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Decomposable Ultrafilters and Possible Cofinalities

Paolo Lipparini

Abstract We use Shelah’s theory of possible cofinalities in order to solve some
problems about ultrafilters. Theorem: Suppose that λ is a singular cardinal,
λ′ < λ, and the ultrafilter D is κ-decomposable for all regular cardinals κ with
λ′ < κ < λ. Then D is either λ-decomposable or λ+-decomposable. Corollary:
If λ is a singular cardinal, then an ultrafilter is (λ, λ)-regular if and only if it
is either cf λ-decomposable or λ+-decomposable. We also give applications to
topological spaces and to abstract logics.

Theorem 1 Suppose that λ is a singular cardinal, λ′ < λ, and the ultrafilter D
is κ-decomposable for all regular cardinals κ with λ′ < κ < λ. Then D is either
λ-decomposable or λ+-decomposable.

Corollary 2 If λ is a singular cardinal, then an ultrafilter is (λ, λ)-regular if and
only if it is either cf λ-decomposable or λ+-decomposable.

If F is a family of subsets of some set I and λ is an infinite cardinal, a λ-
decomposition for F is a function f : I → λ such that whenever X ⊆ λ and
|X | < λ then {i ∈ I | f (i) ∈ X} 6∈ F . The family F is λ-decomposable if
and only if there is a λ-decomposition for F . If D is an ultrafilter (that is, a
maximal proper filter) let us define the decomposability spectrum K D of D by
K D = {λ ≥ ω|D is λ-decomposable}.

The question of the possible values the spectrum K D may take is particularly
intriguing. Even the old problem from Prikry [14] and Silver [17] of characterizing
those cardinals µ for which there is an ultrafilter D such that K D = {ω, µ} is not yet
completely solved (Sheard [15], p. 1007).

The case when K D is infinite is even more involved. Prikry studied the situation
in which λ is limit and K D ∩ λ is unbounded in λ; he found some assumptions
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which imply that λ ∈ K D . This is not always the case; if µ is strongly compact
and cf λ < µ < λ, then there is an ultrafilter D such that K D ∩ λ is unbounded in
λ, and D is not λ-decomposable. If we are in the above situation, D is necessarily
λ+-decomposable (by Solovay [18], Lemma 3, and the proof of [14], Proposition 2).

The above examples suggest the problem (implicit in [14]) whether K D ∩ λ un-
bounded in λ implies that either λ ∈ K D or λ+

∈ K D . In general, the problem is still
open; here we solve it affirmatively in the particular case when there is λ′ < λ such
that K D contains all regular cardinals in the interval [λ′, λ). This is sufficient for all
applications we know of; see Corollaries 2, 7, 8, and 9 and Theorem 10.

We briefly review some known results on K D . If κ is regular and κ+
∈ K D ,

then κ ∈ K D . If κ ∈ K D is singular, then cf κ ∈ K D . Results from Donder [4]
imply that if there is no inner model with a measurable cardinal then K D is always
an interval with minimum ω. On the other hand, it is trivial that K D = {µ} if
and only if µ is either ω or a measurable cardinal. If a measurable cardinal µ is
made singular by Prikry forcing, then in the resulting model we have an ultrafilter
D such that K D = {ω, µ}. Further comments and constraints on K D are given in
Lipparini [12] and [9]. Apparently the problem of determining which sets of cardi-
nals can be represented as K F = {λ ≥ ω|F is λ-decomposable} for a filter F has not
been studied.

If (λ j ) j∈J are regular cardinals, the cofinality cf
∏

j∈J λ j of the product
∏

j∈J λ j

is the smallest cardinality of a set G ⊆
∏

j∈J λ j having the property that for every
f ∈

∏
j∈J λ j there is g ∈ G such that f ( j) ≤ g( j) for all j ∈ J . We shall state

our results in a quite general form, involving arbitrary filters rather than ultrafilters.
In what follows, the reader interested in ultrafilters only can always assume that F is
an ultrafilter.

Proposition 3 If (λ j ) j∈J are infinite regular cardinals, µ = cf
∏

j∈J λ j , and the
filter F is λ j -decomposable for all j ∈ J , then F is µ′-decomposable for some µ′

with sup j∈J λ j ≤ µ′
≤ µ.

Proof Let F be over I , and let (gα)α∈µ witness µ = cf
∏

j∈J λ j . For every
j ∈ J , let f ( j, −) : I → λ j be a λ j -decomposition for F . For any fixed i ∈ I ,
f (−, i) ∈

∏
j∈J λ j ; thus there is α(i) ∈ µ such that f ( j, i) ≤ gα(i)( j) for all j ∈ J .

