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€r: An Intuitionistic Logic without Fregean Axiom
and with Predicates for Truth and Falsity

Steffen Lewitzka

Abstract We present €;-Logic (Epsilon-I-Logic), a non-Fregean intuitionis-
tic logic with a truth predicate and a falsity predicate as intuitionistic nega-
tion. €; is an extension and intuitionistic generalization of the classical logic
er (without quantifiers) designed by Striter as a theory of truth with proposi-
tional self-reference. The intensional semantics of €7 offers a new solution to
semantic paradoxes. In the present paper we introduce an intuitionistic seman-
tics and study some semantic notions in this broader context. Also we enrich the
quantifier-free language by the new connective < that expresses reference be-
tween statements and yields a finer characterization of intensional models. Our
results in the intuitionistic setting lead to a clear distinction between the notion of
denotation of a sentence and the here-proposed notion of extension of a sentence
(both concepts are equivalent in the classical context). We generalize the Fregean
Axiom to an intuitionistic version not valid in €;. A main result of the paper is
the development of several model constructions. We construct intensional mod-
els and present a method for the construction of standard models which contain
specific (self-)referential propositions.

1 Introduction

There are two dogmas in formal logic which are widely accepted:

(i) The “Bedeutung” (the denotation) of a sentence is a truth value.

(i) A (sufficiently rich) language cannot contain a total truth predicate without
producing semantic paradoxes that imply the inconsistency of the underly-
ing logical system.

Dogma (i) is as old as mathematical logic itself and goes back to the groundbreak-
ing work of Frege [8]. The acceptance of dogma (ii) is supported by the works on
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semantic truth theory started by Tarski ([23], [24]). Moreover, it seems that (ii) re-
lies on (i) and on the problematic assumption that sentences (and not what sentences
really denote, namely, propositions, statements, situations, or similar entities instead
of truth values) are the bearers of truth values. In fact, if we weaken dogma (i) and
interpret sentences not only as truth values but as propositions of a given model-
theoretic propositional universe, then it makes sense to define reflexive languages'
where sentences refer directly to their (proper) subsentences. Self-reference then can
be managed by introducing an identity connective into the language. If the language
contains a predicate that applies to a sentence if and only if the sentence denotes a
true proposition of the universe, then this predicate is an adequate truth predicate:
the Tarski-biconditionals follow; the truth predicates of object language and meta-
language coincide. The truth predicate is total, and self-referential statements can
be asserted without restrictions (the language is semantically closed in the sense of
Tarski). However, the model-theoretic truth conditions ensure that paradoxical as-
sertions are not satisfied—such assertions are contradictory formulas. The liar, for
instance, can be asserted, but no model contains the liar proposition. Under these
assumptions Striter [18] defined classical er-Logic (which we will shortly discuss
on pages 278 and 279) as a theory of truth and propositions.

It seems that the first logician who proposed the abolition of dogma (i) was Suszko
([19], [20]), inspired by the ontology of Wittgenstein’s Tractatus (see, for instance,
[21], [22], [6], [16], [15] for further information). Frege’s principle that all sentences
of the same truth value have the same “Bedeutung” is called by Suszko the Fregean
Axiom. Bedeutung in the usual, classical case can be translated as “denotation.” As
our technical results on €;-Logic suggest this is no longer tenable in the general
intuitionistic case where “denotation” must be replaced by a more general semantic
notion. We will tackle this problem by introducing here the more general notion of
“extension.” We then translate Bedeutung in the intuitionistic context as extension.

Suszko introduces the concept of non-Fregean Logic which stands for a continua-
tion of Frege’s program [8] without the Fregean Axiom. The rejection of the Fregean
Axiom implies that there may exist more than two denotations (verum, falsum)—the
denotation of a sentence is, in general, more than a truth value. Such denotations
are usually called situations, states of affair, or facts. In the present paper we shall
use the concepts statement and proposition, where propositions are those statements
which have a truth value, either true or false. The sentential calculus based on the
principles of non-Fregean Logic is the Sentential Calculus with Identity (SCI) (see,
for instance, Bloom and Suszko [6]). “Identity” refers to the identity connective =.
The intended meaning of = is the following:

@ = y is true if and only if the formulas ¢ and w have the same Bedeutung.

So in the classical case we read this as “p =  is true if and only if the formulas
¢ and w have the same denotation,” whereas in the general intuitionistic case we
propose here the following reading: “p = y is true if and only if the formulas ¢ and
v have the same extension,” assuming our definition of extension given below. The
Fregean Axiom in the classical case claims that the identity connective coincides
with the relation of logical equivalence. In general, the Fregean Axiom holds if
and only if all models are extensional (see Definition 3.10 below). In particular,
universes with only two statements verum, falsum are extensional. However, there
are nonextensional models; thus, the Fregean Axiom does not hold. The construction
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of such universes (with nice properties) is in general complex and can be seen as
a central challenge in the research on €7 ([18], [25]) and on €;. In the present
paper, we develop some new constructions of such models—in the classical and in
the intuitionistic context. Our models have the additional nice property that they
have no “nonstandard elements”; they are standard models.

Now arises the question for an appropriate generalization of the Fregean Axiom
to the intuitionistic case. For this we define the notion of extension in the following
way.

Definition 1.1  The extension of a formula ¢ (relative to a given world) is the set
of formulas y such that in every accessible world the formulas ¢ and y denote the
same statement.

It follows that in the classical case the extension of a formula reduces in some sense
to its denotation (there is a one-to-one correspondence; two formulas have the same
denotation if and only if they have the same extension), whereas in the general infu-
itionistic case the extension of a formula ¢ is the set {y | ¢ = y is true in the given
world}, with the intuitionistic reading of =. Now we can formalize an intuitionistic
version of the Fregean Axiom:

@ = y is true whenever (¢ : false A y : false) V (¢ : true A y : true) is true.”

That is, formulas of the same truth value have the same extension. This axiom does
not hold in €;. In the classical setting this axiom specializes to the usual form of
Fregean Axiom: ¢ = y is true whenever ¢ < v is true.

Epsilon Logics (we mean all logics which are extensions or generalizations of
original er-Logic developed by Striter [18] and Zeitz [25]) with a truth predicate
are related to the semantic truth theory of Tarski ([23], [24]). One reason for the
enormous influence and wide acceptance of Tarski’s semantic truth theory is proba-
bly the fact that it provides rather clear criteria for a satisfactory definition of truth in
formal languages. These criteria are “formal correctness” and “material adequacy.”
Whereas the former concerns certain formal rules that the definition must satisfy, the
latter ensures that the definition captures our intuitive notion of the term “true sen-
tence.” The definition is material adequate if it implies all equivalences of the form

X is true if and only if p. 1)

[I¥RL)

We get an instance of such an equivalence if we replace “p” by any sentence of
the language to which the word “true” refers and replace “X” by the name of this
sentence (Tarski requires that the language has names for its sentences in order to
establish references.) An example used by Tarski is

“Snow is white” is true if and only if snow is white.

We call the scheme | of material adequacy the Tarski-Biconditionals (TB). The truth
predicate in the TB applies to sentences which, in Tarski’s truth theory, are the bear-
ers of truth values. Indeed, Tarski rejects any other semantic or psychological entity
such as proposition or judgment. In [24] he writes

“...as regards the term “proposition,” its meaning is notoriously a sub-
ject of lengthy disputations by various philosophers and logicians, and it
seems never to have been made quite clear and unambiguous. For several
reasons it appears most convenient to apply the term “true” to sentences,
and we shall follow this course.” (Tarski [24])
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If the language is semantically closed, then paradoxical sentences, such as the liar
sentence, can be formulated. Such paradoxes imply the inconsistency of the under-
lying logical system. Roughly speaking, a language is semantically closed if the
following holds:

The language contains technical means that enable sentences to refer to
sentences. Furthermore, the language contains semantic predicates such
as “true” and “not true” (or “false”).

Consequently, Tarski rejects semantically closed languages for an adequate treat-
ment of the liar paradox. His solution consists in a strict distinction between object
language and metalanguage. The truth predicate belongs to the metalanguage and
applies exclusively to (the names of) sentences of the object language. Thus, the
object language is contained in the metalanguage (or can be translated into a sub-
language of the metalanguage). The definition of truth and the Tarski-Biconditionals
implied by this definition are expressed in the metalanguage. In this way, one may
construct a hierarchy of interpreted languages; each level contains a truth predicate
that applies only to sentences of lower levels.

