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DILOGARITHM IDENTITIES FOR CONFORMAL FIELD
THEORIES AND CLUSTER ALGEBRAS:

SIMPLY LACED CASE

TOMOKI NAKANISHI

Abstract. The dilogarithm identities for the central charges of conformal field
theories of simply laced type were conjectured by Bazhanov, Kirillov, and

Reshetikhin. Their functional generalizations were conjectured by Gliozzi and

Tateo. They have been partly proved by various authors. We prove these iden-
tities in full generality for any pair of Dynkin diagrams of simply laced type
based on the cluster algebra formulation of the Y-systems.

§1. Introduction

1.1. Dilogarithm identities
Let L(x) be the Rogers dilogarithm function (see [L], [K2], [Zag2], [N]):

(1.1) L(x) = − 1
2

∫ x

0

{ log(1 − y)
y

+
log y

1 − y

}
dy (0 ≤ x ≤ 1).

It is well known that the following properties hold (0 ≤ x, y ≤ 1):

L(0) = 0, L(1) =
π2

6
,(1.2)

L(x) + L(1 − x) =
π2

6
,(1.3)

L(x) + L(y) + L(1 − xy) + L
( 1 − x

1 − xy

)
+ L

( 1 − y

1 − xy

)
=

π2

2
.(1.4)

In the series of works by Bazhanov, Kirillov, and Reshetikhin ([KR1],
[BR1], [KR2], [K1], [BR2]), the authors reached a remarkable conjecture on
identities expressing the central charges of conformal field theories in terms
of L(x) and partly established it. Let us concentrate on the identities in the
simply laced case here.
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Let Xr be any simply laced Dynkin diagram of finite type with rank r,
and let I be the index set of Xr. Let � ≥ 2 be any integer. For a family
of positive real numbers {Y

(a)
m | a ∈ I; 1 ≤ m ≤ � − 1}, consider a system of

algebraic relations

(1.5) (Y (a)
m )2 =

∏
b:b∼a(1 + Y

(b)
m )

(1 + Y
(a)
m−1

−1)(1 + Y
(a)
m+1

−1)
,

where b ∼ a means that b is adjacent to a in Xr, and Y
(a)
0

−1 = Y
(a)
�

−1 = 0
if they appear in the right-hand sides.

Theorem 1.1 (see [NK], [Zag2]). There exists a unique positive real solu-
tion of (1.5).

Conjecture 1.2 (dilogarithm identities (see [K1], [BR2])). Suppose that
a family of positive real numbers {Y

(a)
m | a ∈ I; 1 ≤ m ≤ � − 1} satisfies (1.5).

Then, we have the identities

(1.6)
6
π2

∑
a∈I

�−1∑
m=1

L
( Y

(a)
m

1 + Y
(a)
m

)
=

�dimg

h + �
− r,

where h and g are the Coxeter number and the simple Lie algebra of type Xr,
respectively.

Remark 1.3. The conjectures in [K1] and [BR2] are not exactly the same.
This is the version in [BR2, (4.21), (4.22), (5.3)] with the identification of fa

j

therein with Y
(a)
j /(1 + Y

(a)
j ) here. The version in [K1] also concerns the

construction of the solution of (1.5). We do not touch this issue here, since
it is regarded as an independent problem in the framework of the present
paper.

For Xr = Ar, Kirillov [K1] gave the explicit expression of the solution of
(1.5) and proved the corresponding identity (1.6) by the analytic method.

Due to the well-known formula dimg = r(h + 1), the right-hand side of
(1.6) is equal to the number

(1.7)
(� − 1)rh

h + �
.

It is already remarkable that the left-hand side of (1.6) is a rational number.
It is much more remarkable that the rational number of the first term in
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the right-hand side of (1.6) is the central charge of the Wess-Zumino-Witten
conformal field theory (see [KnZ], [GW]) of type Xr with level �. (This is one
of the reasons that the integer � is called the level.) The rational number in
the right-hand side of (1.6) itself is also the central charge of the parafermion
conformal field theory of type Xr with level � (see [FZ], [G]). The identity
(1.6) is crucial to establish the connection between conformal field theories
and various types of nonconformal integrable models in various limits.

Example 1.4 ([KR1]). Consider the case Xr = A1 and any �, which is
equivalent to the case Xr = A�−1 and � = 2 by the level-rank duality. Then,
one has a solution of (1.5),

(1.8) Y (1)
m =

sin2(π/(� + 2))
sin(mπ/(� + 2)) sin((m + 2)π/(� + 2))

,

and the corresponding identity (1.6) reads

(1.9)
6
π2

�−1∑
m=1

L
( sin2(π/(� + 2))

sin2((m + 1)π/(� + 2))

)
=

3�
2 + �

− 1.

This identity has been known and studied by various authors from various
points of view (see, e.g., [L], [RS], [KR1], [NRT], [DS]).

1.2. Functional dilogarithm identities
The system (1.5) admits an affinization called the Y-system introduced by

Zamolodchikov [Zam], Kuniba and Nakanishi [KuN], and Ravanini, Tateo,
and Valleriani [RTV]. Here, we consider the version in [RTV]. Let Xr and
X ′

r′ be a pair of simply laced Dynkin diagrams of finite type. Let I and
I ′ be the index sets of Xr and X ′

r′ , respectively. For a family of variables
{Yii′ (u) | i ∈ I, i′ ∈ I ′, u ∈ Z}, the Y-system Y(Xr,X

′
r′ ) associated with a pair

(Xr,X
′
r′ ) is a system of the algebraic/functional relations

Yii′ (u − 1)Yii′ (u + 1) =

∏
j:j∼i(1 + Yji′ (u))∏

j′:j′ ∼i′ (1 + Yij′ (u)−1)
,(1.10)

where j ∼ i means that j is adjacent to i in Xr, while j′ ∼ i′ means that j′ is
adjacent to i′ in X ′

r′ . Two systems Y(Xr,X
′
r′ ) and Y(X ′

r′ ,Xr) are equivalent
to each other by the correspondence Yii′ (u) ↔ Yi′i(u)−1. This is a general-
ization of the level-rank duality.

