: S ⊂ G and {x A}x∈S is almost disjoint}

of A. We recall that {x A}x∈S is almost disjoint in G if |x A ∩ y A| < |G| for any
distinct points x, y ∈ S.

In the proof of the following theorem we shall use a known fact of the Descriptive
Set Theory saying that for a Borel subset A ⊂ X × Y in the product of two Polish
spaces the set {y ∈ Y : |A ∩ (X × {y})| ≤ ℵ0} is coanalytic in Y (see [5, 18.9]).

Proposition 3.2 Let A be a Borel subset of a Polish group G. If Pack](A)>sq(51
1),

then Pack](A) = c+ and Pack(A) = c.

Proof It follows from Pack](A) > sq(51
1) > ℵ0 that the Polish space G is un-

countable and hence |G| = c.
Let us show that the subset C = {x ∈ G : |A ∩ x A| ≤ ℵ0} is coanalytic. Consider

the homeomorphism h : G × G → G × G, h : (x, y) 7→ (x, y−1x), and the Borel
subset B = h(A × A) ⊂ G × G. Since C = {z ∈ G : |B ∩ (G ×{z})| ≤ ℵ0}, we can
apply the mentioned result [5, 18.9] to conclude that the set C is coanalytic. Then
the set D =

{
(x, y) ∈ G × G : y−1x ∈ C ∪ {e}

}
is coanalytic being the preimage of

the coanalytic subset under a continuous map between Polish spaces.
Assuming that Pack](A) > sq(51

1), we can find a subset S ⊂ X such that
|S| ≥ sq(51

1) and the family {x A}x∈S is almost disjoint. Then for any dis-
tinct x, y ∈ S the intersection x A ∩ y A, being a Borel subset of cardinality
|x A ∩ y A| < |G| = c, is at most countable. Consequently, y−1x ∈ C and thus
S × S ⊂ D. By the equivalent definition of sq(51

1), the coanalytic set D contains
a square K × K of size c. It follows from K −1 K ⊂ C that the family {x A}x∈K
is almost disjoint. Consequently, c+ = |K |

+
≤ Pack](A) ≤ |G|

+
= c+ and

Pack(A) = c. �

It would be interesting to study the cardinals sq(C) for various descriptive classes
C. If such a class C contains the square of a countable metrizable space, then
ℵ1 ≤ sq(C) ≤ c and thus sq(C) falls into the category of the so-called small
uncountable cardinals; see [14]. However, unlike other typical small uncountable
cardinals, sq(C) does not collapse to c under the Martin Axiom (see [10]).

Problem 3.3 Explore possible values and inequalities between classical small un-
countable cardinals and the cardinals sq(C) for various descriptive classes C.

4 The Packing Index and Unions

Let us note that the union of two subsets A, B ⊂ G with large packing index can
have the smallest possible packing index. A suitable example is given by the sets
A = R × {0} and B = {0} × R on the plane R2. They have packing indices
pack(A) = pack(B) = c but pack(A∪ B) = 1. The same is true for each nondiscrete
Polish Abelian group.
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Theorem 4.1 Each nondiscrete Polish Abelian group G contains two closed
subsets A, B ⊂ G such that pack](A) = pack](B) = c+ but pack(A ∪ B) =

Pack(A ∪ B) = 1.

Proof Fix an invariant complete metric ρ generating the topology of the Polish
Abelian group G; see [5, §9.A]. Since G is Abelian, we use the additive notation for
the group operation on G. The neutral element of G will be denoted by 0.

We define a subset D of G to be ε-separated if ρ(x, y) ≥ ε for any distinct points
x, y ∈ D. By the Zorn lemma, each ε-separated subset can be enlarged to a maximal
ε-separated subset of G.

Put ε−1 = ε0 = 1 and choose a maximal 2ε0-separated subset H0 ⊂ G containing
zero. Proceeding by induction we shall define a sequence (hn)n∈N ⊂ G of points, a
sequence (εn)n∈ω of positive real numbers and a sequence (Hn)n∈ω of subsets of G
such that for every n > 0,

(i) B(0, εn−1) \ B(0, 33εn) is nonempty and εn < 2−6εn−1;
(ii) ‖hn‖ = 5εn ; and

(iii) Hn ⊃ {0, hn} is a maximal 2εn-separated subset in B(0, 8εn−1).