Tarski’s conclusions harmonize with his famous result which implies that in the
first-order language of arithmetic there is no truth predicate relative to the complete
theory of arithmetic T'; that is, arithmetic truth is not representable in 7. The assump-
tion of such a truth predicate in the object language would lead to the construction of
a sentence which is equivalent modulo 7 to the assertion of its own falsehood, that
is, the liar sentence.

Probably the most influential truth theory after Tarski is developed by Kripke
[9]. A mathematical treatment of this approach is given by Fitting [7]. Kripke, as
well as Tarski, considers sentences as the bearers of truth values. In order to avoid
semantic paradoxes he develops a theory of partial valuations of sentences. The set
of true sentences (and the set of false sentences) then is a fixed point of a monotonic
process of evaluation. Semantic paradoxes, such as the liar sentence, do not appear
in such fixed points and are therefore truth value gaps of the partial truth predicate
represented by the fixed point.

An approach to a formalized semantic truth theory that relies on essentially
different assumptions is developed by Striter in his doctoral thesis [18]. This
work was motivated by attempts to reconstruct natural language semantics via self-
referential structures ([13], [12]). More information about the historical background
of er-Logic can be found in [3]. The language of Striter’s €7-Logic has variables
and constant symbols for propositions, classical connectives, classical first-order
quantification over propositions, the identity connective =, and symbols : true and
: false for a truth and a falsity predicate, respectively. The crucial feature of the logic
is its model-theoretic semantics which is intensional: expressions are interpreted as
propositions in a propositional universe. Because of the reflexivity of the language,
expressions may refer directly to their proper subexpressions (there are, however,
some restrictions with respect to quantification). Self-reference now can be achieved
by the identity connective =. For instance, ¢ : true refers to the subexpression ¢
(saying that c is true). If ¢ = (c : true) is satisfied in a model, then the sentences
¢ and ¢ : true denote the same statement p (fact, proposition) in this model, which
must be a truth-teller. The formula ¢ = (c : false) asserts that ¢ denotes the liar.
The truth conditions of the model-theoretic semantics ensure that such a paradoxical
equation is never satisfied. The liar can be asserted by the above equation; however,
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this assertion is always false. No model contains the liar proposition. A proposition
is the bearer of a truth value and represents a semantic content which is expressed
by the expressions that denote it. For instance, if ¢ : false denotes proposition
p, then p stands for “p is false”. There may exist further expressions that denote
p, say —¢. Then p also stands for “not ¢,” and so forth. Although ¢ : false and
—¢ are logically equivalent in €7, they have different intensions (expressed by the
syntactical form) and therefore denote, in general, different propositions. The same
holds for ¢ Vv y and y V ¢, and so on. Striter constructs extensional and intensional
models. The existence of intensional models shows in particular that logically
equivalent sentences can be interpreted by different propositions. = cannot coincide
with logical equivalence. er-Logic is an example of a logic that violates dogma (i);
it is a non-Fregean Logic (this fact, however, is not explicitly mentioned in [18]).
er-Logic can be viewed as semantically closed in Tarski’s sense discussed above.
The truth predicate of the object language coincides with the truth predicate of the
metalanguage—the Tarski Biconditionals hold and can be formulated in the object
language. [18] also discusses some specific self-referential statements that can be
asserted in €7 such as the liar by ¢ = (c : false), several liar cycles, the truth-teller
by ¢ = (c : true), Lob’s paradox by ¢ = (c : true — d), and so on. A discussion
on such self-references and semantic paradoxes can also be found in Barwise and
Etchemendy [4].

It is essentially the intensional semantics, the absence of the Fregean Axiom, and
the reflexive syntax which enable €7, €; to deal adequately with truth and self-
reference. The absence of Fregean Axiom is also crucial for the expressive power of
the language. For instance, under the assumption of Fregean Axiom every equation
of the form ¢ = (¢ : true) would be valid since ¢ and ¢ : true are logically equiva-
lent expressions. In this case, the truth-teller turns out to be meaningless since every
expression denotes a “truth-teller,” and there are exactly two, namely, verum and
falsum. A well-known argument against non-Fregean logics is the so-called sling-
shot argument, developed by Church, Godel, Quine, and Davidson, which is often
considered a formal proof of the Fregean Axiom. In a recent paper of Shramko and
Wansing [17], a new version of the slingshot argument is presented and it is shown
that under some minimal assumptions the Fregean Axiom can be derived inside some
non-Fregean logics. Non-Fregean Logic is understood in [17] as a useful tool for rep-
resenting the slingshot argument. We argue that non-Fregean logics such as €7, €;
may be useful tools not only for dealing adequately with semantic truth theory but
also for clarifying semantic concepts in general. In this sense, the significance of
non-Fregean logics should be reconsidered. Surprisingly, the obvious relationship
between e€7-Logic and Suszko’s non-Fregean Logic seems to be unnoticed in all
previous works on Epsilon Logic ([18], [25], [14], [1], [2], [10]) and is therefore not
yet explicitly explored.

Zeitz [25] further develops the original €7-Logic under the aspect of a para-
metrized logic. He studies er-Logic as a semantic framework that extends a given
abstract logic. As a main result he shows that under certain conditions there is a
sound and complete Hilbert-style calculus for the €7-extension whenever there is
such a calculus for the underlying abstract logic. Zeitz is also able to simplify and to
improve some aspects of the technical apparatus of Striter’s original er-Logic.

The parametrized version of Zeitz er-Logic is studied by Mahr and Bab [14] as
a formalism for the integration of several object logics. This integration formalism
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is mainly discussed from the point of view of software specification but is motivated
by a general scenario of integration where different views on a complex object A
given by models of different logics are integrated in a single model of an appropriate
integration logic. The paper also proposes an interpretation of €7 as a logic of judg-
ments whose propositions are expressed in the object logics. Bab ([ 1], [2]) discusses
a scenario of a possible world semantics which is given inside a single propositional
universe—the possible worlds are represented as subsets of the set of true propo-
sitions. Under these assumptions Bab generalizes €7 and defines €, [2], a logic
which is able to integrate modalities coming from an underlying classical modal ob-
ject logic. The definition of a possible world semantics differs essentially from our
(intuitionistic) approach where each possible world is given by its own propositional
universe. Moreover, €,-Logic is classical; intuitionistic logics cannot be handled
ine,.

One purpose of the present paper is to introduce intuitionism into Epsilon-Logic
(by means of semantics). Our task is to find adequate intuitionistic interpretations
for the identity connective, the reference connective, and the predicates for truth and
falsity. We define a possible world semantics where each possible world is given
by a single propositional universe (essentially an €r-model with some additional
structure). A first new phenomenon that appears in the intuitionistic setting is that
there may exist elements of the universe which have no truth value. Since an essential
property of a proposition is that it bears a truth value, we call the elements of a
universe “statements” and consider propositions as those statements that have a truth
value: either true or false. Nevertheless, we still call these universes “propositional
universes.” We also introduce a new connective, namely, the reference connective <.
In a classical setting, the intended meaning of the reference connective would be the
following:

@ < y is true iff the proposition denoted by w says something (contains
some information) about the proposition denoted by ¢.

In the broader intuitionistic setting we propose the following reading:

@ <y is true iff in every accessible world the statement denoted by y says
something (contains some information) about the statement denoted by ¢.

Thus, < expresses reference between statements. In particular, self-reference can be
expressed. For instance, if ¢ = (c : true) is true in a model (¢ denotes a truth-teller
which is a self-referential proposition), then the model-theoretic semantics ensures
that also ¢ < c is true.

For the interpretations of the truth predicate, the connectives of conjunction, dis-
junction, and implication, we follow the usual conditions of intuitionistic possible
world semantics. The falsity predicate assumes the role of intuitionistic negation—
interpreted as a set, the set of false propositions. Although we consider propositions
as the bearers of truth values we may define “true expression” and “false expression”;
that is, we may define the truth predicate and falsity predicate of the meralanguage:

(i) we say that ¢ is true in a given world if ¢ denotes a true proposition;
(i) we say that ¢ is false in a given world if in all accessible worlds ¢ is not
true.

