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coordinate data and standard multivariate statistical
analyses which are available in most major statistical
packages. At the University of Washington we have
found it especially convenient to carry out our analy-
ses using an interactive statistical programming lan-
guage such as “S” (Becker and Chambers, 1984), or
“ISP” (Dunlap, 1985), both of which have facilities
for user-defined special purpose macros. In this inter-
active macro environment we easily extract shape
coordinates (using the simple expressions of complex
arithmetic given by Bookstein) for arbitrary sets of
landmarks, compute the usual statistical analyses, and
generate various graphical displays of the results.
One of Bookstein’s most important contributions to
the field of morphometrics was the method of bior-
thogonal grids which he introduced in 1978. We are
finding biorthogonal grids very useful for graphically
synthesizing the findings from the discrete analyses
of multiple triangles (as Bookstein describes in Sec-
tion 6). However, to our knowledge no one but Book-
stein himself at the University of Michigan has ever
had software to generate a biorthogonal grid. This is
probably due to the complexity of the algorithms
originally described. We have recently implemented
(with Bookstein), in the “S” environment, new and
simpler algorithms for the computation of biorthog-
onal grids. The computed homology which maps and
smoothly interpolates one set of landmarks onto
another is derived from easily programmed “thin-
plate” spline interpolators (Meinguet, 1979). This
algorithm does not constrain the mapping to be
linear on a specified boundary as does Bookstein’s

Comment

Colin Goodall

Fred Bookstein’s energy, enthusiasm, leadership,
and innovative thinking about morphometrics are
,highly valued, greatly appreciated, and a spur to fur-
ther work. The present paper is a major advance in
multivariate morphometrics, and contains some of the
few substantive results available. The linear spaces
for size and shape statistics are derived, however, at
the cost of restrictive assumptions, including a simple
error structure (the null model), almost uniform
deformation (negligible curvature), and small errors

Colin Goodall is Assistant Professor, Engineering Sta-
tistics and Management Science Department, Prince-
ton University, E-Quad, Princeton, New Jersey 08544.
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original algorithm. Our algorithm for drawing out the
biorthogonal grids, the integral curves of the symmet-
ric tensor field (Figure 15b), is based on a widely
available differential equation solver. A report describ-
ing this new biorthogonal grid software and applica-
tions is in preparation.
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(linearized, normally distributed, statistics). This dis-
cussion looks at a broader approach, and, while lacking
the detail and rigor of Bookstein’s paper, suggests that
statistical machinery, centered on function estima-
tion, is mostly available.

The author has convincingly demonstrated how to
move back and forth between deformations and mul-
tivariate statistics. These statistics are based directly
on linear combinations of landmarks. I prefer to em-
phasize a two-stage procedure, in which estimation of
the biological process, namely the deformation (strain)
tensor field varying in space and time, is primary.
Only at the second stage statistics that summarize
(are functionals of) the deformation tensor field are
used in multivariate comparisons. As Bookstein
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discusses, this approach follows Thompson (1942,
1961), Sneath (1967), Bookstein (1978a), and others.

The first stage involves fitting of the deformation
tensor field to the sets of landmark co-ordinates. This
bears a close resemblance to fitting curves (or lines)
through bivariate (x, y) data, but is more complex. For
two-dimensional deformations there are two x co-
ordinates (before deformation), two y co-ordinates,
and interest focuses on the 2 X 2 derivative (tensor,
Jacobian) of the mapping from x to y As with curve
fitting to bivariate data there are a number of alter-
natives: parametric and nonparametric, interpolation
and smoothing, regression and errors-in-variables. A
parametric mapping may be a similarity transforma-
tion (Siegel and Benson, 1982), a linear (affine), quad-
ratic, or cubic transformation. A single parametric
transformation may be fit to all landmarks, or separate
transformations to each of several subsets of land-
marks. The subsets may correspond to a cellulation
(piece-wise linear fit say, with as special case a trian-
gulation), or overlap arbitrarily (Bookstein considers
all subsets of landmarks). For a review, see Goodall
(1984).