It follows from (i) that the series
∑

n∈ω εn is convergent and thus for any sequence
xn ∈ Hn , n ∈ ω, the series

∑
n∈ω xn is convergent (because ‖xn‖ < 8εn−1 for all

n ∈ N according to (iii)). Therefore, the following sums are well defined:

60 =
{ ∑

n∈ω

x2n : (x2n)n∈ω ∈

∏
n∈ω

H2n
}
,

61 =
{

−

∑
n∈ω

x2n+1 : (x2n+1)n∈ω ∈

∏
n∈ω

H2n+1
}
.

Let A and B be the closures of the sets 60 and 61 in G. It remains to prove
that the sets A, B have the desired properties: pack](A) = pack](B) = c+ and
Pack(A ∪ B) = 1. This will be done in three steps.

1 First we prove that pack](A) = c+. By Lemma 2.1, this equality will follow as
soon as we check that A − A is not a neighborhood of the neutral element 0 in G. It
suffices to find, for every k ∈ ω, a point g ∈ B(0, ε2k)\A − A. By condition (i), there
is a point g ∈ G with 33ε2k+1 ≤ ‖g‖ < ε2k . We claim that g /∈ A − A = 60 − 60.
More precisely,

dist(g, A − A) = dist(g, 60 − 60) ≥ min{ε2k+1, ε2k/2}.

Take any two distinct points x, y ∈ 60 and find infinite sequences (x2n)n∈ω, (y2n)n∈ω

∈
∏

n∈ω H2n with x =
∑

n∈ω x2n and y =
∑

n∈ω y2n .
Let m = min{n ∈ ω : x2n 6= y2n}. If m ≥ k + 1, then

‖x − y‖ =‖

∑
n≥m

x2n − y2n‖ ≤

∑
n≥m

‖x2n‖ + ‖y2n‖ ≤

≤ 2
∑
n≥m

8ε2n−1 ≤ 32 ε2m−1 ≤ 32 ε2k+1 < ‖g‖ − ε2k+1

and hence ρ(x − y, g) ≥ ε2k+1.
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If m ≤ k, then

‖x − y‖ =‖(x2m − y2m) +

∑
n>m

(x2n − y2n)‖ ≥

≥ ‖x2m − y2m‖ −

∑
n>m

(‖x2n‖ + ‖y2n‖) ≥

≥ 2ε2m − 32ε2m+1 ≥
3
2
ε2m > ‖g‖ +

1
2
ε2m

and again ρ(x − y, g) ≥
1
2ε2m ≥

1
2ε2k .

2 In the same manner we can prove that pack](B) = c+.

3 It remains to prove that Pack(A∪ B) = 1. First we recall some standard notation.
Denote by 2<ω

=
⋃

n∈ω 2n the set of finite binary sequences. For any sequence
s = (s0, . . . , sn−1) ∈ 2<ω and i ∈ 2 = {0, 1} by |s| = n we denote the length of s
and by s ˆi = (s0, . . . , sn−1, i) the concatenation of s and i . For a finite or infinite
binary sequence s = (si )i<n and l ≤ n, let s|l = (si )i<l . The set 2ω is a tree with
respect to the partial order: s ≤ t if and only if s = t |l where l = |s| ≤ |t |.

The equality pack(A∪B)=1 will follow as soon as we prove that |A∩(g+B)| ≥ c
for all g ∈ G. We shall construct a sequence of points {xs}s∈2<ω such that for every
sequence s ∈ 2<ω the following conditions hold:

1. xs ∈ H|s| ⊂ B(0, 8ε|s|−1);
2. ‖xs ˆ0 − xs ˆ1‖ > εn ; and
3. ‖g −

∑
t≤s xt‖ < 7ε|s|.

We start by choosing a point x∅ ∈ H0 with ρ(x∅, g) < 2ε−1 = 2ε0. Such a point
x∅ exists because H0 is a maximal (0, 2ε0)-separated set in G. Next, we proceed by
induction.

Suppose that for some n the points xs , s ∈ 2<n , have been constructed. Given
a sequence s ∈ 2n−1 we need to define the points xs ˆ0 and xs ˆ1 ∈ Hn . Let
gs = g −

∑
t≤s xt . Since ‖gs + hn‖ ≤ ‖gs‖ + ‖hn‖ < 7εn−1 + 5εn < 8εn−1

and Hn is a maximal 2εn-separated subset in B(0, 8εn−1), there are two points
xs ˆ0, xs ˆ1 ∈ Hn with ρ(gs, xs ˆ0) < 2εn and ρ(gs + hn, xs ˆ1) < 2εn . The condition
(2) follows from

‖xs ˆ0 − xs ˆ1‖ ≥ ‖gs − (gs + hn)‖ − ‖gs − xs ˆ0‖ − ‖gs + hn − xs ˆ1‖ >

> 5εn − 2εn − 2εn = εn .