Ravanini, Tateo, and Valleriani [RTV] gave the periodicity conjecture,
which generalized the one by [Zam] in the case Xr = A1 or X ′

r′ = A1.
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Conjecture 1.5 (periodicity [RTV, Section 6]). Suppose that a family
of positive real numbers {Yii′ (u) | i ∈ I, i′ ∈ I ′, u ∈ Z} satisfies Y(Xr,X

′
r′ ).

Then, we have the periodicity

(1.11) Yii′
(
u + 2(h + h′)

)
= Yii′ (u),

where h and h′ are the Coxeter numbers of types Xr and X ′
r′ , respectively.

Conjecture 1.5 was proved for (Xr,X
′
r′ ) = (Ar,A1) by Gliozzi and Tateo

[GT2] and Frenkel and Szenes [FS], for (Xr,X
′
r′ ) = (any,A1) by Fomin and

Zelevinsky [FZ3], and for (Xr,X
′
r′ ) = (Ar,Ar′ ) by Volkov [V] and Szenes [S].

More recently, it was proved in full generality by Keller ([Ke1], [Ke2]).
Furthermore, Gliozzi and Tateo [GT1] significantly generalized Conjec-

ture 1.2 as follows.

Conjecture 1.6 (functional dilogarithm identities (see [GT1])). Suppose
that a family of positive real numbers {Yaa′ (u) | a ∈ I, a′ ∈ I ′, u ∈ Z} satisfies
Y(Xr,X

′
r′ ). Then, we have the identities

6
π2

∑
(i,i′)∈I×I′

2(h+h′)−1∑
u=0

L
( Yii′ (u)

1 + Yii′ (u)

)
= 2hrr′,(1.12)

6
π2

∑
(i,i′)∈I×I′

2(h+h′)−1∑
u=0

L
( 1

1 + Yii′ (u)

)
= 2h′rr′.(1.13)

The identities (1.12) and (1.13) are equivalent due to (1.3).
Conjecture 1.6 implies Conjecture 1.2; namely, set X ′

r′ = A�−1, and take
a constant solution Yii′ = Yii′ (u) of Y(Xr,A�−1) as a function of u. Then, one
obtains (1.6) from (1.12) using h′ = �, r′ = � − 1, and (1.7). Conjecture 1.6
was proved for (Xr,X

′
r′ ) = (Ar,A1) by Frenkel and Szenes [FS], and for

(Xr,X
′
r′ ) = (any,A1) by Chapoton [C].

Example 1.7 (see [GT1]). (i) In the simplest case (Xr,X
′
r′ ) = (A1,A1),

the identity (1.12) is equivalent to (1.3).
(ii) In the next simplest case (Xr,X

′
r′ ) = (A2,A1), the identity (1.12) is

equivalent to the 5-term relation (1.4).

Conjecture 1.6 tells us that the matters that are important in (1.6) are
not the values of Y

(a)
m themselves but rather the relations (1.10) that they

satisfy. We will see below that the algebraic property of the relations (1.10) is
efficiently extracted by cluster algebras introduced by Fomin and Zelevinsky
([FZ1], [FZ2], [FZ4]).
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1.3. Main result
Among several preceding results and methods concerning Conjectures 1.5

and 1.6, we list the ones which are particularly relevant to the present work.

(i) Frenkel and Szenes [FS] proved Conjecture 1.6 for (Xr,X
′
r′ ) = (Ar,A1)

by showing the constancy property of the left-hand side of (1.12).
(ii) Caracciolo, Gliozzi, and Tateo [CGT] studied the constancy property

for any pair (Xr,X
′
r′ ). (But they did not complete the proof of Con-

jecture 1.6.)
(iii) Fomin and Zelevinsky [FZ3] proved Conjecture 1.5 for (Xr,X

′
r′ ) =

(any,A1) by using the “cluster algebra-like” formulation of Y-systems
and the root systems.

(iv) Chapoton [C] proved Conjecture 1.6 for (Xr,X
′
r′ ) = (any,A1) by com-

bining the constancy property of (i) and the result of (iii).
(v) Fomin and Zelevinsky [FZ4] more manifestly integrated the Y-system

Y(Xr,A1) in the framework of cluster algebras with coefficients, where
the Y-system is identified with a system of relations among coefficients
of the cluster algebras of type Xr.

(vi) Keller ([Ke1], [Ke2]) proved Conjecture 1.5 in full generality for any
pair (Xr,X

′
r′ ) of simply laced type by using cluster algebras with coef-

ficients of (v) together with their categorifications by the cluster cate-
gories.

We also note that the connection between the dilogarithm and cluster
algebras was studied earlier by Fock and Goncharov [FG].

By combining these results, methods, and ideas, we prove Conjecture 1.6.

Theorem 1.8. Conjecture 1.6 is true for any pair (Xr,X
′
r′ ) of simply

laced type.

Corollary 1.9. Conjecture 1.2 is true for any Xr of simply laced type
and any � ≥ 2.

Remark 1.10. The dilogarithm identities of nonsimply laced type by
Kirillov [K1, (7)], properly corrected by Kuniba [Ku, (A.1a), (A.1c)], are
equally important. We stress that they are different from another version
of the identities of nonsimply laced type obtained by the folding of simply
laced one (see [C]). Though the situation is more complicated than the
simply laced case, a similar approach to the one here is applicable to prove
the identities (see [IIKKN1], [IIKKN2]).



28 T. NAKANISHI

The organization of the paper is the following. In Section 2, we refor-
mulate Conjecture 1.6 in terms of cluster algebras. In Section 3, we study
the tropical version of the Y-system in the cluster algebra setting. Proposi-
tion 3.2 is a key observation throughout the paper. In Section 4, we prove
Theorem 2.8, which is equivalent to Theorem 1.8, by applying the method
of [FS] with a mixture of the ideas by [CGT] and [C].

§2. Reformulation by cluster algebras

As the first step, we reformulate Theorem 1.8 in terms of cluster algebras.

