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flat regions with occasional spikes. It might be useful
to develop smoothing functionals JJ that mirror this.

Regarding the empirical selection of smoothing pa-
rameters, Rice (1986) sounds a cautionary note by
constructing simple examples in which a choice of
smoothing parameter giving a good value of predictive
mean square error gives unacceptable errors for esti-
mating 6§ and vice versa.

Comment

Freeman Gilbert

In a typical geophysical inverse problem one has
(1) dj=Dj(f) +rJ‘7j9 ]e {la’J}y
where

is a datum,

is the functional that maps f into d,

is the model,

is a unit variance random variable,

is the assigned error, usually taken to be the
standard deviation (Gaussian errors).

Q \\@Q..

An error statistic is introduced, usually the x 2 statistic
(2) x*(f) = X [d; — D;i()}"/o;.
J

One defines the set
{Fo(f): all f such that x2(f) = X3},

where x3 is chosen to be the 99% or 95% confidence

level, for example.
Except in very unusual circumstances, Fo(f) is
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Rejoinder
Finbarr O’Sullivan

It is a pleasure to thank the discussants Professors
Gilbert, Rice, Titterington, and Wahba for their most
interesting and stimulating comments. The ubiquity
of inverse problems in areas like geophysics, medical
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either empty or infinite-dimensional. In the former
case, one increases x5 and seeks to fill Fy(f). In the
latter case, one desires to know about the members of
Fo(f).

One procedure is to use the method of regularization
(MOR) to find a particular member of Fy,(f) (e.g., the
smallest, the smoothest, the one closest to a particular
fo, the maximum entropy solution, max{—flog f}, etc.).
Another procedure is to use a resolution method to
find what features all f have in common or what are
the resolvable averages of f. In any case one may wish
to assert a priori conditions on f, such as prejudices
about the shape or size of f that can be cast in the
form of equation (1).

O’Sullivan has shown that the two procedures are
connected and, taken together, can lead to improved
methods of estimating bias. By generalizing the con-
cept of averaging kernel, i.e., requiring the averaging
kernel to assume certain shapes, one can estimate
average bias as well as local bias. For linear problems,
the matter appears to be resolved and depends only
on the number and quality of the data and the span
of their representers. For nonlinear problems one is
confined to the neighborhood of the subject. O’Sulli-

"van is to be congratulated for his original contribution

to it.

imaging, and meteorology presents statisticians with
wonderful opportunities to contribute to the develop-
ment of science and technology. As Professor Wahba
notes there are lots of open research questions many
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of which are at the interface of numerical analysis and
statistics. It is an especially exciting time to be a
statistician who computes.

I will begin the rejoinder by making some comments
about the role of the singular value decomposition
(SVD) in the analysis of retrieval characteristics of
linear and nonlinear inversion methods. This is fol-
lowed by some briefer remarks about priors, the selec-
tion of smoothing parameters, and the hat matrix.

1. RETRIEVAL CHARACTERISTICS
AND THE SVD

The SVD is a familiar object in inverse problems
(see Andrews and Hunt, 1977; Cullum, 1980, for ex-
ample). The analysis mentioned by Rice reveals the
nature of information visible in the observed data.
Wahba (1980) has used this to define the degree of ill-
posedness of an inverse problem. Cullum (1979) uses
the SVD in coming up with guidelines for the choice
of norm in the method of regularization (see also
Nychka et al., 1984). SVD of the averaging kernel is
useful in understanding retrieval characteristics.

1.1 Linear Inversion
A linear inversion method can be decomposed as
(1) 6=Sz=EFEf+s

where Ef is the systematic component of § and &
is the random component. From the averaging ker-
nel calculus, we have that Ef = Af with A =
[X'X + mA2]'X’X. The random component is
[X’X + mAQ2]"*X’e. (This notation is taken from
Section 3 in the paper.) The averaging kernel operator,
A, identifies the parts of ® which are best resolved by
the inversion procedure.

Rice refers to the standard linear model, here A = 0
and when X’X is invertible, A is the identity map.
This corresponds to the statement that least squares
is unbiased in this situation. For unbiased estimators
the Backus-Gilbert averaging kernels are uninterest-
ing being given by rows (or columns) of the identity
map. (This is not to say that the hat matrix
X[X’X]' X’ or more generally X[X’'X + mA Q] "' X’
is not important. It surely is but not as a means of
studying bias. I’ll come back to this later.) An impor-
tant part of linear model theory is concerned with
fractionated designs for which there is already a well
developed understanding of bias; aliasing patterns,
design resolution, and so forth. Unfortunately there is
too little attention paid to this in many modern linear
model texts. :

Let {(u,, ¢.), v = 1, 2, 3, ...} be the eigenvalues
(arranged in decreasing order) and corresponding nor-
malized eigenvectors obtained by principal component
analysis of the range space of A. These are obtained

from the singular values and right singular vectors of
X'[X’X + mAQ,] "% Expanding elements of © in
terms of the eigenvectors (6 = ), 6,¢, where 6, is the
projection of 6 into ¢,) we have that

(2) Af =Y ubé,.