Notice that in an intuitionistic setting “false” is stronger than “not true.” Unfortu-
nately, “not true” cannot be expressed in the language of intuitionistic logic: nega-
tion is interpreted as “not true in all accessible worlds,” that is, as “false.” As a
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consequence, we cannot assert the strengthened liar “This sentence is not true” in
er-Logic. The liar can be asserted only in the form “This sentence is false.”

Now the model-theoretic truth conditions for the truth predicate, : true, and the
falsity predicate, : false, of the object language are defined in such a way that they
coincide exactly with the respective predicates of the metalanguage. The semantics
of the identity and the reference connective is respectively defined in accordance
with the above discussions:

(1) we say that ¢ = w is true in a given world if in every accessible world ¢
and y denote the same statement;

(ii) we say that ¢ <  is true in a given world if in every accessible world M
the following holds: ¢ and y denote statements p, g, respectively, and g is
related to p in M (i.e., p <M q).

The question for the existence of models (with specific properties) is not trivial. The
simplest model is the classical extensional one which contains exactly two propo-
sitions: the true and the false proposition. The construction of such a model is not
difficult and works in all Epsilon Logics in a similar way. As we have seen, if there
would exist only such extensional models, then the identity connective = would col-
lapse with logical equivalence and the Fregean Axiom would follow. But there exist
more models. Of particular importance are intensional models, that is, models which
satisfy the equation ¢ = y only if ¢, w express the same intension (the same sense).
The existence of intensional models was first proved by Striter [18]. His construc-
tion is highly complex and extensive. This is mainly due to the impredicativity of
the quantifiers and the related difficulty to assign truth values to the expressions. An
improvement and considerable simplification of this construction is given by the au-
thor in [10]. Zeitz [25] presents a completely different construction method which
is shorter and simpler; however, his intensional model has some unintuitive and un-
desirable properties. The construction of intensional models (with nice properties)
is a challenge in research on Epsilon Logics. The method developed in the present
paper (in the setting of €;-Logic) yields intensional models with no “nonstandard
elements.” Such standard models have the best properties. Our intensional mod-
els must satisfy a further condition which is related to the here-introduced reference
connective: ¢ < y is true if and only if ¢ is a proper subformula of y. Thus, in an
intensional model, the meaning of ¢ < y is that the expression y expresses some-
thing (depending on the syntactical form of ) about the proper subexpression ¢.

Finally, we use our intensional classical standard model in order to construct mod-
els that contain specific self-referential propositions such as the truth-teller. This is
managed by introducing an equivalence relation on the universe that relates those
propositions which we wish to identify. The new universe then consists of the equiv-
alence classes of this relation together with a new division into the subsets of true
and false propositions. These model constructions are among the main results of the
present work. A systematic study of such constructions may help to get an overview
of all possible (e7- and €;-)models. This is a promising task for future works.

2 Syntax

The language consists of the following symbols:

(1) A set C of constant symbols denoted by ¢, d, e, ..., co, c1, . . .. We assume
that the set C contains at least two special constant symbols L, T € C.
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(i) Aninfinite set V = {xq, x1, ...} of variables for statements. We denote the
elements of V by x, y, z, u, v, xg, . ...

(iii) Symbols for the logical connectives disjunction, conjunction, and implica-
tion: Vv, A, —, respectively.

(iv) The symbols : true, : false (in postfix notation) representing the truth- and
the falsity-predicate, respectively. : false also stands for the connective of
intuitionistic negation.

(v) The connective < for reference between statements, and the connective =
for identity between statements.

(i) Auxiliary symbols: ), (, .

Definition 2.1  Let C be any set of constant symbols. The set Expr(C) of ex-
pressions (or formulas) over C is the smallest set that contains C and V and is closed
under the following condition. If ¢ and y are expressions, then (¢ : true), (¢ : false),
evw),@Aw), (@ — w), (@ =w),and (p < ) are expressions. The set of
sentences, denoted by Sent(C), is the set of those expressions in which no variables
occur.

Usually we omit outermost parentheses. Sometimes we omit parentheses respecting
the following descending priority of symbols: : true,: false, v, A, >, =, <. For
instance, x = y V ¢ : true is the expression x = (y V (c : true)). We use ¢ <> y as
an abbreviation for (¢ — w) A (v — ).

Constant symbols may play a special role in €;. The idea is that these symbols
can be viewed as names of sentences of any given (natural or formal) language £.
The logic €; then turns out to be a metalanguage for the object language L£. In
this case the truth predicate (falsity predicate) of €; is in particular a truth predicate
(falsity predicate) for the sentences of .£. €5 may also serve as a metalogic for a
given intuitionistic abstract logic such as defined in [11]. Such metalogic aspects
(of classical er-Logic) were first studied in [25] and [10]. This is, however, not the
subject of the present paper. Constant symbols can also be used to denote special
propositions such as the truth-teller.

The notion of subexpression is recursively defined as follows.

Definition 2.2  Let ¢ be an expression.

(1) ¢ is a subexpression of ¢.
(ii) ¢ is a subexpression of the expressions y : true, y : false if ¢ is a subex-
pression of y.
(iii) ¢ is a subexpression of the expressions y V w, y Ay, y — W, x = v,
x < y if ¢ is a subexpression of y or ¢ is a subexpression of .

The set of subexpressions of ¢ is denoted by sub(p). We say that w is a proper
subexpression of ¢ and write v < ¢ if w € sub(p) \ {p}.

It is clear that < is a partial order on the set Expr(C).

We define var(p) = sub(p) NV, the set of all variables that occur in the ex-
pression ¢. The elements of C and V are also called atomic expressions. If ¢ is an
expression then we define at(p) = sub(p) N (CU V), the set of all atomic expressions
occurring in ¢. Analogously, we define the set of all constant symbols occurring in
¢ and denote this set by con(¢).

Substitutions are defined as follows.
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Definition 2.3 A substitution ¢ is a functiono : CUV — Expr(C). If A C CUV
ando(u) =uforallu € (CUV) \ A, then we writeo : A — Expr(C). If A=V,
then o is called a variable substitution (or a substitution of variables).

If o is a substitution, ug, ...,u, € CUV and ¢y, ..., ¢, € Expr(C), then the
substitution o [ug := @, . . ., Uy = @,] is defined by the following equation:

0i ifu =u;, forsomei <n
O-[MO = §00> st Up = €0n](”) =

o(u) else.

The substitution given by the identity u — u, u € C U V, is denoted by ¢. Instead
of e[ug := o, ..., u, := @,] we also write [ug := @o, ..., Uy := @n].

A substitution o extends in a canonical way to a function [¢] : Expr(C) — Expr(C)
(we use postfix notation for [¢]):

ulo] '=a(u) foralu e CUV
(¢ :true)[o] :=glo]:
(p : false)[o] := ¢[o] : false
(o v w)lo]:=9lo]V ylo]
(0 Anw)lo] = glo] A ylo]
(0 = p)lo]l=9plo] > ylo]
(0 =y)lo]l:=9¢lo] = ylo]

(0 <wlol:=9lo] < yla].
The composition of two substitutions ¢ and 7 is the substitution ¢ o 7 defined by
(0 o)) = o (w7,

foru e CUV.Ifd,...,d, are substitutions and ¢ is an expression, then we write
@[001[01] . . . [0,] for the substitution (((¢p[do])[1]) - - - )[n]-

In the following we collect some useful properties of substitutions that are easy to
prove (usually by induction on the expressions).

Lemma 2.4  Let ¢ be an expression and let o, T be substitutions. If o (1) = 7 (u)
forallu € at(p), then plo] = ¢[7].

Lemma 2.5 Let ¢ be an expression and let o, © be substitutions. Then
plo ot] = plo]lr].
Corollary 2.6  For all substitutions o, T, J,
cgo(tod)=(oor1)o0d.
Proof Suppose thatu € C U V. Then we get

(0 0(r00))(u) =0 )t 0dl =0o)r]ld] =
(6 o 7)(W))[6] = ((6 o 7) 0 I)(u).
O
Corollary 2.7  Let ¢ be an expression. Suppose that oy, ...,0, and 71, . .., Ty are
substitutions such that (u)[o1]...[on] = W)[71]...[zwm] for all u € at(p). Then
olo1]...lox]l = olt1]. .. [Tl
Lemma 2.8 Ifp < w and o is a substitution, then p[o] < y[o].
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3 Semantics

We wish to define a possible world semantics over e7-models. So the following
definition of a world is similar to the definition of an €7-model given in [18] and
[25]. We add here the semantic reference relation <, introduced in this paper, and
the resulting reference property. Furthermore, we do not require that the union of the
sets of true and false propositions constitutes the whole universe.