Statistics for multivariate analyses are most easily
obtained from parametric fits. As is the case generally
with data smoothing, parametric fits are efficient
when the bias is kept small. For initial, exploratory
analysis of the deformation of an organism a nonpara-
metric approach is recommended. As Bookstein points
out in his motivation of the factor analysis paradigm,
the deformation tensor field is real. It is also noncon-
stant in space (and time).

A promising notion, as Bookstein has remarked in
conversation, is shape invariant modelling (SIM,
Stuetzle et al., 1980). SIM avoids some problems by
allowing a nonparametric fit related across individuals
by parameters that will usefully (see below) be in
terms of geometrical invariants, the principal strains
and directions.

To help further understand the alternatives, three
sources of variation may be distinguished.

1. Measurement error of landmark locations, before
and after deformation.

2. Modelling error or bias, specializing to inhomo-

- geneity error when the model is an homogeneous
affine transformation.

3. Interindividual variation.

Some qualitative distinctions must be made between
the three sources of variation. Plausibly, measurement
error is independent at each landmark. But, as Book-
stein points out, landmark coordinates (the Z;) are
defined relatively, and not absolutely. The Cartesian
coordinate system has relevance as soon as the orga-
nism is positioned on a (perhaps metaphorical) piece
of graph paper for digitizing. The transformation of
interest is defined to within a rigid body motion.

However, inhomogeneity error and interindividual
variation exist prior to this positioning, and should be
modelled directly in the growth process, i.e., in the
deformation tensor field. The three sources of error
are now discussed in more detail.

Measurement error may be circular normal, or con-
taminated with outliers, short-tailed, or nonisotropic
reflecting pixel shape and irregularities in the image
near the landmark (Goodall, 1984). Measurement er-
ror, found in landmarks both before and after defor-
mation, demands an errors-in-variables approach, as
in Gleser and Watson (1973) for three-dimensional
data (Bookstein presents a highly linearized version).

We may model inhomogeneity error as random er-
rors in landmark coordinates after deformation only,
suggesting a regression approach when measurement
error is relatively small. An example is a single affine
transformation fit to the landmarks. Let x; and y; be
homologous landmark coordinates before and after
deformation, where i = 1, ---, n, n = 3 landmarks.
Let A be a 2 X 2 affine transformation matrix, and e;
a residual vector. With a variety of least-squares fit-
ting procedures (regression, errors in variables, can-
onical correlations), the centroid of the landmarks
before deformation, X, transforms to the centroid after
deformation, y. We write

(1) yi=Ax; + (§ — AX) + e;

for the bidimensional regression model. A more real-
istic approach may involve weights, decreasing with
distance from the landmark centroid, and spatially
autocorrelated errors.

More specialized still is the exact fit of the (six
parameter) homogeneous linear (affine) transforma-
tion to three landmarks. The exactness is misleading:
zero residuals do not imply zero errors or an homoge-
nous tensor field. There are no residual degrees of
freedom, and no estimate of the measurement or in-
homogeneity error variance from a single triangle of
landmarks. An analog for bivariate data is to take
slopes of line segments joining pairs of points. With
its constant reference to triangles, Bookstein’s ap-
proach does not model inhomogeneity error. He ex-
plicitly assumes that curvature is negligible.

Interindividual variation is properly modelled in the
geometrical invariants (the principal strains), and
their directions, of the symmetric deformation tensor
field. Consider the 2 X 2 affine transformation matrix,
A. By a singular value decomposition, S decomposes
into a rotation, dilation and rotation,

(2 A =RyDy R,

where R, is rotation through an angle ¥ and D,, =
diag(p, q). The principal strains are p and ¢, and
the maximum strain (p) is at an angle 6 in the co-
ordinate frame before deformation, at angle ¢ after
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deformation. The symmetric tensor is
RyR,,R_,.