The condition (3) follows from the estimates

‖g −

∑
t≤s ˆ0

xt‖ = ‖g − xs ˆ0 −

∑
t≤s

xt‖ = ‖gs − xs ˆ0‖ < 2εn = 2ε|s ˆ0|

and

‖g −

∑
t≤s ˆ1

xt‖ =‖g − xs ˆ1 −

∑
t≤s

xt‖ = ‖gs + hn − xs ˆ1 − hn‖ ≤

≤ ‖gs + hn − xs ˆ1‖ + ‖hn‖ < 2εn + 5εn = 7ε|s ˆ1|.

After completing the inductive construction, we can use the condition (3) to conclude
that for every infinite binary sequence s ∈ 2ω the following holds:

g =

∑
n∈ω

xs|n =

∑
n∈ω

xs|2n +

∑
n∈ω

xs|2n+1.
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We claim that the set
D0 =

{ ∑
n∈ω

xs|2n : s ∈ 2ω
}

lies in the intersection A ∩ (g + B). It is clear that D0 ⊂ 60 ⊂ A. To see that
D0 ⊂ g + B, take any point x ∈ D0 and find an infinite binary sequence s ∈ 2ω with
x =

∑
n∈ω xs|2n . Then

x =

∑
n∈ω

xs|2n +

∑
n∈ω

xs|2n+1 −

∑
n∈ω

xs|2n+1 ∈ g + 61 ⊂ g + B.

It remains to prove that |D0| ≥ c. Note that the set D0, being a continuous image of
the Cantor cube 2ω, is compact. Now the equality |D0| = c will follow as soon as
we check that D0 has no isolated points. Given any sequence s ∈ 2ω and δ > 0, we
must find a sequence t ∈ 2ω such that

0 < ‖

∑
n∈ω

xs|2n −

∑
n∈ω

xt |2n‖ < δ.

Find even number 2m ∈ ω such that
∑

n≥m 20ε2n−1 < δ and take any sequence
t ∈ 2ω such that t |2m − 1 = s|2m − 1 but t |2m 6= s|2m. Then

‖

∑
n∈ω

xs|2n −

∑
n∈ω

xt |2n‖ =‖

∑
n≥m

xs|2n −

∑
n≥m

xt |2m‖ ≤

≤

∑
n≥m

‖xs|2n‖ + ‖xt |2n‖ ≤

∑
n≥m

32ε2n−1 < δ.

On the other hand, the lower bound ‖xs|2m − xt |2m‖ > ε2m , supplied by (2), implies

‖

∑
n∈ω

xs|2n −

∑
n∈ω

xt |2n‖ =‖

∑
n≥m

xs|2n −

∑
n≥m

xt |2n‖ ≥

≥ ‖xs|2m − xt |2m‖ − ‖

∑
n>m

(xs|2n − xt |2n)‖ >

> ε2m −

∑
n>m

16ε2n−1 > ε2m − 32ε2m+1 > 0

(the latter two inequalities follow from (i)). Now we see that |D0| = c and thus
|A ∩ (g + B)| ≥ |D0| = c, which implies that Pack(A ∪ B) = 1. �

5 Relation of the Packing Index to Other Notions of Smallness

Taking into account that a subset A with large packing index pack(A) is geometri-
cally small, it is natural to consider the relation of the packing index to other known
concepts of smallness, in particular, the smallness in the sense of category or mea-
sure.

We recall that a subset A of a topological space X is said to be meager if A can be
written as a countable union of nowhere dense subsets. We shall need the following
classical fact.

Proposition 5.1 (Banach-Kuratowski-Pettis) For any analytic nonmeager subset A
of a Polish group G, the set AA−1 contains a neighborhood of the neutral element
of G.
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A similar result holds for analytic subsets that are not Haar null. We recall that a
subset A of a topological group G is called Haar null if there is a Borel probability
measure µ on G such that µ(x Ay) = 0 for all x, y ∈ G. This notion was introduced
by Christensen [3] and thoroughly studied in [13] and [12]. In particular, a subset A
of a locally compact group G is Haar null if and only if A has zero Haar measure.
Nevertheless, Haar null sets still exist in nonlocally compact groups (admitting no
invariant measure).