2.1. Cluster algebras
Here we collect some basic definitions for cluster algebras (see [FZ1],

[FZ2], [FZ4]) to fix the convention and notation, mainly following [FZ4].
(i) Matrix mutation. An integer matrix B = (Bij)i,j∈I is skew-

symmetrizable if there is a diagonal matrix D = diag(di)i∈I with di ∈ N

such that DB is skew-symmetric. For a skew-symmetrizable matrix B and
k ∈ I , another matrix B′ = μk(B), called the mutation of B at k, is defined
by

B′
ij =

{
−Bij i = k or j = k,

Bij + 1
2(|Bik |Bkj + Bik |Bkj |) otherwise.

(2.1)

The matrix μk(B) is also skew-symmetrizable.
(ii) Exchange relation of coefficient tuple. A semifield (P, ⊕) is an abelian

multiplicative group P endowed with a binary operation of addition ⊕ which
is commutative, associative, and distributive with respect to the multipli-
cation in P (see [FZ4], [HW]). For an I-tuple y = (yi)i∈I , yi ∈ P and k ∈ I ,
another I-tuple y′ is defined by the exchange relation

y′
i =

⎧⎪⎨
⎪⎩

yk
−1 i = k,

yi

( yk
1⊕yk

)Bki i �= k, Bki ≥ 0,

yi(1 ⊕ yk)−Bki i �= k, Bki ≤ 0.

(2.2)

(iii) Exchange relation of cluster. Let QP be the quotient field of the group
ring ZP of P, and let QP(u) be the rational function field of algebraically
independent variables u = (ui)i∈I over QP.
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For an I-tuple x = (xi)i∈I which is a free generating set of QP(u) and
k ∈ I , another I-tuple x′ is defined by the exchange relation

x′
i =

⎧⎨
⎩

xk i �= k,

yk
∏

j:Bjk>0 x
Bjk
j +

∏
j:Bjk<0 x

−Bjk
j

(1⊕yk)xk
i = k.

(2.3)

(iv) Seed mutation. For the above triplet (B,x, y), called a seed, the muta-
tion μk(B,x, y) = (B′, x′, y′) at k is defined by combining (i)–(iii).

(v) Cluster algebra. Fix a semifield P and a seed (initial seed) (B,x, y),
where x = (xi)i∈I are algebraically independent variables over QP. Starting
from (B,x, y), iterate mutations and collect all the seeds (B′, x′, y′). We call
y′ and y′

i a coefficient tuple and a coefficient, respectively. We call x′ and
x′

i ∈ QP(x) a cluster and a cluster variable, respectively. The cluster algebra
A(B,x, y) with coefficients in P is a ZP-subalgebra of the rational function
field QP(x) generated by all the cluster variables.

For further necessary definitions and information for cluster algebras, see
[FZ4].

2.2. Matrix B(Xr,X
′
r′ )

For a Cartan matrix C = (Cij)i,j∈I of finite type, we say that the decom-
position I = I+ 	 I− is bipartite if

(2.4) Cij < 0, then (i, j) ∈ I+ × I− or (i, j) ∈ I− × I+.

From now on, we assume that Xr and X ′
r′ are a pair of simply laced

Dynkin diagrams of finite type and that C = (Cij)i,j∈I and C ′ = (Ci′j′ )i′,j′ ∈I

are the Cartan matrices of Xr and X ′
r′ with fixed bipartite decompositions

I = I+ 	 I− and I ′ = I ′
+ 	 I ′

−, respectively. Set I = I × I ′. For i = (i, i′) ∈ I,
let us write i : (++) if (i, i′) ∈ I+ × I ′

+, and so forth. Define the matrix
B = B(Xr,X

′
r′ ) = (Bij)i,j∈I by

Bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Cijδi′j′ i : (−+), j : (++) or i : (+−), j : (−−),

Cijδi′j′ i : (++), j : (−+) or i : (−−), j : (+−),

−δijC
′
i′j′ i : (++), j : (+−) or i : (−−), j : (−+),

δijC
′
i′j′ i : (+−), j : (++) or i : (−+), j : (−−),

0 otherwise.

(2.5)
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The rule (2.5) is visualized in the following diagram:

−C

(+−) → (−−)
−C′ ↑ ↓ −C′

(++) ← (−+)
−C

(2.6)

The matrix B corresponds to the square product of alternating quivers by
[Ke1].

Lemma 2.1. The matrix B = B(Xr,X
′
r′ ) in (2.5) is skew-symmetric and

satisfies the following conditions. Let I = I+ 	 I− with I+ := (I+ × I ′
+) 	

(I− × I ′
−) and I− := (I+ × I ′

−) 	 (I− × I ′
+). Then,

(2.7) if Bij �= 0, then (i, j) ∈ I+ × I− or (i, j) ∈ I− × I+.

Furthermore, for composed mutations μ+ =
∏

i∈I+
μi and μ− =

∏
i∈I− μi,

(2.8) μ+(B) = μ−(B) = −B.

Proof. They are easily seen in the quiver picture in [Ke1, Section 8].

Note that μ±(B) does not depend on the order of the product due to (2.7).

2.3. Cluster algebra and Y-system
For the matrix B = B(Xr,X

′
r′ ) in (2.5), let A(B,x, y) be the cluster

algebra with coefficients in the universal semifield Qsf(y), where (B,x, y)
is the initial seed (see [FZ4]). (Here we use the symbol + instead of ⊕ in
Qsf(y), since it is the ordinary addition of subtraction-free expressions of
rational functions of y.)

To our purpose, it is natural to introduce not only the “ring of cluster
variables” but also the “group of coefficients.”

Definition 2.2. The coefficient group G(B,y) associated with A(B,x, y)
is the multiplicative subgroup of the semifield Qsf(y) generated by all the
coefficients y′

i of A(B,x, y) together with 1 + y′
i.