Definition 3.1 A world is a structure M = (M, TRUE, FALSE, <M T ) such that
the following hold:

(i) M is a nonempty set of statements. TRUE,FALSE C M are the sets
of those statements which have a truth value, “true,” “false,” respec-
tively. Statements with a truth value are called propositions. We require
TRUE N FALSE = &. Even if there may exist statements with no truth
value (in the case M . (TRUE U FALSE) # &), we call M the propositional
universe of M.

(ii) The binary relation <™ C M x M is called the reference relation.

(iii) The semantic function I' : Expr(C) x MY — M maps each expression
@ to its denotation: a statement I'(p, y) € M. I" depends on assignments
y : V — M of statements to variables. If y € M" and J is a substitution,
then y 5 € MV denotes the assignment defined by y d(x) = I'(d(x), y). If
x € V,m e M, then y" is the assignment defined by

M(y) = m ifx=y
Ya )= y(y) else.

The semantic function I' satisfies the following structure properties:
(EP) forall x € V and all assignments y € MV, T'(x,y) = y (x);

(CP) if ¢ is an expression and y, y’ € MV are assignments with y (x) = 7’(x)
for all x € var(p), then T'(p, ) =T(p,y');

(SP) if ¢ is an expression, y € M" an assignment and ¢ : V — Expr(C) is a
substitution of variables, then I'(¢[c],y) = T'(p, yo);

(RP) if ¢ < w, then I'(p,y) <M T'(y,y), for all expressions ¢, y and all
assignments y .

(EP) is the extension property. The coincidence property (CP) ensures that the se-
mantics of an expression depends only on the interpretation of those variables that
occur in ¢. Note that this justifies writing I'(¢) instead of I'(¢, y), if ¢ is a sentence.
The substitution property (SP) guarantees (see the following Substitution Lemma)
that the denotation of an expression is invariant under the substitution of subexpres-
sions by expressions of the same semantics. We require here the substitution property
only for substitutions of variables. However, we will see (Substitution Lemma) that
this condition is sufficient. Finally, the reference property (RP) ensures that the re-
lation < is mirrored semantically as reference between respective statements. If
says something about ¢, that is, ¢ is a proper subexpression of y, then the statement
denoted by y refers to the statement denoted by ¢.

Definition 3.2 Let / be a nonempty set and let R € [ x [ be a reflexive, tran-
sitive, and antisymmetric relation (/ is partially ordered by R). For eachi € I let
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M; = (M;, TRUE;, FALSE;, <;, [';) be a world and y; : V — M, a respective as-
signment. The elements of I are called nodes. We also assume here that there is a
bottom node; that is, there is some O € I such that ORi for all i € I. The structure
F = ((M;, yi)ier, R) is called a frame over (I, R) if for all i € I the following truth
conditions are satisfied. For all expressions ¢, y € Expr(C) and for all x € V and
forallc € C,
(i) yi(x) € TRUE; = forall j € I withiRj: y;(x) € TRUE};
(ii) T';j(c) € TRUE; = forall j € I withiRj, I'j(c) € TRUE;
@iii) (e :true, y;) € TRUE; < (@, i) € TRUE;;
(iv) T'i(p : false, y;) € TRUE; < ['j(p, y;) € FALSE;;
() Ti(p vV y,yi) € TRUE; < T'i(p, yi) € TRUE; or I'; (y, i) € TRUE;;
(vi) Ti(p A w,yi) € TRUE; & T'i(p, y;i) € TRUE; and [';(y, y;) € TRUE;;
(vii) T;(p — w,y;) € TRUE; & forall j € I withiRj: I'j(p,y;) ¢ TRUE; or
I'j(y,y;) € TRUEj;
(viii) T'i(p = v, i) € TRUE; & forall j € I withiRj: Tj(p,y;) =T;(y,7;);
(ix) Fi((o <y, yi) € TRUE; < forall j € I withiRj: Fj((o, Vj) <j Fj(l//, yj);
(x) Ti(p, yi) € FALSE; < forall j € I withiRj: I'j(p, yj) ¢ TRUE;;
(xi) T;(T) € TRUE; and I'; (L) € FALSE;.
These conditions are called the truth conditions of a frame.
If ¥ as above is a frame, then we call the M; worlds of the frame, and R is called
the accessibility relation. The tuples {; = (M;, y;) are called interpretations (of the

frame ¥). A frame that contains only one world is called a singleton. We identify a
singleton with its unique interpretation 4 = (M, 7).

Definition 3.3 Let ¥ be a frame over (I, R). The satisfaction relation between
interpretations and expressions is defined as follows. For i € I,

(M, yi) E @ : <= T;(p, y;) € TRUE;.

The interpretation {; = (M;, y;) is a model of the expression ¢ if {; F ¢. For a set
® of expressions we define J; F @ <= J{; F ¢ forall 9 € ®. {; is called a model
of the set @ if {; F ®.

Furthermore, we say that a frame ¥ is a model of a set of formulas @ if every
interpretation in ¥ is a model of @. This is the same as to say that the interpretation
at the bottom node is a model of ®.

Lemma 3.4 Let F = ((M;, yi)ier, R) be a frame. Then for all nodes i € I and
for all expressions ¢,
() (Mi,7i) F o < Ti(p, 7i) € TRUE;,
(i) (M;, 7)) Fo: false < Ti(p,y;) € FALSE;,
(iii) I;(p, yi) € TRUE; <= forall j € I withiRj,I j(p,y;) € TRUE},
(iv) Ti(p, yi) € FALSE; <= forall j € I withiRj,I'j(p,y;) € FALSE;.

Proof The last assertion follows from truth condition (x) and transitivity of R. Now
the third assertion follows by induction on ¢. The first assertion is simply the def-
inition of the satisfaction relation. Finally, the second assertion follows from the
definition of the satisfaction relation and truth condition (iv). O
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Definition 3.5 Let F = ((M;, y;)icr, R) be a frame. Then we call the four bicon-
ditionals of Lemma 3.4 the Axioms of Adequacy.

The first axiom is the definition of the satisfaction relation; it implies in particular
the following: (M, y;) F ¢ : true <= Ti(p, i) € TRUE;. So the first two Ax-
ioms of Adequacy ensure that the truth predicate and the falsity predicate satisfy our
intuition: The truth predicate applies to an expression if and only if the expression
denotes a true proposition; the falsity applies to an expression if and only if this
expression denotes a false proposition. Indeed, the first axiom implies the Tarski-
Biconditionals (see below). Moreover, the Axioms of Adequacy express that a true
(a false) expression remains true (false) in all accessible worlds, respectively. This is
in accordance with the intuition behind intuitionistic semantics: our “knowledge” is
increasing at each successor node of a frame.

Remark 3.6 Let £ = ((M;, yi)ici, R) be a frame. Then the truth conditions
together with the definition of the satisfaction relation imply the following equiva-
lences, for every node i € I.
(M, yi) E x < »i(x) € TRUE;
(M, yi) Ec < T;(c) € TRUE;
(Mi, yi) E g :true <= (M;, yi) F o
(M, yi) F o :false <= forall j withiRj : (M;,y;) F ¢
(Mi, 7)) FoVy & (Mi,yi) Foor(M,y)Fy
(Mi,yi) Fo Ay < (M, y:) Foand (M, ) Fy
(M, 7)) Fo = vy < forall j withiRj : (M;,y;)) Fpor (M;,y;))Fy
(Mi,yi)Fo=y & forall j e I withiRj : Tj(p,y;) =Ty, ;)
(Mi,yi)Fo <y < forall j e I withiRj : T;(p,7;) <Mj Ty, )
(M;, i) E T :true
(M;,yi) E L : false.
On the other hand, if we define the satisfaction relation inductively in this way, then

the truth conditions of a frame follow from this alternative definition and the Axioms
of Adequacy.

Hence, the connectives have, in effect, the expected intuitionistic behavior.

Definition 3.7 Let ® U {p} be a set of expressions. We say that ® entails ¢ (or ¢
is a consequence of @) and write ® I ¢ if every model of ® is a model of ¢. That
is, ® I ¢ if and only if for every frame # and every interpretation £ in ¥, { F ¢
whenever { F ©. If the empty set entails ¢, then we write I ¢.