Proposition 5.2 (Christensen) If an analytic subset A of a Polish Abelian group G
is not Haar null, then AA−1 contains a neighborhood of the neutral element of G.

We shall use these propositions to prove the following theorem.

Theorem 5.3 If an analytic subset A of a Polish Abelian group G has packing
index pack(A) > ℵ0, then A is meager and Haar null.

Proof Suppose not. Then we can apply Propositions 5.1 or 5.2 to conclude that
AA−1 contains a neighborhood U of the neutral element e of G. Find another neigh-
borhood V ⊂ G of e with V V −1

⊂ U ⊂ AA−1.
Since pack(A) > ℵ0, there is an uncountable subset S ⊂ X such that the family

{x A}x∈S is disjoint, which is equivalent to S−1S ∩ AA−1
= {e}. It follows by the

choice of V that S−1S ∩ V V −1
⊂ S−1S ∩ AA−1

= {e} and thus the family {xV }x∈S
is disjoint. Since V is an open neighborhood of e, the set S, being discrete in G, is
at most countable. This contradiction completes the proof. �

It should be mentioned that Theorem 5.3 cannot be reversed.

Theorem 5.4 Each nondiscrete Polish Abelian group G contains a closed nowhere
dense Haar null subset C with Pack(C) = 1.

Proof By Theorem 4.1, the group G contains two closed subsets A, B ⊂ G with
pack(A) = pack(B) = c and Pack(A ∪ B) = 1. By Theorem 5.3, the sets A, B
are Haar null. Then the union C = A ∪ B is Haar null, and, being closed in G, is
nowhere dense. �

6 Constructing Small Subsets with a Given (Sharp) Packing Index

In this section we shall develop Theorem 5.3 and shall prove that nondiscrete Polish
Abelian groups contain nowhere dense Haar null sets of arbitrary (sharp) packing
index.

In the following theorem, we put [G]p = {x ∈ G : x p
= e} for a group G, where

p ∈ N.

Theorem 6.1 For a nondiscrete Polish Abelian group G and a cardinal κ ∈ [2, c+]

the following conditions are equivalent:
(1) there is a subset A ⊂ G with pack](A) = κ;
(2) there is a nowhere dense Haar null subset A ⊂ G with pack](A) =

Pack](A) = κ; and
(3) if

∣∣G/[G]2
∣∣ ≤ 2, then κ 6= 4; if G = [G]3, then κ 6= 3.

Taking into account that pack(A) = sup{κ : κ < pack](A)}, we can apply Theo-
rem 6.1 to deduce the following corollary.
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Corollary 6.2 For a nondiscrete Polish Abelian group G and a nonzero cardinal
κ ≤ c, the following conditions are equivalent:

(1) there is a subset A ⊂ G with pack(A) = κ;
(2) there is a nowhere dense Haar null subset A ⊂ G with pack(A) =

Pack(A) = κ; and
(3) if

∣∣G/[G]2
∣∣ ≤ 2, then κ 6= 3 and if G = [G]3, then κ 6= 2.

Theorem 6.1 follows immediately from Theorem 5.4 and the following combinato-
rial result.

Theorem 6.3 For an infinite Abelian group G, a cardinal 2 ≤ κ ≤ |G|
+, and a

subset L ⊂ G with Pack(L) = 1 the following conditions are equivalent:
(1) there is a subset A ⊂ G with pack](A) = κ;
(2) there is subset A ⊂ L with pack](A) = Pack](A) = κ; and
(3) if

∣∣G/[G]2
∣∣ ≤ 2, then κ 6= 4 and if G = [G]3, then κ 6= 3.

Proof The implication (2) ⇒ (1) is trivial while (1) ⇒ (3) was proved in [8].
To prove the implication (3) ⇒ (2), assume that the cardinal κ satisfies the condi-
tion (3). If κ = |G|

+, then for the set A we can take a singleton A = {a} with a ∈ L .
So, we assume that κ ≤ |G|.

The construction of a set A ⊂ G with pack](A) = Pack](A) = κ is based on the
following lemma whose proof will be given after the proof of the theorem.