We set x(0) = x and y(0) = y, and we define clusters x(u) = (xi(u))i∈I

(u ∈ Z) and coefficient tuples y(u) = (yi(u))i∈I (u ∈ Z) by the sequence of
mutations

· · · μ−←→
(
B,x(0), y(0)

) μ+←→
(

−B,x(1), y(1)
)

(2.9)
μ−←→

(
B,x(2), y(2)

) μ+←→ · · · .
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Definition 2.3. The Y-subgroup GY (B,y) of G(B,y) associated with the
sequence (2.9) is the multiplicative subgroup of G(B,y) generated by yi(u)
and 1 + yi(u) (i ∈ I, u ∈ Z).

Let ε : I → {+, −} be the sign function defined by ε(i) = ε for i ∈ Iε. For
(i, u) ∈ I × Z, we set the “parity conditions” P+ and P− by

(2.10) P± : ε(i)(−1)u = ±,

where we identify + and − with 1 and −1, respectively. We write (i, u) : Pε

if (i, u) satisfies the condition Pε.

Lemma 2.4 ([KuNS, Lemma 6.18]). (1) yi(u) = yi(u ± 1)−1 for
(i, u) : P±.

(2) The family y± = {yi(u) | (i, u) : P± } satisfies the Y-system Y(Xr,X
′
r′ )

in GY (B,y) by replacing Yi(u) in Y(Xr,X
′
r′ ) with yi(u)±1.

Proof. This follows from the exchange relation (2.2).

Definition 2.5. Let Y(Xr,X
′
r′ ) be the semifield with generators Yi(u)

(i ∈ I, u ∈ Z) and the relations Y(Xr,X
′
r′ ). Let Y◦(Xr,X

′
r′ ) be the multi-

plicative subgroup of Y(Xr,X
′
r′ ) generated by Yi(u), 1+Yi(u) (i ∈ I, u ∈ Z).

(Here we use the symbol + instead of ⊕ for simplicity.)

Define Y◦(Xr,X
′
r′ )ε (ε = ±) to be the subgroup of Y◦(Xr,X

′
r′ ) generated

by those Yi(u), 1 + Yi(u) with (i, u) : Pε. Then, we have Y◦(Xr,X
′
r′ )+ �

Y◦(Xr,X
′
r′ )− by Yi(u) �→ Yi(u + 1) and

(2.11) Y◦(Xr,X
′
r′ ) � Y◦(Xr,X

′
r′ )+ × Y◦(Xr,X

′
r′ )−.

Proposition 2.6 ([KuNS, Theorem 6.19]). The group Y◦(Xr,X
′
r′ )± is

isomorphic to GY (B,y) by the correspondence Yi(u) �→ yi(u)±1, 1 +
Yi(u) �→ 1 + yi(u)±1 for (i, u) : P±.

In summary, the Laurent monomials in Yi(u) and 1+Yi(u) with (i, u) : P+

are embedded in the coefficient group G(B,y).

2.4. Reformulation of Theorem 1.8
We recall the periodicity theorem, originally conjectured by [RTV].

Theorem 2.7 ([Ke1, Theorem 8.2], [Ke2, Theorem 2.3]). In G(B,y), the
following relations hold.

(i) Periodicity: yi(u + 2(h + h′)) = yi(u).
(ii) Half-periodicity: yii′ (u + (h + h′)) = yω(i)ω′(i′)(u), where ω (resp., ω′)

is the Dynkin automorphism of Xr (resp., X ′
r′ ) for types Ar, Dr (r : odd),

or E6, and the identity otherwise.
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Proof. (i). This is due to [Ke1, Theorem 8.2] or [Ke2, Theorem 2.3].
(ii). This is obtained by combining [Ke1, Theorem 7.13] and the proof of
[IIKNS, Theorem 4.27].

Let R+ be the semifield of the positive real numbers by the usual mul-
tiplication and addition. By Proposition 2.6, Theorem 1.8 is equivalent to
the following.

Theorem 2.8. Let yi(u) ∈ Qsf(y) (i ∈ I, u ∈ Z) be as above. Let ϕ :
Qsf(y) → R+ be any semifield homomorphism. Then, the following identities
hold.

6
π2

∑
(i,u)∈S+

L
( ϕ(yi(u))

1 + ϕ(yi(u))

)
= hrr′,(2.12)

6
π2

∑
(i,u)∈S−

L
( ϕ(yi(u))

1 + ϕ(yi(u))

)
= h′rr′,(2.13)

where S± = {(i, u) | i ∈ I,0 ≤ u ≤ 2(h + h′) − 1, (i, u) : P± }. Also,

6
π2

∑
(i,u)∈H+

L
( ϕ(yi(u))

1 + ϕ(yi(u))

)
=

hrr′

2
,(2.14)

6
π2

∑
(i,u)∈H−

L
( ϕ(yi(u))

1 + ϕ(yi(u))

)
=

h′rr′

2
,(2.15)

where H± = {(i, u) | i ∈ I,0 ≤ u ≤ (h + h′) − 1, (i, u) : P± }.

The identities (2.12) and (2.13) are equivalent by Lemma 2.4. The iden-
tities (2.14) and (2.15) follow from (2.12) and (2.13) by the half-periodicity
in Theorem 2.7.

We are going to prove Theorem 2.8.

§3. Tropical Y-system

Let us have an interlude to establish a property of the tropical Y-system
(see [FZ4]) associated with the cluster algebra A(B,x, y) for B = B(Xr,X

′
r′ ).

Let B = (Bij)i,j∈I be a general skew-symmetrizable matrix. Let y be the
initial coefficient tuple of the cluster algebra A(B,x, y) with coefficients in
the universal semifield Qsf(y). The tropical semifield Trop(y) is an abelian
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multiplicative group freely generated by the elements yi (i ∈ I) with the
addition ⊕:

(3.1)
∏
i∈I

yai
i ⊕

∏
i∈I

ybi
i =

∏
i∈I

y
min(ai,bi)
i .

The image of f ∈ Qsf(y) by the natural projection Qsf(y) → Trop(y) is
denoted by [f ]T and called the tropical evaluation of f (see [FZ4]).

We say a (Laurent) monomial in y = (yi)ı∈I is positive if its exponents are
all nonnegative and at least one of them is positive. A negative monomial
is defined similarly.