Let # = ((M;, yi)ier, R) be a frame. Recall that we consider propositions as the
bearers of truth values. We say that an expression is true (is false) at node i if it
denotes a true (a false) proposition in the respective interpretation. This harmonizes
with our intuitive notions of truth and falsity which are determined by the notion of
model-theoretic satisfaction: ¢ is true at node i if and only if (M;, y;) F ¢, and ¢
is false at node i if and only if ¢ is not true at j, for all j with i Rj. We say that the
expression ¢ has a truth value at node i if ¢ is true at i or ¢ is false at i.

The validity of the Tarski-Biconditionals in er-Logic was proven in [18]. We
show here that they also hold in our intuitionistic setting.
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Theorem 3.8 (Tarski-Biconditionals)  The truth predicate and the falsity predicate
on the object language coincide with our intuitive notions of truth and falsity, that is,
with the truth predicate and the falsity predicate of the metalanguage, respectively.
More precisely, if ¥ is a frame over (I, R), then we have the following for each
interpretation (M;, y;) of F.

(M;,vi) E @ :true <= “p istrue ati,”
(M, i) E ¢ : false <= “g is false at i,”

for each expression ¢. In particular, the logic € satisfies the Tarski-Biconditionals
which are expressible on the object level:

IF ¢ : true < @,

for each expression ¢.

Proof This follows from Remark 3.6. O

Definition 3.9 A world M is called classical if the propositional universe M is the
disjunct union of the sets TRUE and FALSE. An interpretation (M, y ) of a given frame
F 1is called classical if the world M is classical.

In a classical interpretation we have (M, y) F ¢ Vv (¢ : false) for all expressions
@. If a classical interpretation J appears at a node which is not maximal in a given
frame, then this implies that all interpretations accessible from J satisfy exactly the
same set of expressions.

If we consider exactly those frames that contain only classical worlds (in partic-
ular, all singletons), then we obtain the classical sublogic of €;. (We understand
“sublogic” in a model-theoretic sense. Roughly speaking, £’ is a sublogic of £ if
every model of £ is a model of L£.) “p is false” is the same as “g is not true” in the
classical sublogic. Thus, the falsity predicate is the connective for classical negation
and ¢ V (¢ : false) is valid, for any expression ¢.

Extensional and intensional er-models are defined in [18]. Adapting these no-
tions we use our new reference connective < to establish a refinement of the concept
of intensional model.

Definition 3.10  Let ¥ be a frame over (/, R).

(1) An interpretation (M;, y;) of the frame ¥ is called extensional if for all
expressions ¢, v the following holds:

(Mi, yi) F ((p - true) — (9 = T)) A ((p : false) — (¢ = 1)).

(i) A world M; of the frame ¥ is called intensional if for any two sentences

@, v the following hold:

(a) if M; F o =y, thenp = y,

(b) if M; Fp < y,thengp < y.
The frame F is said to be extensional (intensional) if all its interpretations (worlds)
are extensional (intensional), respectively. A nonstandard element of a world M is
a statement p € M such that no sentence denotes p. A world with no nonstandard
elements is called a standard model.
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Lemma 3.11  Let F be a frame over (I, R) and leti € 1. If M; is an intensional
world, then for every j € I with jRi, the world M is intensional. If (M;, y;) is
extensional, then for all j € I such that iRj, the interpretation (M, y;) is exten-
sional.

Proof Let JM; be intensional and j Ri. Suppose that .M ; is not intensional. Then we
distinguish two possible cases: There are sentences ¢; # @2 suchthat M; F 91 = @2
or there are sentences w1 A w2 such that M; F w1 < w». Since the truth of these
sentences is preserved in accessible worlds, we get, in the first case, M; F g1 = @2
and, in the second case, M; F y| < w>. This contradicts the assumption that M; is
intensional. The second assertion follows immediately from the definition and from
the fact that truth of expressions is preserved in all accessible interpretations. (]

We introduce the semantic concept of extension of an expression in the following
way.

Definition 3.12  Let & = ((M;, yi)icr, R) be a frame and let 4 = (M;, y;) be an
interpretation. The extension of an expression ¢ at node i is the set of expressions

{wldFop=y}

Now we have three different notions that we may assign to an expression: every ex-
pression has an intension, a denotation, and an extension (in a given interpretation).
Recall that the intension (or the sense) of an expression is given by its syntactical
form; thus it is independent of any ambient model. The denotation of an expression
@ in a given interpretation is the statement denoted by ¢, that is, the image of ¢ un-
der the I'-function. Also note that in the classical sublogic the concepts of extension
and denotation are equivalent in the following sense: two expressions have the same
denotation if and only if they have the same extension. In the general intuitionistic
context, however, these notions are not equivalent. Two sentences may denote the
same proposition in some world M; but may denote distinct propositions in an ac-
cessible world M ;. In this case, the sentences have the same denotation in M; but
not the same extension in M;.

If we speak about an extensional model, then usually we mean a model with
exactly two propositions, verum, falsum (i.e., the strong form of extensional model).
Nevertheless, an extensional model (M;, y;) can contain more than two propositions.
This is the case if there is some proposition p € M; such that no expression denotes p
(we cannot say nothing about p). In all extensional models the extension of T is the
set of all true expressions, and the extension of L is the set of all false expressions.
On the other hand, in an intensional model, extension of a sentence can be identified
with its intension.

If the world M is classical and intensional, then the following holds for all sen-
tences ¢, y.

(i) I'(p) =T(y) = ¢ = y,and

(i) T(p) <M T(y) =0 <y.
In such a model denotation, extension, and intension of sentences are in one-to-
one correspondence and can be considered essentially equivalent notions (i.e., two
sentences have the same denotation if and only if they have the same extension if and
only if they have the same intension if and only if they are identical). Moreover, if
M, in addition, has no nonstandard elements, then the I"-function can be seen as an
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order isomorphism from the partial order (Sent(C), <) onto (M, <). That is, the
relation < on the sentences is semantically mirrored by the reference relation on M.
In an extensional interpretation (M;, y;) holds also the following:

(Mi, 7)) Fo <y,

for all expressions ¢, w which have any (not necessarily the same) truth value. In
particular,

(Mi,7i) Fo <o,

for all expressions ¢ that have a truth value at node i. Let us show this. We have
T < T :true, T < T :false, L < L :true, L < L :false. The reference prop-
erty (RP) of a world forces, respectively, the validity of the following sentences:
T < (T :true), T < (T :false), L < (L :true), L < (L : false). Observe
that T : true and L : false are valid, whereas T : false and L : true are contra-
dictory. Thus, in an extensional world we have T = (T :true), T = (L : false),
1 = (T :false), L = (L :true). Hence, T < T, T < 1, 1L < T, L < L are true in
an extensional model. Since every expression with a truth value is in the extension
of either T or _L, the assertion follows.

Definition 3.13 Let £ = ((M;, yi)ici, R) be a frame and let (M;, y;) be any
interpretation. We say that a statement p € M; refers to a statement g € M; if there
are expressions ¢, y such that ¢ denotes p and y denotes g and (M;, yi) F ¢ < w.
In particular, a statement p € M; is self-referential if some ¢ denotes p and
(Mi,yi) Fo <.

Note that in a nonclassical context p <™ g is in general not sufficient for the
fact that statement g refers to statement p. If ¢, w are expressions denoting p, g,
respectively, then there may exist an accessible interpretation (M, y;) where
Li(p,7;) <Mj I'j(y, y;) does not hold. In this case, (M;, y;) F ¢ < y.

The proof of the following Substitution Lemma relies on ideas due to Zeitz who
proved a similar Substitution Lemma for e7-Logic [25]. Also the following theorem
is, reduced to the context of €7, implicitly contained in [25]. Note that—in contrast
to the substitution property (SE)—the assertions of the lemma are not restricted to
substitutions of variables but work with arbitrary substitutions.

Lemma 3.14 (Substitution Lemma) Let M = (M, TRUE, FALSE, <, I') be aworld
and let ¢ be an expression.

(i) Suppose that ¢ and o' are substitutions and y,y’ € MV are assign-
ments such that T(c(u),y) = T'(c’'(w),y’), for all u € at(p). Then
T(plol,y) =T(pla'], ).

(ii) Suppose that y € MV is an assignment and ¢ is a substitution such that
I'(c)=T(o(c), ), forevery c € con(p). Then T (p[c],y) =T (p,y0o).