Let X be a subset of µ with minimal cardinality with respect to the property that
Y = {i ∈ I |α(i) ∈ X} ∈ F . Let µ′

= |X |. Thus, whenever X ′
⊆ µ and |X ′

| < µ′,
we have Y ′

= {i ∈ I |α(i) ∈ X ′
} 6∈ F . Define h(i) = α(i) for i ∈ Y , and h(i) = 0

for i 6∈ Y . Thus, h : I → X ∪ {0}.
If |X ′

| < µ′, then {i ∈ I |h(i) ∈ X ′
} ⊆ Y ′

∪ (I \ Y ) 6∈ F (otherwise, since F is
a filter, Y ′

⊇ Y ∩ Y ′
= Y ∩ (Y ′

∪ (I \ Y )) ∈ F , contradiction). This shows that,
modulo a bijection from X ∪ {0} onto µ′, h is a µ′-decomposition for F . Trivially,
µ′

≤ µ.
Hence, it remains to show that sup j∈J λ j ≤ µ′. Suppose to the contrary that

µ′ < λ j̄ for some j̄ ∈ J . Then |{gα(i)( j̄)|i ∈ Y }| ≤ |{α(i)|α(i) ∈ X}| ≤

|X | = µ′ < λ j̄ . Since λ j̄ is regular, we have that β = supi∈Y gα(i)( j̄) < λ j̄ .
Hence, if i ∈ Y , then f ( j̄, i) ≤ gα(i)( j̄) ≤ β < λ j̄ . Thus, |[0, β]| < λ j̄ , but
{i ∈ I | f ( j̄, i) ∈ [0, β]} ⊇ Y ∈ F , and this contradicts the assumption that f ( j̄, −)
is a λ j̄ decomposition for F . �
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Proposition 3 has not the most general form: we have results dealing with the cofi-
nality µ of reduced products cf

∏
E λ j , where E is a filter on J . We shall not need

this more general version here.
Recall from Shelah [16] that if a is a set of regular cardinals, then pcf a is the set

of regular cardinals which can be obtained as cf
∏

E a, for some ultrafilter E on a.

Corollary 4 If a is a set of infinite regular cardinals, |a|
+ < min a, and the filter

F is λ-decomposable for all λ ∈ a, then F is µ′-decomposable for some µ′ with
sup a ≤ µ′

≤ max pcf a.

Proof By [16], II, Lemma 3.1, if |a|
+ < min a, then max pcf a = cf

∏
λ∈a λ; thus

the conclusion is immediate from Proposition 3. �

Recall that an ultrafilter D is (µ, λ)-regular if and only if there is a family of λ mem-
bers of D such that the intersection of any µ members of the family is empty. We list
below the properties of decomposability and regularity we shall need. Much more is
known; see Deiser and Donder [3], Foreman [6], and Woodin [19], pp. 427–31, for
recent results. See Lipparini [11] and [9] for more references.

Properties 5

(a) Every λ-decomposable ultrafilter is cf λ-decomposable.
(b) Every cf λ-decomposable ultrafilter is (λ, λ)-regular.
(c) If µ′

≥ µ and λ′
≤ λ, then every (µ, λ)-regular ultrafilter is (µ′, λ′)-regular.

(d) If λ is singular, D is a λ+-decomposable ultrafilter, and D is not cf λ-
decomposable, then D is (λ′, λ+)-regular for some λ′ < λ. (Cudnovskii and
Cudnovskii [2], Theorem 1; Kunen and Prikry [8], Theorem 2.1)

(e) If λ is singular, then every λ+-decomposable ultrafilter is (λ, λ+)-regular.
(Kanamori [7], Corollary 2.4)

(f) If λ is singular, then every (λ, λ)-regular ultrafilter is either cf λ-decomposable
or (λ′, λ)-regular for some λ′ < λ. (Lipparini [10], Corollary 1.4)

(g) If λ is regular, then an ultrafilter is λ-decomposable if and only if it is (λ, λ)-
regular.

Theorem 6 Suppose that λ is a singular cardinal, F is a filter, and either

(a) there is λ′ < λ such that F is κ-decomposable for all regular cardinals κ
with λ′ < κ < λ, or

(b) cf λ > ω and S = {κ < λ|F is κ+-decomposable} is stationary in λ.

Then F is either λ-decomposable or λ+-decomposable.
If F = D is an ultrafilter, then D is (λ, λ)-regular. Moreover, D is either (i)

λ-decomposable or (ii) (λ′, λ+)-regular for some λ′ < λ or (iii) cf λ-decomposable
and (λ, λ+)-regular.

Proof If cf λ = ν > ω, then, by [16], II, Claim 2.1, there is a sequence (λα)α∈ν

closed and unbounded in λ and such that, letting a = {λ+
α |α ∈ ν}, we have

λ+
= max pcf a. If cf λ = ω, then we have λ+

= max pcf a for some a of order type
ω unbounded in λ as a consequence of [16], II, Theorem 1.5. (Since a has order type
ω, any ultrafilter over a is either principal or extends the dual of the ideal of bounded
subsets of a.)
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Letting b = a ∩ [λ′, λ) in case (a) and b = a ∩ {κ+
|κ ∈ S} in case (b), we still

have max pcf b = λ+, because b is unbounded in λ, hence max pcf b ≥ λ+, and
because max pcf b ≤ max pcf a = λ+, since b ⊆ a.