Lemma 3.1. Suppose that y′ ′ is the coefficient tuple obtained from the
mutation of another coefficient tuple y′ at k. Then, for any i �= k, [y′ ′

i ]T =
[y′

i]T if one of the following conditions holds.
(i) Bki = 0.
(ii) Bki > 0, and [y′

k]T is negative.
(iii) Bki < 0, and [y′

k]T is positive.

Proof. This is an immediate consequence of the exchange relation (2.2).

Now we claim a key proposition in our proof of Theorem 2.8.

Proposition 3.2. For the cluster algebra A(B,x, y) for B = B(Xr,X
′
r′ ),

the following properties hold.
(i) The tropical evaluation [yi(u)]T of yi(u) (i ∈ I, u ∈ Z) is a positive or

negative monomial in y = y(0).
(ii) For 0 ≤ u ≤ h′ − 1 and (i, u) : P+, [yi(u)]T is a positive monomial.

For −h ≤ u ≤ −1 and (i, u) : P+, [yi(u)]T is a negative monomial.
(iii) Let N+ (resp., N−) be the number of the positive (resp., negative)

monomials [yi(u)]T ((i, u) ∈ S+), where S+ is the domain in Theorem 2.8.
Then,

(3.2) N+ = h′rr′, N− = hrr′.

The properties (i) and (iii) follow from (ii) by the half-periodicity in
Theorem 2.7. In the case X ′

r′ = A1 or Xr = A1, that is, the “level 2 case”
or its level-rank dual in the original context, Proposition 3.2 reduces to the
known one for the cluster algebra of finite type (see [FZ4, Proposition 10.7]).

Before giving a proof, it is instructive to observe some examples.



34 T. NAKANISHI

Example 3.3. Let Xr = A1, I+ = {1}, I− = ∅, and let X ′
r′ = A2, I ′

+ =
{1}, I ′

− = {2}. We have h = 2 and h′ = 3. We visualize the mutation matrix
B by a quiver in the correspondence

(3.3) i → j ⇐⇒ Bij = 1.

Set y1 := y11, and set y2 := y12. Then, [yi(u)]T for 0 ≤ u ≤ 5 is given as
follows:

�

y1

y2

y(0)

↔
μ+

�
y−1
1

y1y2

y(1)

↔
μ− �

y2

y−1
1 y−1

2

y(2)

↔
μ+

�
y−1
2

y−1
1

y(3)

↔
μ− �

y−1
2

y1

y(4)

↔
μ+

�
y2

y1

y(5)

Here, the framed variables are all the elements in the domain H+. Certainly,
we have N+/2 = 3 and N−/2 = 2, which agree with (3.2). Moreover, we
observe that the positive monomials occur consecutively for 0 ≤ u ≤ 2. This
is a consequence of [FZ4, Proposition 10.7]. In fact, they correspond to the
positive roots α1, α1 + α2, α2 of A2. We abbreviate the above diagram as
follows:

�

0
1

1
0

y(0)

↔
μ+

�
0
-1

1
1

y(1)

↔
μ− �

1
0

-1
-1

y(2)

↔
μ+

�
-1
0

0
-1

y(3)

↔
μ− �

-1
0

0
1

y(4)

↔
μ+

�
1
0

0
1

y(5)

Example 3.4. Let Xr = A3, I+ = {1,3}, I− = {2}, and let X ′
r′ = A1,

I ′
+ = {1}, I ′

− = ∅. We have h = 4 and h′ = 2. We consider mutations for
−6 ≤ u ≤ 0 by moving in the reverse direction of u. The result is abbreviated
in the following diagram:

0 0 1 � 0 1 0 � 1 0 0

y(−6)
0 0 -1 � 0 1 0 � -1 0 0

y(−5)
↔
μ+

0 0 -1 � 0 -1 0 � -1 0 0

y(−4)
↔
μ−

0 0 1 � -1-1-1 � 1 0 0

y(−3)
↔
μ+

-1-1 0 � 1 1 1 � 0 -1-1
y(−2)

↔
μ−

1 1 0 � 0 -1 0 � 0 1 1

y(−1)
↔
μ+

1 0 0 � 0 1 0 � 0 0 1

y(0)
↔
μ−
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Here, 110, for example, represents the monomial y11y21. The framed vari-
ables correspond to all the elements in the domain H+ modulo half-period
h + h′ = 6. Certainly, we have N+/2 = 3 and N−/2 = 6, which agree with
(3.2). We observe that the negative monomials occur consecutively for −4 ≤
u ≤ −1. Again, this is a consequence of [FZ4, Proposition 10.7], and they
correspond to the positive roots of A3.

Now we are ready to proceed to a “higher” level. The next example looks
like a toy example, but it completely clarifies why Proposition 3.2 holds.

Example 3.5. Let Xr = A3, I+ = {1,3}, I− = {2}, and let X ′
r′ = A2,

I ′
+ = {1}, I ′

− = {2}. We have h = 4 and h′ = 3. We consider mutations
for −4 ≤ u ≤ 3 by moving in both directions of u. The result is shown in
Figure 1. The framed variables correspond to all the elements in the domain
H+ modulo half-period h + h′ = 7, and

0 0 0
1 1 0,

for example, represents the monomial y11y12. Certainly, we have N+/2 =
9 and N−/2 = 12, which agree with (3.2). We observe that the positive
monomials occur consecutively for 0 ≤ u ≤ 2, while the negative monomials
do so for −4 ≤ u ≤ −1.

When we look at Figure 1 more closely, we find a remarkable factorization
property of the tropical Y-system, which does not occur in the nontropical
Y-system. First, examine the region 0 ≤ u ≤ 2. Then, the contents in the
left and right columns for y(u) mutate exactly in the same pattern as in
Example 3.3. So does the middle column with the other choice of bipartite
decomposition of I ′. In particular, there is no interaction in the horizontal
direction. This is because property (iii) in Lemma 3.1 is satisfied at any
mutation point k and any i horizontally adjacent to k. On the other hand,
in the region −4 ≤ u ≤ −1, the contents in the lower row mutate exactly
in the same pattern as in Example 3.4. So does the upper row with the
other choice of bipartite decomposition of I . Now, there is no interaction in
the vertical direction. Again, this is because property (iii) in Lemma 3.1 is
satisfied at any mutation point k and any i vertically adjacent to k. (Note
that (k, u) : P− for mutations in the reverse direction of u.)