Proof The idea of the proof is to substitute all constants occurring in ¢ by variables
of the same semantics. Then we may apply the substitution property (SP) from
which the assertion will follow.
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(i) Forevery ¢ € con(p), let x. € V ~ (var(p) U var(p[o])) such that x, # x4 for
¢ # d € con(p). We define three substitutions 7, g, and g’ by

7 :con(p) = V,c = x¢;

o(c) ifx = x., for some c € con(p)

0:V — Expr(C), x —
o(x) else;

o'V = Expr(C).x > c'(c) ifx = x., for some ¢ € con(yp)
o'(x) else.

Then by the previous results about properties of substitutions we get

plrllel = ¢lr ool = 9lo] and  ¢[r]le'] = ¢l 00"l = 9lo'].
We can apply (SP) and get

T(glol,7) = T(plellel 7) L T(plr], y o) and

C(plo'),y) = Telrlle ], y) L Tl y'e). @)

By (CP) it is sufficient to show that y p(x) = y’p’(x), for all x € var(p[r]). Let
x € var(p[t]). If x = x. for some ¢ € con(p), then

(yo)(x) =T(e),y)=T(a(c),y) =T(a'(c),y) =T (' (x),7") = (2" (x).
If x # x. for all ¢ € con(p), then
(o) x)=T(o(x),y)=T("'(x),y") =(¢'d)).
Thus, (CP) and (2) yield T'(p[c], ) =T (plc’], 7).

(i) Puty’:=yo and o’ := ¢ the identity u +> u. Then, on the one hand, we have
forall y € var(p), ['(c'(y),y") =T(y,y0) =y0a(y) = I'(c(y), 7). On the other
hand, we have for all ¢ € con(g), I'(c’(c), ) = T'(¢) = T'(6(c), y). Hence, the
assumption of (i) is satisfied. Now follows I' (¢, yo) = T'(p[c'], 7’) = T'(plo], 7).

O

The Substitution Lemma implies the following Substitution Principle. The following
corollary can be seen as an intensional version of Frege’s well-known principle of
substitution (or replacement).

Theorem 3.15 (Substitution Principle) Let M = (M, TRUE, FALSE, <M, I') be a
world. Let g1, p2, w1, w2 be expressions and let y,y’ : V — M be assignments.
Suppose that T'(¢1,y) = T'(y1,7") and T (p2,7) = T (w2, y'). Then the following
hold:

T (g : true, y) = T'(y : true, y")
I'(p; : false, y) = '(y : false, y)
C(p1 Vo2, 7) =TV y, )
C(p1 Ap2,7) =T(y1 Ay, 7'
C(p1 — ¢2,7) =T(y1 — y2,7")
T(p1=92,7)=T(y1=y2,7)
(g1 <p2,7)=T(y1 < y2,7).
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Proof We only show the third item. The other cases follow similarly. Let o, ¢’ be
substitutions such that o (x) = @1, 6 (y) = @2, 6'(x) = w1, ¢'(y) = y2. Then by
the assumptions of the theorem and (i) of the Substitution Lemma,

Cp1Ve,y)=T{(xVvylel,y)=T((xVvylo'l,y) =Ty V).
O

Corollary 3.16  Let (M, y) be a world and suppose that ¢, ¢’, v, w' are expres-
sions such that w < ¢. Furthermore, let y be any expression and let x be any
variable.

(1) If w and ' have the same denotation in (M, y) and we replace an occur-
rence of w in ¢ by v, then the result ¢’ has the same denotation as ¢.

(i) IF(y=y)Alp=xlx=yDAlp =xlx:=y') > =0

Proof Choose y = y’in Theorem 3.15 and show the assertion inductively on the
construction of expressions. U

Roughly speaking, the second item is a generalization of the first item to a broader
context substituting “denotation” by “extension.” Note that the usual principle of
replacement in extensional logics fails: if y is a subexpression of ¢, and y, y' are
logically equivalent, then the substitution of some occurrence of y by y’ in ¢ yields
a formula ¢’ which, in general, is not logically equivalent with ¢. Consider, for in-
stance, x = (x : true). If we replace x : true by the logically equivalent expression x,
then the result x = x is obviously not equivalent with the original expression which
asserts a truth-teller. The failure of the extensional replacement principle reveals the
intensional character of the logic. We refer the reader to Béziau ([5], p. 5) where the
construction of such an intensional logic is supposed to be an open problem.

4 Some Model Constructions

The existence of models is not obvious; some effort must be spent in order to con-
struct structures that satisfy the properties of a world and of a frame. We will start
with the simplest case, the construction of an extensional classical world which guar-
antees the existence of frames. Constructions of extensional models usually follow
the same strategy and can be found in similar forms in [18] and [25]. All other
construction methods presented here are new. Of course, the absence of quantifiers
simplifies matters (see the discussion on page 281). In particular, we present a con-
struction of intensional (classical) standard worlds. We develop a general construc-
tion that builds a new frame from a set of given ones. A curious phenomenon in the
intuitionistic case is that an intensional world may contain only three statements (in
the classical case intensional models are infinite). Last, we show away that a world
can be constructed that satisfies specific given nontrivial equations; that is, we may
specify (up to a certain degree) which (self-)referential propositions the world will
contain.

4.1 An extensional classical e;-model  Let C be a set of constant symbols (recall
that we require T, L € C). We choose a partition C = Ct UCfron C with T € Cr,
1 € Cr. We define TRUE := {T}, FALSE := {L} and M := TRUE U FALSE. Further-
more, we put <M:= M x M. Lety : V — M be any assignment. The semantic
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function is inductively defined as follows.
I'x,y)=y(x), forx eV

F(c,y):[ ?fceCT

1 ifceCp

r(go;mm,y)_[I 6. =T
rw:mmJ)Z[I gQWJ)=¢
F((ﬂ\/w,y):[I iflsz((ﬂay):Torr(V,,y):T
F(cﬂAw,V):[I ilclsl;(ﬂo,y):Tandr(v,’y):T
rw—eygy)z[ji Z;@hy)zinr(%y):—r
N¢sw4)_[1 Z;WJ)zrwm)

And finally,

Tl <wy,y)=T.

Let us show that M = (M, TRUE, FALSE, <M, I') is a world in the sense of Defi-
nition 3.1. Clearly, (EP) holds. (CP) and (SP) follow easily by induction on the
expressions. (RP) is trivially satisfied. By construction, (M, y) also satisfies the
truth conditions of a frame (a singleton). It is easy to see that the world is exten-
sional. We have proved the following.

Theorem 4.1 (Existence of models)  For every set of constant symbols C there exist
(extensional classical) models (frames) with respect to the language Expr(C).

4.2 Constructing a new frame from a set of given frames ~ The above construction
yields only singletons, that is, classical worlds. In the following we show how to
construct a new frame from a set of given frames. The idea is to integrate the given
frames into a new frame by adding a new world as the bottom world. In the nontrivial
case (i.e., if there is at least one expression that distinguishes two of the given frames)
the new frame will contain a world (the bottom world) which is not classical.

Definition 4.2 Let & = ((M;,7i)icr, R) be a frame over (I, R) and let
i € I. Consider the set I; = {j € I | iRj}. It is clear that the structure
F' = ((Mj,yj)jer, Ri) is a frame over (I;, R;) (with bottom node i), where R; is
the restriction of the order R onto I;. We say that ' is a subframe of F .

Theorem 4.3  Let C be a set of constant symbols. Let f > 0 be an ordinal and let
(¥ | @ < B) be a sequence of frames over (I, Ry), respectively. We assume that
the 1, are pairwise disjunct sets. Let 0, denote the bottom node of (I, R,). Then
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there exists a frame F with bottom node 0 # 0, (a < f) such that each ¥, is a

subframe of ¥ and each node O, is an immediate successor node of the bottom node
0.

Proof We construct a new frame ¥ as follows. Let O be an element not contained
inany I;. WeputI = |J{I, | « < B} U {0}. Let R be the transitive closure of
U{Rx | @ < B} U{(0,0), (0,0,) | @ < B}. Then R is a partial order on [ and 0 is
the bottom node of 1. We define a new world My = (Mo, TRUEq, FALSEq, <0, To)
by TRUEg = {T}, FALSEg = {L}, My = TRUEQ U FALSEg U {n}, where n is a new
symbol. Put <Moo= My x M. Let yo : V — My be any assignment, x € V,c € C.
The semantic function of M is defined as follows.