Assume, without loss of generality, that λ′ > (cf λ)+ in (a) and that inf S > (cf λ)+

in (b). Since |b| ≤ |a| = cf λ, then |b|
+ < min b; hence Corollary 4 with b in place

of a implies that F is either λ-decomposable or λ+-decomposable. The last state-
ments follow from Properties 5(a) – (e). �

Corollary 7 If λ is a singular cardinal and the ultrafilter D is not cf λ-decompos-
able, then the following conditions are equivalent:

(a) There is λ′ < λ such that D is κ-decomposable for all regular cardinals κ
with λ′ < κ < λ.

(a′) (Only in case cf λ > ω) {κ < λ|D is κ+-decomposable} is stationary in λ.
(b) D is λ+-decomposable.
(c) There is λ′ < λ such that D is (λ′, λ+)-regular.
(d) D is (λ, λ)-regular.
(e) There is λ′ < λ such that D is (λ′, λ)-regular.
(f) There is λ′ < λ such that D is (λ′′, λ′′)-regular for every λ′′ with λ′ < λ′′ < λ.

Proof (a) ⇒ (b) and (a′) ⇒ (b) are immediate from Theorem 6 and Property 5(a).
In case cf λ > ω, (a) ⇒ (a′) is trivial.

(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a) are given, respectively, by Properties 5(d),
(c), (f), (c), (g). �

Proof of Corollary 2 The proof is immediate from Corollary 7(d) ⇒ (b) and
Properties 5(b) – (d). �

A topological space is [µ, λ]-compact if and only if every open cover by λ many sets
has a subcover by < µ many sets. A family F of topological spaces is productively
[µ, λ]-compact if and only if every (Tychonoff) product of members of F (allowing
repetitions) is [µ, λ]-compact.

Corollary 8 If λ is a singular cardinal, then a family of topological spaces is pro-
ductively [λ, λ]-compact if and only if it is either productively [cf λ, cf λ]-compact
or productively [λ+, λ+

]-compact.

Proof Caicedo [1], Theorem 1.7, proved that, for every infinite cardinals µ and
λ, a family F of topological spaces is productively [µ, λ]-compact if and only if
there exists a (µ, λ)-regular ultrafilter D such that every member of F is D-compact
(see [1] for the definition and references). The corollary is then immediate from
Corollary 2, using Property 5(g). �

Henceforth, by a logic, we mean a regular logic in the sense of Ebbinghaus [5]. Typ-
ical examples of regular logics are infinitary logics, or extensions of first-order logic
obtained by adding new quantifiers, for example, cardinality quantifiers asserting
“there are at least ωα xs such that . . . .”

A logic L is [λ, µ]-compact if and only if for every pair of sets 0 and 6 of
sentences of L , if |6| ≤ λ and if 0 ∪ 6′ has a model for every 6′

⊆ 6 with
|6| < µ, then 0 ∪ 6 has a model (see [1] and Makowsky [13] for some history and
further comments).
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Corollary 9 If λ is a singular cardinal, then a logic is [λ, λ]-compact if and only if
it is either [cf λ, cf λ]-compact or [λ+, λ+

]-compact.

Proof Makowski and Shelah defined what it means for an ultrafilter to be related to
a logic and showed that a logic L is [λ, µ]-compact if and only if there exists some
(µ, λ)-regular ultrafilter related to L (see [13], Theorem 1.4.4; notice that the order
of the parameters is reversed in the definition of (λ, µ)-regularity as given by [13]).
The corollary is then immediate from Corollary 2 and Property 5(g). �

Theorem 10 Suppose that (λi )i∈I and (µ j ) j∈J are sets of infinite cardinals. Then
the following are equivalent:

(i) for every i ∈ I there is a (λi , λi )-regular ultrafilter which for no j ∈ J is
(µ j , µ j )-regular;

(ii) there is a logic which is [λi , λi ]-compact for every i ∈ I and which for no
j ∈ J is [µ j , µ j ]-compact;

(iii) for every i ∈ I there is a [λi , λi ]-compact logic which for no j ∈ J is
[µ j , µ j ]-compact.

The logics in (ii) and (iii) can be chosen to be generated by at most 2 · |J | cardinality
quantifiers (at most |J | cardinality quantifiers if all µj s are regular).

Proof In the case when all the µj s are regular, the theorem is proved in [10], Theo-
rem 4.1. The general case follows from the above particular case by applying Corol-
laries 2 and 9. �
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