Proof of Proposition 3.2. It is enough to prove (ii). We just repeat the
argument in Example 3.5 in a general manner. Let us recall the definition
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0 0 -1
0 0 0

�

� 0 -1 0

0 0 0

�

� -1 0 0

0 0 0

�
0 0 0

0 0 -1
� 0 0 0

0 -1 0
� 0 0 0

-1 0 0

y(−4)

0 -1-1
0 0 0

�

� 0 1 0

0 0 0

�

� -1-1 0

0 0 0

�
0 0 0

0 0 1
� 0 0 0

-1-1-1
� 0 0 0

1 0 0

y(−3)

↔
μ+

0 1 1
0 0 0

�

� -1-1-1
0 0 0

�

� 1 1 0
0 0 0

�
0 0 0
-1-1 0

� 0 0 0
1 1 1

� 0 0 0
0 -1-1

y(−2)

↔
μ−

-1 0 0
0 0 0

�

� 1 1 1
0 0 0

�

� 0 0 -1
0 0 0

�
0 0 0
1 1 0

� 0 0 0
0 -1 0

� 0 0 0
0 1 1

y(−1)

↔
μ+

1 0 0

0 0 0

�

� 0 1 0

0 0 0

�

� 0 0 1

0 0 0

�
0 0 0
1 0 0

� 0 0 0
0 1 0

� 0 0 0
0 0 1

y(0)

↔
μ−

1 0 0

1 0 0

�

� 0 -1 0

0 0 0

�

� 0 0 1

0 0 1

�
0 0 0
-1 0 0

� 0 1 0
0 1 0

� 0 0 0
0 0 -1

y(1)

↔
μ+

-1 0 0

-1 0 0

�

� 0 0 0

0 1 0

�

� 0 0 -1
0 0 -1

�
1 0 0

0 0 0
� 0 -1 0

0 -1 0
� 0 0 1

0 0 0

y(2)

↔
μ−

0 0 0

-1 0 0

�

� 0 0 0

0 -1 0

�

� 0 0 0

0 0 -1

�
-1 0 0

0 0 0
� 0 -1 0

0 0 0
� 0 0 -1

0 0 0

y(3)

↔
μ+

Figure 1: Tropical Y-system for Xr = A3 and X ′
r′ = A2

of the integer vector d(i, u) in [FZ4, Definition 10.2] (in our notation). Let
s1, . . . , sr be the simple reflections of the Weyl group of type Xr, and let

(3.4) t+ =
∏
i∈I+

si, t− =
∏
i∈I−

si.

Define the piecewise-linear analogue τ± of t± acting on the set Φ≥ −1 of all
the positive roots and the negative simple roots of Xr by

(3.5) τ±(α) =

{
−αi α = −αi, i ∈ I∓,

t±(α) otherwise.
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Then, d(i, u) is defined by

(3.6) d(i, u) =

{
(τ−τ+)u/2(−αi) i ∈ I+ and even u ≥ 0,

(τ−τ+)(u−1)/2τ−(−αi) i ∈ I− and odd u ≥ 0.

It is known by [FZ4, Proposition 9.3] that d(i, u) is a positive root of Xr for
1 ≤ u ≤ h. We naturally identify d(i, u) =

∑
k∈I d(i, u)kαk with the integer

vector (d(i, u)k)k∈I .
(1) The case 0 ≤ u ≤ h′ − 1. Let d(i′, u) = (d(i′, u)k′ )k′ ∈I′ be the integer

vector as above for X ′
r′ with I ′ = I ′

+ 	 I ′
−. Let d̃(i′, u) be the same vector

but for the opposite choice of the bipartite decomposition of I ′. Forget
temporarily all the arrows in the horizontal direction. Then, one has

[yii′ (u)]T =
∏

k′ ∈I′

y
d(ω′(i′),h′ −u)k′
ik′ , (i, u) : P+, i ∈ I+,

(3.7)
[yii′ (u)]T =

∏
k′ ∈I′

y
d̃(ω′(i′),h′ −u)k′
ik′ , (i, u) : P+, i ∈ I−,

by applying [FZ4, Proposition 10.7] in our convention. This remains true
even in the presence of the horizontal arrows (factorization property),
because of Lemma 3.1 and the positivity of vectors d(i′, u) and d̃(i′, u).

(2) The case −h ≤ u ≤ −1. We consider mutations in the reverse direction
of u at points (i, u) : P−. Let d(i, u) be the corresponding vector for Xr

with I = I+ 	 I−, and let d̃(i, u) be the one for the opposite choice of the
bipartite decomposition of I . Then, repeating the same argument, and also
using Lemma 2.4(1), we obtain

[yii′ (u)]T =
∏
k∈I

y
−d(ω(i),h+u+1)k

ki′ , (i, u) : P+, i′ ∈ I ′
−,

[yii′ (u)]T =
∏
k∈I

y
d(ω(i),h+u)k

ki′ , (i, u) : P−, i′ ∈ I ′
−,

(3.8)
[yii′ (u)]T =

∏
k∈I

y
−d̃(ω(i),h+u+1)k

ki′ , (i, u) : P+, i′ ∈ I ′
+,

[yii′ (u)]T =
∏
k∈I

y
d̃(ω(i),h+u)k

ki′ , (i, u) : P−, i′ ∈ I ′
+.

This completes the proof of Proposition 3.2.
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§4. Proof of Theorem 2.8

We prove Theorem 2.8 by applying the method of [FS] with a mixture of
ideas by [CGT] and [C].

The proof is divided into two steps. First, we prove that the left-hand
side of (2.12) is independent of a semifield homomorphism ϕ (constancy or
rigidity property). Next, we evaluate its value at the 0/∞ limit.

4.1. Constancy property
Let A be a multiplicative abelian group. The group A ⊗Z A is the additive

abelian group generated by g ⊗ h (g,h ∈ A) with relations

(4.1) (fg) ⊗ h = f ⊗ h + g ⊗ h, h ⊗ (fg) = h ⊗ f + h ⊗ g.