(An intermediate log transformation of p and q gives
strain rates.)

Interindividual variation is modelled directly in p, g
(orIn p, In q), 8, and ¢, as normal perturbations about
a population mean. From equations (1) and (2), y; is
a linear function of p and q. The variance of y; varies
with the projection of x; — X on the principal axes of
deformation. The deformation is shared by landmarks,
introducing correlations. The covariance of y; and y;
includes the expression (x; — %)(x; — X)”. Invoking
linearization, the y; are also approximately normally
distributed when a) In p and In g and b) 6 and ¢ are
normal with small variance. Normal errors in the
principal strains and directions are propagated (ap-
proximately) linearly, giving a setup differing from
Bookstein’s null model because heteroscedastic and
correlation effects are a necessary structural feature.

Although the principal strain invariants are
properly comparable across individuals at each land-
mark, modelling the distributions of § and ¥ requires
a benchmark direction at each point, common across
individuals. A further difficulty is to make compari-
sons across individuals at points other than land-
marks, for which pseudo-landmarks are needed.
These issues are considered again at the end of the
discussion.

Interindividual variation may be grouped with in-
homogeneity error in a regression-like model. These
two sources of error differ in that interindividual
variation has a well defined covariance structure (via
equation (1)). A variance components approach is
needed to separate out the three sources of error, but
there is still an identifiability problem. Interindividual
variation is modelled on the true deformation tensor
field for each organism, and therefore inhomogeneity
error is confounded with it. Systematic residuals
across individuals indicates inhomogeneity error, but
interindividual variation can reverse the sign of any
modelling bias.

With regard to assumptions, the observed normality
of the dQ is reassurance that an a priori normal model
is justifiable. It does not assert or prove normality
when there is no a priori argument for normality.

As a general remark, size (S?) and shape statistics
are uncorrelated in an errors-in-variables, measure-
ment-error approach. It has not been worked out how
errors in the deformation parameters affect this.

A goal at the second stage is to make available a
large class of summary statistics of the deformation.
As a general rule, these statistics should be geometri-
cally meaningful, so will usually involve the eigenval-
ues and eigendirections of the strain tensor, p, g, 0,
and ¢, rather than parameters of the fit, and will

measure change of size and shape. This may be at a
specific landmark, the extrema over the form, or in-
volve integration over an area (for example, a triangle
of landmarks) or along a path (the straight line be-
tween two landmarks, or an integral curve of the
biorthogonal grid). More ambitious are confidence
bounds for the tensor field and functionals of it. I am
less pessimistic than the author appears to be about
technology for statistical comparisons based on the
deformation. Any deformation can be decomposed to
give the principal strains and directions at each point.

The size statistics discussed in the paper are a
particular subclass of the above, namely those belong-
ing to the linear subspace generated by the integration
between pairs of landmarks of an interpolated defor-
mation tensor field. The linear space of shape statis-
tics has as basis the ratios of two basis size statistics
sharing a landmark, so should involve integration over
triangles of landmarks of an interpolated deformation
tensor field. There are a number of difficulties:

1. In general there does not exist an interpolated
deformation tensor field such that the ratio of dis-
tances between any pair of pseudo-landmarks is the
appropriate integral. The problem is that the same
coefficients c; are used in a contrast before and after
deformation, i.e., each pseudo-landmark is a true
landmark, and this assumes an everywhere linear
deformation.

2. Smoothing is more appropriate than interpola-
tion. While admitting the existence of measurement
error, Bookstein’s approach does nothing to reduce its
impact and separate it from interindividual variation.
An intelligent smoothing algorithm will incorporate
the variance components considerations alluded to
above, and reduce measurement error while retaining
interindividual variation.