To(x, yo) = yo(x)

[T if forall j € I \ {0} withORj : I';(c) € TRUE;
Lo(c, y0) = L ifforall j € I ~ {0} withORj : I';(c) ¢ TRUE;
n else

LCo(p : true, yo) = Lolp, o)

T if To(p, yo) = L
Io(p : false, yo) = § L ifforalli € I with ORi : T'; (¢, y;) ¢ FALSE;

| 7 else

T if To(p, y0) = TorTo(y,y0) =T

1 ifforalli € I withORi : T';(p, y;) ¢ TRUE; and
Lolp vV w, y0) =

[i(y, yi) & TRUE;

n else

[T if To(p, y0) = T and To(y, y0) =T

1 ifforalli € I with ORi : T;(p, y;) ¢ TRUE; or
Tolp Ay, yp0) =

[i(y, yi) & TRUE;
n else

T ifforalli € I with ORi : T';(p, y;) ¢ TRUE,; or
[i(y, i) € TRUE;

Tolp = w,y0) = 4L ifforalli € I with ORI there is some j withiRj :

[j(p,yj) € TRUE; and I';(y, y;) ¢ TRUE;

& else

[T ifforalli € I withORi : T; (¢, y;) = Li(w, yi)

1 ifforalli € I with OR; there is some j with i Rj :
Lj(p,y;)) #Tj(w, 7))

n else

Lolp =y, y0) =
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T ifforalli € I withORi : T;(p, y;) <™ Ti(w, yi)

L ifforalli € I with OR; there is some j with i Rj :
not Tj(p, 7;) <* Tj(y, 7))

n else.

Tolp < w,y0) =

As in the previous construction, the proof that the semantic function satisfies the
structure properties (EP), (CP), (SP), (RP) is straightforward. Hence, Mg is a world.
The assignment y( above is arbitrary. Now we define a specific yg : V — My by

T ifforall j € I ~ {0} with ORj, y;(x) € TRUE;
yo(x) := 1L ifforall j € I ~ {0} withORj, y;(x) ¢ TRUE;

n else.

It follows readily from the construction that the truth conditions hold at O € I, that s,
for I'g and yg. By hypothesis, the truth conditions also hold at all nodes i € I ~ {0}.
Hence, ¥ = ((M;, yi)ier, R) is a frame. [l

Note that the interpretation (Mg, yo) constructed above is, in general, not extensional
although it contains exactly one true and exactly one false proposition (all expres-
sions with the same truth value have the same denotation in Mp). If an expression
@ is true at 0, then T'g(p, y9) = T'o(T, y0). But this equation does not necessarily
hold in all accessible worlds (which may contain more than one true/false propo-
sition); that is, the equation ¢ = T is not necessarily satisfied at node 0. Indeed,
if at least one of the accessible worlds is intensional, then also M is intensional,
by Lemma 3.11. This is a nice example for the distinction between denotation and
extension of expressions. However, if all frames ¥, (o < f) are extensional, then
(Mo, yo) is extensional, too.

The interpretation (Mo, yo) is uniquely determined by the given sequence of
frames (¥, | o < p) and the above construction. This leads us to the following
definition.

Definition 4.4 Let (¥, | a < p) be a sequence of frames over ([, R,) such as
given in Theorem 4.3. We call the frame & = ((:M;, 7;)ies, R), constructed in the
proof of Theorem 4.3, the integration frame of the sequence of frames (¥, | a < ).

4.3 Constructions of intensional €7-models  In the following, we present con-
structions of intensional models. In a first step we construct a classical standard
model. Theorem 4.3 (together with Lemma 3.11) then yields intensional models
which are not classical.

4.3.1 The intensional classical standard mode/  Let C be a set of constant sym-
bols. We put M := Sent(C). Observe that in this case an assignmenty : V. — M
is also a substitution and @[y ] is a sentence, for any expression ¢. We define the
Gamma function by

L(p,y)=0lyl

M on M is given by <; that is, for sentences ¢, y we define

The reference relation <
[0} <‘M Y= p <y.

The subsets TRUE, FALSE € M will be determined later. At this stage we already
are able to show the structure properties. (EP) is clear and (CP) follows from
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Lemma 2.4. Now suppose that ¢ is any substitution of variables and y is an as-
signment. Recall that the assignment y o is defined by y o (x) = I'(c(x), y). By the
definitions, yo (x) = o (x)[y] = (60 o y)(x) forallx € V. Thus, yo and 0 o y are
the same substitutions. Now we get the following:

F@wly)=¢bﬂyﬂ2¢boy]=¢wa]=FWJW%

where (*) indicates the application of Lemma 2.5. Hence, (SP) holds. In order to
show the reference property (RP) suppose that y is an assignment and ¢ <  for
expressions ¢, . By Lemma 2.8, p[y] < w[y ], and (RP) follows.

It remains to assign truth values to the elements of M; that is, we have to deter-
mine the subsets TRUE and FALSE. This is managed inductively in the following way.
First, we choose a partition C = C7 U CF that divides the set of constant symbols in
two disjoint subsets, the “true” and the “false” constants. As usual we assume that
1 € Crand T € Cr. Now we define inductively

¢ € TRUE ifc e Cr.
C € FALSE ifc e Cp.

@ : true € TRUE if ¢ € TRUE.
@ : true € FALSE if ¢ € FALSE.
¢ : false € TRUE if 9 € FALSE.
@ : false € FALSE if p € TRUE.

@ V ¥ € TRUE
@ V W € FALSE
® A ¥ € TRUE
@ AW € FALSE
@ — ¥ € TRUE
@ — Y € FALSE
¢ = ¥ € TRUE
@ = Y € FALSE
® < Y € TRUE

@ < ¥ € FALSE

if ¢ € TRUE Or i € TRUE.

if ¢ € FALSE and y € FALSE.
if ¢ € TRUE and y € TRUE.
if ¢ € FALSE or i € FALSE.
if ¢ € FALSE or i € TRUE.
if ¢ € TRUE and y € FALSE.
ifp =w.

ifp #y.

ifo < y.

ifo Ay

It is obvious that the world M = (M, TRUE, FALSE, <™, I) is intensional. It is also
easy to see that M is the disjoint union of TRUE and FALSE. Furthermore, for any
assignment y : V — M the frame consisting of the singleton (M, y) satisfies the
truth conditions. We have proved the following.

Theorem 4.5  For every set of constant symbols C there exists an intensional €-
model. Moreover, we may construct an intensional classical world M with no non-
standard elements.

It is clear that the above-constructed intensional classical model depends only on the
set C and on the partition of C into the sets C7 and Cr. For a given set C and a
given partition C = C7 U Cr we call this model (world) the intensional classical
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standard model. Since it is classical we have
MEp=ypw<—T(p=y)emRUE<=T(p)=T(y) <= p=vw

ME @ <y <= T(p < y) € TRUE < ['(p) <‘Mr(t//)<:>go<t//,

for sentences ¢, . It follows that the Gamma function is the identity map from
(Sent(C), <) onto (M, <M) and, in particular, an isomorphism between the two
partial orders. We may therefore assume that the propositional universe of the inten-
sional classical standard model consists exactly of the set of sentences and is partially
ordered by <M=<.

4.3.2 Nonclassical intensional standard models =~ We obtain nonclassical inten-
sional worlds by applying the construction method of Theorem 4.3. Since in
Section 3 we have constructed intensional models, the following is an immediate
consequence of Theorem 4.3 and Lemma 3.11.

Theorem 4.6  There exist intensional nonclassical worlds.

4.4 An example: Constructing a classical standard world with exactly two self-
referential propositions ~ We have constructed extensional and intensional mod-
els, and we have developed a general method to construct a new frame from a set
of given frames. In an extensional model all equations between true (between false)
sentences are satisfied, respectively. On the other hand, in an intensional model only
equations between identical sentences are satisfied. Thus, in an intensional standard
model there are no self-referential propositions at all. The question arises which
intermediate cases exist between these two extremes. Can we construct (infinite)
standard models which contain only a few specific (self-)referential propositions?
In this section we give a partial answer. We show in the form of an example how
to construct models that satisfy some equations which assert specific self-referential
propositions. These equations, however, are in general not independent from each
other and the question for a general construction method for this kind of models
remains open. It would be nice to get an overview of the hierarchy of models be-
tween the intensional classical standard model and the extensional classical model.
In the following we construct a classical standard model that contains exactly two
self-referential propositions, a true truth-teller and a false truth-teller.