As a consequence, we also have the following relations:

1 ⊗ h = h ⊗ 1 = 0,(4.2)

f −1 ⊗ g = −f ⊗ g, g ⊗ f −1 = −g ⊗ f.(4.3)

Let S2A be the subgroup of A ⊗Z A generated by f ⊗ f (f ∈ A), and let∧2 A be the quotient of A ⊗Z A by S2A. In
∧2 A we use ∧ instead of ⊗.

According to a very general theorem by [FS, Proposition 1] (see also [B],
[Zag1]), the constancy property of the left-hand side of (2.12) follows from
the following fact.

Proposition 4.1. In
∧2

Qsf(y), we have

(4.4)
∑

(i,u)∈S+

yi(u) ∧
(
1 + yi(u)

)
= 0.

Motivated by [CGT] and [C], we use the F -polynomials of [FZ4] to prove
Proposition 4.1.

The F -polynomial Fi(u) ∈ Qsf(y) at (i, u) (i ∈ I, u ∈ Z) is defined by
the specialization of [xi(u)]T at xj = xj(0) = 1 (j ∈ I). (Caution: do not
make the tropical evaluation for the addition in QP(x)!) It is represented as
a polynomial in y with integer coefficients due to the Laurent phenomenon
(see [FZ4, Proposition 3.6]).
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For our matrix B = B(Xr,X
′
r′ ), it is convenient to define the incidence

matrices M = (Mij)i,j∈I and M ′ = (M ′
ij)i,j∈I as

(4.5) Mij =

{
1 i ∼ j, i′ = j′,

0 otherwise;
M ′

ij =

{
1 i = j, i′ ∼ j′,

0 otherwise.

Note that they are symmetric matrices.

Lemma 4.2. (i) For (i, u) : P+, the following relations hold in Qsf(y):

Fi(u) = Fi(u − 1),(4.6)

Fi(u − 1)Fi(u + 1) =
[ yi(u)
1 + yi(u)

]
T

∏
j∈I

Fj(u)Mji

(4.7)
+

[ 1
1 + yi(u)

]
T

∏
j∈I

Fj(u)M ′
ji ,

yi(u) = [yi(u)]T

∏
j∈I Fj(u)Mji∏
j∈I Fj(u)M ′

ji

.(4.8)

(ii) Periodicity: Fi(u + 2(h + h′)) = Fi(u).
(iii) Each polynomial Fi(u) has constant term 1.

Proof. (i). The first two relations follow from (2.3). The last one is due to
[FZ4, Proposition 3.13]. (ii). This was shown by [Ke1] and [Ke2]. (iii). For
u = 0, this is true by Fi(0) = 1. Then, the claim is shown by induction on u,
by using (4.6), (4.7), and Proposition 3.2(i) (see [FZ4, Proposition 5.6]).

Remark 4.3. Lemma 4.2(iii) is also true by [DWZ, Theorem 1.7]. Then,
Proposition 3.2(i) is a consequence of Lemma 4.2(iii) due to [FZ4, Proposi-
tion 5.6].

By (4.7) and (4.8), we also have, for (i, u) : P+,

(4.9) 1 + yi(u) = [1 + yi(u)]T
Fi(u − 1)Fi(u + 1)∏

j∈I Fj(u)M ′
ji

.

Now, we put (4.8) and (4.9) into (4.4) and expand it.
First,

(4.10)
∑

(i,u)∈S+

[yi(u)]T ∧ [1 + yi(u)]T = 0,
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since each monomial [yi(u)]T is either positive or negative by Proposi-
tion 3.2.

Second, the contributions from the terms involving only Fi(u) vanish due
to the symmetry argument of [CGT, Section 3]. For example,∑

(i,u)∈S+

∏
j∈I

Fj(u)Mji ∧ Fi(u − 1)Fi(u + 1)

(4.11)
=

∑
(i,u)∈S+

Fi(u − 1)Fi(u + 1) ∧
∏
j∈I

Fj(u)Mji

by changing the variables twice; therefore, it vanishes.
Third, the contributions from the remaining five terms cancel due to the

Y-system (1.10):∑
(i,u)∈S+

[yi(u)]T ∧ Fi(u − 1) =
∑

(i,u)∈S−

[yi(u + 1)]T ∧ Fi(u),(4.12)

∑
(i,u)∈S+

[yi(u)]T ∧ Fi(u + 1) =
∑

(i,u)∈S−

[yi(u − 1)]T ∧ Fi(u),(4.13)

−
∑

(i,u)∈S+

[yi(u)]T ∧
∏
j∈I

Fj(u)M ′
ji =

∑
(i,u)∈S−

∏
j∈I

[yj(u)]
−M ′

ji

T ∧ Fi(u),(4.14)

−
∑

(i,u)∈S+

[1 + yi(u)]T ∧
∏
j∈I

Fj(u)Mji

(4.15)
=

∑
(i,u)∈S−

∏
j∈I

[1 + yj(u)]−Mji

T ∧ Fi(u),

−
∑

(i,u)∈S+

[1 + yi(u)]T ∧
∏
j∈I

Fj(u)−M ′
ji

(4.16)
=

∑
(i,u)∈S−

∏
j∈I

[1 + yj(u)]
M ′

ji

T ∧ Fi(u).

This completes the proof of Proposition 4.1.

Remark 4.4. Equation (4.4) was studied in [CGT, (3.32)] by using the
parameterization of yi(u) by the T-system. However, it is known that this
does not give a “general” solution of the Y-system (see [IIKNS, remark after
Proposition 3.8]). Therefore, we use F -polynomials instead of the T-system.
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4.2. Evaluation in the 0/∞ limit
Following [C], we evaluate the value of the left-hand side of (2.12) in the

limit such that each ϕ(yi(u)) goes to either zero or infinity (the 0/∞ limit).
Then, the value is equal to the number of the variables which go to infinity
due to (1.2).