3. The author’s Theorem 2, pertaining to the exist-
ence of the extremum admissible size variable in the
set of size variables generated by triangles of land-
marks alone, is a powerful one. Reservations, however,
stem from the assumption of zero curvature within
each triangular area. Extremum size change is the
extremum over all triangles of landmarks but may
differ (due to curvature) from the pointwise extre-
mum. Similarly, the linearized space of shape variables
depends on the affine differentials for triangles of
landmarks. The basis depends critically on the land-
mark configuration, which may be sparse in the
regions of greatest interest. Higher order interpolation
and smoothing will provide information on local
extrema.

It is hard to choose the right functionals of the
deformation tensor field, but it is also important to
allow for curvature and the three sources of error. Any
choice of functionals, to be tractable, involves loss of
information. The Bookstein alternative is attractive
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if we believe the proposed null model, expect small
changes and negligible curvature, and emphasize land-
marks. It is useful and valuable, but does not go far
enough.

I contend that multivariate statistical methods may
be based directly on functionals of the deformation
tensor field calculated for each organism. The three
sources of variability inter-relate in the eventual anal-
ysis. One extreme case is normal inhomogeneity error
and negligible measurement error. Then the 2 X 2
transformation matrix of a single affine transforma-
tion fit to more than 3 landmarks using a bidimen-
sional regression technique (Tobler, 1978) has a bi-
variate normal distribution (Goodall, 1984). Tests for
isotropy and directionality follow immediately.
Within and between group comparisons require addi-
tional assumptions about the population of true affine
transformations. Another extreme case is when mea-
surement and inhomogeneity error are both negligible.
As discussed above, the appropriate approach is gov-
erned directly by our assumptions about the distribu-
tion of the deformation tensor field across individuals.

An incidental benefit of the two-stage approach is
that the factor analysis paradigm is less central. Factor
analysis, while it does provide an elegant analog in
accounting for the covariation of distance measures,
is nevertheless a technique to be viewed with caution.
Fortunately, for morphometric purposes many of the
estimation problems are avoided because the factors
are real and of known dimensionality, namely they
are the deformation tensor field.

There is a further intriguing aspect. Bookstein’s
null model assumes that normal errors in landmark
coordinates include interindividual variation. The re-
sult is an approximate normal distribution for the
population factor scores, i.e., he implicitly assumes a
normal population model above the factor analysis
one.

The shape statistic of Bookstein, dQ, has an alge-
braic interpretation related to the affine transforma-
tion matrix and its singular value decomposition given
in equations (1) and (2) above. Of particular interest
is the approximate result that |dQ| = (In p — In g)h,
where h is the height of the triangle.

Suppose that the edge x;x, has length o =

|| X2 — x1 || and orientation «. Then the similarity
transformation

(3) x' = 1 R_.(x — x;)
o

standardizes x; and x, to (0, 0) and (1, 0). With b and
8 defined analogously,

4) y' =7 R4(y —y1)

S|

standardizes y, and y; to (0, 0) and (1, 0).

Forn=3,e;=0andy; — Ax; = m — AX. Therefore
the affine ratio Q is equivalent to the affine transfor-
mation

(5) y' =A’x’
where
(6) A" = RysDpapp,qappR—6-c)-
Then
(7) Q=4 -1 (")
S1

a® 1

W (p* - ¢% 3 Sh
(8) =

where r, and s; are as defined in the paper, S =
sin 2(0 — «), and h = Im Q = s;. By the familiar
argument,

2
9) 35 = p2cos*(f — a) + ¢%sin?(0 — «)

and

(p* — ¢*)Sh
(p® +q% + C(p* - ¢%)
—(p—q)* = C(p* —¢?)
(P*+¢») + C(p* — ¢

(10) dQ=
h

where C = cos 2(0 — «).
Let g = p(1 — §), where 6 << 1. Then

(11) dQ ~ ( _Sc)ah.

Then dQ has length 6k and direction 2(6 — o) — =/2.
These results confirm those of Bookstein (1984a) cited
in the text above. (The additional log transformation

. does not affect the linearized results.) A number of

comments follow.