Lemma 6.4 The group G contains a subset Bκ = −Bκ of G having the following
three properties:

(a) for every cardinal α < κ , there is a subset Bα ⊂ G of size |Bα| = α with
Bα − Bα ⊂ Bκ ;

(b) B − B 6⊂ Bκ for every subset B ⊂ G of size |B| = κ; and
(c) L∩(g+L) 6⊂ F+Bk for any g ∈ G and any subset F ⊂ G of size |F | < |G|.

Without loss of generality we can assume that 0 ∈ L .
Let B◦

κ = Bκ \{0}. We shall construct a subset A ⊂ L such that (B◦
κ +A)∩A = ∅.

Moreover, the subset A will be constructed so that G\B◦
κ ⊂ A − A.

Let λ = |G| and G\B◦
κ = {gα : α < λ} be an enumeration of G\B◦

κ such that for
every g ∈ G \ B◦

κ the set {α < λ : gα = g} has cardinality λ.
The set A will be of the form A =

⋃
α<λ{aα, gα + aα} for a suitable sequence

{aα}α<λ ⊂ G such that (B◦
κ + A) ∩ A = ∅. We define this sequence by induction.

We start with a0 = 0. Assuming that for some ordinal α < λ the points aβ , β < α,
have been constructed, put Aα = {aβ , gβ + aβ : β < α}. According to the prop-
erty (c), we can pick a point aα ∈ L ∩ (gα + L) so that

aα /∈ (Aα + Bκ) ∪ (Aα − gα + Bκ).

This gives (B◦
κ + A) ∩ A = ∅.

It remains to show that κ ≤ pack](A) ≤ Pack](A) ≤ κ . The inequality
pack](A) ≥ κ will follows as soon as we check that pack](A) > α for all cardinals
α < κ .

According to the property (a) of the set Bκ , for each cardinal α < κ there is a sub-
set Bα ⊂ Bκ of size α such that Bα − Bα ⊂ Bκ . From the fact that (B◦

κ + A)∩ A = ∅
we conclude that (b − b′

+ A)
⋂

A = ∅ for all distinct b, b′
∈ Bα. Thus the family

{b + A : b ∈ Bα} is disjoint, witnessing that pack](A) ≥ α+ > α.
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The inequality Pack](A) ≤ κ will follow as soon as we check that for every subset
B ⊂ G of size |B| = κ the indexed family {b + A}b∈B is not almost disjoint. Given
any subset B ⊂ G with |B| = κ , we can use property (b) to find points b, b′

∈ B
such that b − b′ /∈ Bκ . The choice of the enumeration {gα}α<λ guarantees that the
set 3 = {α < λ : gα = b − b′

} has cardinality |3| = λ = |G|. Observe that for
every α ∈ 3 we get aα ∈ A ∩ (A − gα) = A ∩ (A + b′

− b). Consequently,

|(b + A) ∩ (b′
+ A)| = |A ∩ (A + b′

− b)| = |3| = |G|

witnessing that the family {b + A}b∈B fails to be almost disjoint. �

Proof of Lemma 6.4 Given a cardinal κ ≤ |G| and a subset L ⊂ G with
Pack(L) = 1, we need to construct a subset Bκ ⊂ G possessing the properties
(a)–(c) of Lemma 6.4. By [8], the group G contains a subset Bκ of size |Bκ | = κ
such that

(i) for every cardinal α < κ , there is a subset Bα ⊂ G of size |Bα| = α with
Bα − Bα ⊂ Bκ ;

(ii) B − B 6⊂ Bκ for every subset B ⊂ G of size |B| = κ .

If κ < |G| then, this subset Bκ satisfies the requirements of the lemma. So it remains
to consider the case κ = |G|.

Let G = {gα : α < κ} be an enumeration of the group G such that g0 = 0. For
every ordinal α < κ , put Gα = {gβ , −gβ : β < α}. We put

Bκ =

⋃
α<κ

Bα − Bα

where a set Bα = {bβ
α : β < α} ⊂ G of size |α| will be chosen later.

To simplify notation we shall write B<α instead of
⋃

β<α(Bβ − Bβ) and B>α in-

stead of
⋃

α≤β<κ(Bβ−Bβ). By B<β
α we shall denote the initial interval {bγ

α : γ < β}

of Bα .
Now we are in a position to define a sequence of sets Bα forcing the set Bκ to

satisfy the properties (a) and (c) of Lemma 6.4. To ensure property (c) we will
also construct a transfinite sequence of points (hα)α<κ of L ∩ (gα + L) such that
hα /∈ Gα + Bκ .