Let C = {1, T,c,d} be a set of constant symbols and let M be the intensional
classical standard model constructed above in order to prove Theorem 4.5. We as-
sume that the constant symbol c is interpreted as a true proposition and d is in-
terpreted as a false proposition in M. Recall that the universe of M is the set of
sentences: M = Sent(C). In order to construct a model which identifies ¢ with
c : true and d with d : true we define an appropriate equivalence relation on M
and interpret the sentences by their equivalence classes. Consider the set of pairs
E = {(c,c : true), (d,d : true)} and let E* be the smallest equivalence relation
on Sent(C) that contains E and is closed under the following condition, called the
congruence property of E*. If (p, y) € E* and (¢’, ') € E*, then

(p : true, y : true) € E*,
(p : false, y : false) € E*,
=9, y=y)eE,
(0 <o,y <y)eE",
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(Ve ,wvy')eE*,
(pno',wAY')eE",
(0> o,y —>y')eE"

We call E* the congruence generated by E. In the rest of this chapter we will prove
the following claim.

Claim 1 There exists a classical standard world M with the property
MEE 9=y < (p,y) € E*, and
(ME, yYECc:true ad : false A (x < x) < ((x =¢) V (x = d))),

for all sentences ¢, y and for all assignments y : V — MZ%. In particular, M%
contains exactly two self-referential propositions: a true truth-teller denoted by ¢
and a false truth-teller denoted by d.

Proof Let ¢ denote the equivalence class of ¢ € Sent(C) modulo E*. We put
ME .= {p | p € Sent(C)}. Foran assignmenty : V — MEletd, : V — Sent(C)
be a choice function that picks an element J, (x) € y (x) for each x € V. In particu-
lar, 6, is a substitution of variables. We define a new Gamma function by

(g, 7) := (oo, DE,

for ¢ € Expr(C). That is, each expression ¢ is mapped to the equivalence class of
¢[6,] modulo E*. T £ is independent of the particular choice function dy . For let
5; : V. — Sent(C) be another choice function; that is, 5; (x) € y(x)foreachx € V.
Then by induction on ¢ (using the above congruence property of E*) one sees that
(ploy 1, go[éf/ 1) € E*, for any expression ¢. Thus, I'f (¢, y) does not depend on the
choice function J, .

Notice that J, : V — M is an assignment in the context of the intensional model
M. So from the definitions it follows that

F(p.7) =T(p.0,)".
We define the reference relation <£ on M % by
E _E E. / E / E / /
¢~ <" y~ :&= there are sentences ¢° € ¢~ and ' € y" suchthaty’ < y.

That is, pf <F wE if and only if there are sentences ¢’ € ¢ and v’ € w such
that ¢’ <™ ', where <M is the reference relation of the model M. It is clear that
the relation £ <% % defined in this way is independent of its representatives.
The sets TRUEY , FALSE? are inductively defined as follows.’

cf € TrRUEF and TF € TrRUEE.

d® e raLsef and LF € rarsef.

(9 = v)F e TrRUEF if f = yt.
(0 = ) € FaLse® if pf £ ywE.
(¢ < w)E e rRUEE if pf < yE.
E

(0 < w)E € FaLSE if not & <F yE.



298 Steffen Lewitzka

(¢ : true)® e TRUEE if £ € TRUEE.
(¢ : true)® e raLse® if £ € FaLse®.
(¢ : false)® e TRUEF if o € FaLsE”.

if (,oE € TRUEE.

if (/)E e TRUE® or z//E € TRUEE.

if £ € FaLsE? and ¥ € FALSEE.
ifgoE e TrRUE® and y/E e TRUEE.
if £ e FaLse? or £ € FALSEE.

if £ e FaLse? or y£ € TRUEE.

(¢ : false)t € FALSE
(o v w)E e TRUE
(¢ vV w)E € FaLSE
(0 A w)E e TRUE

(0 A w)E € FALSE

M om om N b

(9 — w)E € TRUE

(9 — w)E e raLse® if £ € TRUEE and y £ € FALSEE.

By induction on the sentences one easily checks that TRUEE N FALSEF = & and
TRUEF U FALSEF = ME.

In order to see that MY = (ME, TRUEE, FALSEE, <F T'F) is a world we must
show that the structure properties and the truth conditions are satisfied. It follows
immediately from the definition of the Gamma function and from the inductive def-
inition of the sets TRUEY, FALSE® that for every assignment y : V — MF the truth
conditions are satisfied. Let us look at the structure properties. Let x € V and sup-
pose that y : V — MF is an assignment. Then I'f(x,y) = (5, x)F = y (x).
Thus (EP) holds. In order to show (CP) let ¢ be any expression and suppose that
y,y’ are assignments such that y (x) = y’(x) for all x € var(p). By induction on
¢, considering the above congruence property of E*, we get (¢[d, ], ¢[J,/]) € E*.
Hence, % (¢, 7) = (p[6, )" = (¢[6,D* =T*(p, 7).

Now we aim for (SP). Let ¢ : V — Expr(C) be a substitution of variables, ¢
an expression, and y an assignment. Recall that by y 0 we denote the assignment
defined by yo (x) = TE(c(x),y),forx € V.

E

Claim2 (p[o oJ, DE=(p [5y0])E. In order to prove Claim 2 we use induction on
@. The assertion is clear forp = e € C. Letp = x € V. Then

(x[o 06, D" = (6 (0[5, D"
=TE@(x),y) by definition of the Gamma function

=vy0o(x) by definition of the assignment y ¢
=T*(x,y0) by (EP)
= (x [5ya])E by definition of the Gamma function.

Now suppose ¢ = (y : true). Applying the definition of substitutions, the induction
hypothesis and the congruence property of E*, we get

((y : true)[o o 57])E =(ylo 0d,]: true)©
= (p[6,01: true)® = (( : true)[5,, )"

The other cases follow in a similar way. We have proved Claim 2.
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Now, applying the definition of the Gamma function, Lemma 2.5 and Claim 2,
we get

I(plol,y) = (ploll6, ) = plo 06,1 = 916,,1° =TF(p, y 0).
Thus, (SP) holds.
Let us show that (RP) is satisfied. So let y be an assignment and suppose ¢ < ¥
for expressions ¢, . By Lemma 2.8 we get ¢[d, ] < y[J, ]. The definition of the

reference relation <% yields T'E(p, y) = oldy £ <E z//[éy]E =T%(y,y). Hence,
(RP) holds. O

We may force further identifications. For instance, it might be interesting to get
models in which logically equivalent expressions, such as ¢ V y and w V ¢, denote
the same proposition, and no other expressions are identified. It seems that the con-
struction method of the above example can be generalized up to a certain degree.
However, one has to pay attention here. Suppose we wish to construct a world which
satisfies the equations ¢ = (c : true) and d = (¢ < ¢). Again, we start by the inten-
sional classical standard world M in which c is interpreted by a true proposition and
d is interpreted by a false proposition. At a first glance there seems to be no problem
to identify the sentences c, (¢ : true) and d, (¢ < c), respectively, since the former
have both the truth value “true” and the latter have both the truth value “false” in M.
However, if we identify ¢ with ¢ : true, then the equation ¢ = (c : true) holds in the
world, and (RP) together with the truth conditions force that ¢ < c is also satisfied
in the world. But then d must be true too, since we require that the world satisfies
d=(c <o).

A further development of the here-presented constructions, that is, a model the-
ory of €;-Logic, seems to be an interesting task for future studies. Another aim
is the elaboration of a sound and complete calculus. Finally, the extension of this
quantifier-free version of €; to an intensional intuitionistic logic with first-order
quantification over statements is a further interesting challenge.

Notes

1. By reflexive languages we mean, roughly speaking, languages where all formulas are
terms; that is, there is no distinction between terms and formulas.

2. Notice that we cannot write “p = y is true whenever ¢ < y is true.” ¢ < y may be
true but ¢, y may have no truth values in the given world.

3. Note that we cannot define TRUEE := TRUE / E*. Consider, for instance, ¢ = (c : true)
€ FALSE. We must have (¢ = (c : true))£ € TrRUEE.
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