1. For small strains permutation of landmarks in
the triangle rescales dQ by the ratio of h’s, and rotates
dQ by twice the angle between the edges. Thus pop-
ulation differences are disturbed by the stochastic
variation in h and in the angles. A dimensionality
argument shows that the difference between (log)
principal strains must be weighted by k to obtain dQ.
However, h is the height of the triangle after
standardization by (3), so an “unstandardized dQ” is
related to ¢ by area.

In terms of the model for interindividual variation
introduced above, in which the distributions of p and

.q are specified directly, the same phenomenon arises
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in the linear x; — X term relating A toy; — y (1). With
this model the 6 should be compared directly, with
triangle dimension entering only in estimating the
precision.

2. For large strains dQ is not invariant (to within
a rotation) to choice of base edge (10).

3. One difficulty with the approach via triangles is
that measurement error is propagated through the
choice of a common baseline (in a quadrilateral say)
whereas variance considerations suggest averaging.
Only for each triangle of landmarks is the translation
of a single landmark always equal to the translation
of the landmark centroid, y; — AX; = y — AX.

The modelling inconsistencies in using triangles
have already been considered. However, this approach
does define a basis direction comparable across indi-
viduals and does extend the homology between indi-
viduals from landmarks to the whole form (using
pseudo-landmarks). As mentioned previously, modell-
ing of interindividual variation requires at least the
definition of a basis direction, and some tacit notion
of extended homology also. These are the principal
conceptual impediments to development of a theory
of morphometrics along the lines of this discussion.
They are no novelty to morphometrics, and it is sub-

Rejoinder

Fred L. Bookstein

Five able discussants have persuaded me that my
essay, however long already, spent too little space
reviewing themes other than its own. Each discussion
points out connections between morphometrics and
diverse topics both within biometrics and without.

Kendall’s shape space Y 3. David Kendall surmises,
correctly, that I had not previously encountered his
work. Indeed we have approached nearly the same

problem from two very different directions. Although

permutations and reflections of landmark configura-
tions are prohibited on biological grounds, the algebra
of my shape space is still that of a tangent space at
the point of his Y3 corresponding to the mean shape.
In the large, the plane of shape coordinates @ repre-
sents all of his shape space, except for one point
Z, = Z,, six times over.

The tensors supply a canonical geometric descrip-
tion of directions in any tangent plane of this space.
Also, they lead to a metric geometry throughout the
space, with infinitesimal element of distance equal to
| d@ |/Im @, the difference of the log principal strains.
The geodesic arcs of this geometry are curves corre-
sponding to triangular shapes whose transformations

stantially to Bookstein’s credit that he has dealt with
them.

As a final remark, the next generalization is to
longitudinal data, for which the positions of a set of
landmarks, possibly evolving in time, are recorded at
several time points. The deformation tensor field is
varying in space and time. Technically, many of the
issues are the same, as in fact approaches for the
analysis of finite deformation have been borrowed
from the analysis of longitudinal data itself.
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from a fixed starting triangle have the same principal
axes—the shapes that can be reached by fractional
powers of the same affine transformation. The geo-
desics, then, must be the circles involved in the con-
struction of the principal axes (Figure 11), the circles
orthogonal to the real axis. In this metric construction
for shape space we recognize one of the classic models
of hyperbolic geometry, the Poincaré half-plane (cf.
Coxeter, 1965, Section 14.8).

Such a space has negative Riemannian curvature,
whereas Kendall’s shape space, under the metric in-
herited from Euclidean distance, has positive curva-
ture. This and other interesting differences between
Kendall’s geometry and mine derive from the differ-
ences between their fields of principal application. My
morphometric shape space has a line of metric singu-
larities all down the real axis. Points (triangles) not
on this axis may not be transformed into points upon
it or across it by any proper affine transformation.
That axis, representing triangles of zero area, is the
Absolute of the hyperbolic geometry, the locus infi-
nitely far away. Its exclusion expresses the restriction
of the deformation model to transformations of