We start putting B0 = {0} and taking any nonzero point h0 ∈ L . Assume that for
some ordinal α < κ the sets Bβ and the points hβ , β < α, have been constructed.
Then pick any point hα ∈ L ∩ (gα + L) with

hα /∈ Gα + B<α.

Such a point exists because the size of the set Gα + B<α does not exceed
ℵ0 · |α| < κ = |G|. Let

Hα = {hβ , −hβ : β ≤ α}.

Next we define inductively elements of Bα = {bβ
α : β < α}. We pick any b0

α with
b0
α ∈ G\B<α . Next we choose bβ

α ∈ G so that

(1) bβ
α /∈ B<β

α + Gα + B<α ;
(2) bβ

α /∈ B<β
α − B<β

α + B<β
α + Gα; and

(3) bβ
α /∈ B<β

α + Gα + Hα .
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To ensure properties (1), (2), and (3), we have to avoid the sets of size < |G|.
Now let us prove that the constructed set Bκ satisfies the properties (a)–(c) of

Lemma 6.4. In fact, the property (a) is evident while (c) follows immediately from
(3). It remains to prove the following claim.

Claim The set Bκ has property (b).

Let Bκ be a subset of G of size |Bκ | = κ . Fix any pairwise distinct points
c1, c2, c3 ∈ Bκ . If Bκ − Bκ ⊂ Bκ then Bκ ⊂

⋂3
i=1(ci + Bκ) and κ =

|Bκ | ≤ |
⋂3

i=1(ci + Bκ)|.
So to prove our claim it is enough to show that |

⋂3
i=1(ci + Bκ)| < κ. Find

an ordinal α < κ such that cp − cq ∈ Gα for any 1 ≤ p, q ≤ 3. Assuming that
|
⋂3

i=1(ci +Bκ)| = κ we may find a point b ∈
⋂3

i=1(ci +B>α)\{ci }. A contradiction
will be reached in three steps.

Step 1 First, show that there is β > α with b ∈
⋂3

i=1(ci + Bβ − Bβ).
Otherwise, b − cp ∈ Bγ − Bγ and b − cq ∈ Bβ − Bβ for some γ > β > α and

some p 6= q . Find i, j < γ with b − cp = bi
γ − b j

γ . The inequality b 6= cp implies
i 6= j .

If i < j , then b j
γ = bi

γ − b + cp = bi
γ − b + cq − cq + cp ⊂ bi

γ − Bβ + Bβ + Fγ

⊂ B< j
γ + B<γ + Fγ , which contradicts (1). If i > j , then bi

γ = b j
γ + b − cp =

b j
γ + Bβ − Bβ + cq − cp ⊂ B<i

γ + B<γ + Fγ , which again contradicts (1).

Step 2 We claim that if b − cp = bi
β − b j

β and b − cq = bs
β − bt

β then
max{i, j} = max{s, t}.

It follows from the hypothesis that cq − cp = bi
β − b j

β + bt
β − bs

β . To
obtain a contradiction, assume that max{i, j} > max{s, t}. If j < i , then
bi
β = cq − cp + b j

β − bt
β + bs

β ∈ Fβ + B<i
β − B<i

β + B<i
β , which contradicts

(2). If i < j , then b j
β = cp − cq + bi

β + bt
β − bs

β ∈ Fβ + B< j
β + B< j

β − B< j
β , again

a contradiction with (2).

Step 3 According to the previous step, there exists β > α and l such that

(i) b − c1 = bi
β − b j

β where max{i, j} is equal to l;
(ii) b − c2 = bs

β − bt
β where max{s, t} is equal to l; and

(iii) b − c3 = bq
β − br

β where max{q, r} is equal to l.
In this case we obtain a dichotomy: either among three numbers i, s, q two are equal
to l or among j, t, r two are equal to l. In the first case we lose no generality assum-
ing that i = s = l; in the second, that j = t = l.

In the first case, we get Gα 3 c2 − c1 = bt
β − b j

β , which contradicts (1). In the
second case, we get Gα 3 c2−c1 = bi

β −bs
β , which contradicts (1) again. Therefore,

there is no b ∈
⋂3

i=1(ci + B>α)\{ci } and hence |Bκ | ≤ |
⋂3

i=1(ci + B>α)| < κ . �
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