Thanks to Proposition 3.2, we already have such a limit at hand. Take the
one-parameter family of semifield homomorphisms ϕt : Qsf(y) → R+ (0 <

t < 1) defined by ϕt(yi) = t for any i ∈ I . Then, in the limit → 0, ϕt(yi(u))
is zero if [yi(u)]T is positive and ∞ if [yi(u)]T is negative, due to (4.8)
and Lemma 4.2(iii). Therefore, the value of the left-hand side of (2.12) is
N− = hrr′ by Proposition 3.2.

This completes the proof of Theorem 2.8.

Acknowledgment. It is my great pleasure to thank Atsuo Kuniba for
sharing his insight into the dilogarithm identities for many years, and also
for useful comments on the manuscript.
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rithm, Ann. Sci. Éc. Norm. Supér. (4) 39 (2009), 865–930.

[FZ1] S. Fomin and A. Zelevinsky, Cluster algebras, I: Foundations, J. Amer. Math. Soc.
15 (2002), 497–529.

[FZ2] , Cluster algebras, II: Finite type classification, Invent. Math. 154 (2003),
63–121.



42 T. NAKANISHI

[FZ3] , Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003),
977–1018.

[FZ4] , Cluster algebras, IV: Coefficients, Compos. Math. 143 (2007), 112–164.
[FS] E. Frenkel and A. Szenes, Thermodynamic Bethe ansatz and dilogarithm identities, I,

Math. Res. Lett. 2 (1995), 677–693.
[G] D. Gepner, New conformal field theories associated with Lie algebras and their par-

tition functions, Nuclear Phys. B 290 (1987), 10–24.
[GW] D. Gepner and E. Witten, String theory on group manifolds, Nuclear Phys. B 278

(1986), 493–549.
[GT1] F. Gliozzi and R. Tateo, ADE functional dilogarithm identities and integrable

models, Phys. Lett. B 348 (1995), 677–693.
[GT2] , Thermodynamic Bethe ansatz and three-fold triangulations, Internat.

J. Modern Phys. A 11 (1996), 4051–4064.
[HW] H. C. Hutchins and H. J. Weinert, Homomorphisms and kernels of semifields,

Period. Math. Hungar. 21 (1990), 113–152.
[IIKKN1] R. Inoue, O. Iyama, B. Keller, A. Kuniba, and T. Nakanishi, Periodicities of

T and Y-systems, dilogarithm identities, and cluster algebras, I: Type Br , preprint,
arXiv:1001.1880 [math.QA]

[IIKKN2] , Periodicities of T and Y-systems, dilogarithm identities, and cluster
algebras, II: Types Cr , F4, and G2, preprint, arXiv:1001.1881 [math.QA]

[IIKNS] R. Inoue, O. Iyama, A. Kuniba, T. Nakanishi, and J. Suzuki, Periodicities of
T-systems and Y-systems, Nagoya Math. J. 197 (2010), 59–174.

[Ke1] B. Keller, Cluster algebras, quiver representations and triangulated categories,
preprint, arXiv:0807.1960 [math.RT]

[Ke2] , The periodicity conjecture for pairs of Dynkin diagrams, preprint,
arXiv:1001.1531 [math.RT]

[K1] A. N. Kirillov, Identities for the Rogers dilogarithm function connected with simple
Lie algebras, J. Soviet Math. 47 (1989), 2450–2458.

[K2] , Dilogarithm identities, Progr. Theoret. Phys. Suppl. 118 (1995), 61–142.
[KR1] A. N. Kirillov and N. Y. Reshetikhin, Exact solution of the Heisenberg XXZ model

of spin s, J. Soviet Math. 35 (1986), 2627–2643.
[KR2] , Representations of Yangians and multiplicities of the inclusion of the irre-

ducible components of the tensor product of representations of simple Lie algebras,
J. Soviet Math. 52 (1990), 3156–3164.

[KnZ] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model
in two dimensions, Nuclear Phys. B 247 (1984), 83–103.

[Ku] A. Kuniba, Thermodynamics of the Uq(X
(1)
r ) Bethe ansatz system with q a root of

unity, Nuclear Phys. B 389 (1993), 209–244.
[KuN] A. Kuniba and T. Nakanishi, Spectra in conformal field theories from the Rogers

dilogarithm, Modern Phys. Lett. A 7 (1992), 3487–3494.
[KuNS] A. Kuniba, T. Nakanishi, and J. Suzuki, T-systems and Y-systems for quantum

affinizations of quantum Kac-Moody algebras, SIGMA Symmetry Integrability Geom.
Methods Appl. 5 (2009), 1–23.

[L] L. Lewin, Polylogarithms and Associated Functions, North-Holland, Amsterdam,
1981.

[N] W. Nahm, “Conformal field theory and torsion elements of the Bloch group” in
Frontiers in Number Theory, Physics, and Geometry, II, Springer, Berlin, 2007, 67–
132.



DILOGARITHM IDENTITIES 43

[NK] W. Nahm and S. Keegan, Integrable deformations of CFTs and the discrete Hirota
equations, preprint, arXiv.0905.3776 [hep-th]

[NRT] W. Nahm, A. Recknagel, and M. Terhoeven, Dilogarithm identities in conformal
field theory, Modern Phys. Lett. A 8 (1993), 1835–1847.

[RTV] F. Ravanini, R. Tateo, and A. Valleriani, Dynkin TBA’s, Internat. J. Modern Phys.
A 8 (1993), 1707–1727.

[RS] B. Richmond and G. Szekeres, Some formulas related to dilogarithm, the zeta func-
tion and the Andrews-Gordon identities, J. Aust. Math. Soc. 31 (1981), 362–373.

[S] A. Szenes, Periodicity of Y-systems and flat connections, Lett. Math. Phys. 89
(2009), 217–230.

[V] A. Y. Volkov, On the periodicity conjecture for Y-systems, Comm. Math. Phys. 276
(2007), 509–517.

[Zag1] D. Zagier, “Polylogarithms, Dedekind zeta functions, and the algebraic K-theory
of fields” in Arithmetic Algebraic Geometry, Progr. Math. 89, Birkhäuser, Boston,
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