The eigenvalues u, are bounded above by 1 and the
more poorly resolved features will be associated with
smaller eigenvalues. Variability in the estimation of 6,
is

(3) o) = o | X[X'X + mAQ] 7', || -

From this analysis an interesting collection of plots
would include eigenvectors corresponding to the larger
eigenvalues, u, versus » (resolution) and o, versus »
(standard error). Figure 1 gives the eigenvectors cor-
responding to the first six eigenvalues in the tumor
size distribution problem. The resolution (u,) and
standard error (o,) are given in Figure 2. Eigenvectors
tend to have more detailed structure toward the right-
hand side of the interval.This is consistent with the
results obtained in Section 2 of the paper. The eigen-
vectors {¢,, v =1, 2, 8, ...} are norm-dependent and
the Euclidean norm analysis given above must be
modified to produce eigenvectors corresponding to L,
or Sobolev norm. Figure 1 actually corresponds to the
L, norm.

Comparing the SVD of the averaging kernel opera-
tor A for different choices of the smoothing parameter
leads to a way of understanding the effect of the
smoothing parameter on resolution characteristics. A
canonical correlation analysis (see Greenacre, 1984 or
Mardia, Kent, and Bibby, 1979) might be useful here.

1.2 Nonlinear Inversion

Extending the above methods to nonlinear problems
leads to some fascinating questions. A general MOR
(method of regularization) inversion method is defined
by

-(4) 0= S(data)

= arngintlm(data |0) + AJ(0)} A>0.
ne

In(data | ) measures the plausibility of the observed
data if the true function was 6, this might be a residual
sum of squares, a negative log likelihood, or a general
distance measure. The penalty functional J measures
the prior plausibility of 6, this could be quadratic or
nonquadratic as is the case in maximum entropy
methods. The regularization parameter A adjusts the
influence of the penalty functional. The set C is a
subset of the parameter space @ representing possible
constraints such as positivity, monotonicity, etc.
Obviously, inversion characteristics cannot be ana-
lyzed without some topological structure, i.e., one
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FIG. 1. The first six eigenvectors (¢,, v=1,2, ..., 6) of the averaging kernel operator in the tumor size distribution problem. Eigenvectors tend

to have more detailed structure toward the right-hand side of the interval.
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FI1G. 2. Resolution (u, versus v) and standard error (o, versus v).
These characteristics are obtained from an SVD of the averaging
kernel operator. The vertical scale on the standard error plot depends
on the assumed noise level o so it is left unspecified.

needs to be able to evaluate when elements of the
parameter space are close. In image restoration con-
texts (Besag, 1986) the definition of a meaningful
distance can be a difficult problem.

The range of the nonlinear inversion method in (4)
is some subset of C and in studying retrieval charac-
teristics the local and global geometry of this set
(both for noise-free and noise-contaminated data) are
of interest. Modern computing enyvironments make it
" possible to repeatedly solve (4) thereby generating
eléements in the range space. We need to identify
procedures (algorithms, simulation experiments)
which will generate useful information about the range
of inversion in a small number of trials. Lanczos
algorithms (Cullum and Willoughby, 1985; Golub
and Van Loan, 1983; Parlett, 1980) are based
on Krylov information. Starting with some initial
vector 6 € C, a Krylov sequence is {0, M (0), M (M (9)),
M(M(M())), ...}. It would be interesting to know
something about the ability of Krylov sequences to
sample range spaces in nonlinear situations.

Further problems will arise in describing the
geometry (local and global) of range spaces from sam-
pled information. Part of this will involve generaliza-
tions of techniques like factor analysis, multidimen-
sional scaling, and principal components. Some recent
work in these areas is discussed in Hastie (1984) and
Koyak (1985) and the references cited therein.

2. PRIORS

All discussants touched upon the role of prior infor-
mation. Cullum (1979) has an interesting discussion
of the choice of norm in regularization (the situation
is more sensitive than Titterington suggests). Titter-
ington and Wahba highlight the relationship between
quadratic MOR penalty functionals and Gaussian
prior distributions for the signal. In the paper I con-
centrated on situations where the quantity of interest
was a smooth unconstrained curve. An interesting
approach to the estimation of nonsmooth signals has
been proposed by Kitagawa (1986). The method,
which is shown to work very well, involves replacing
Gaussian priors by longer tailed alternatives. Given
the existence of boundary layer phenomena in the
atmosphere I wonder if historical weather records are
more accurately modeled by nonGaussian distribu-
tions? Atmospheric temperature profiles can have
sharp changes in the first derivative so nonGaussian
priors might lead to more satisfactory inversion
methods.

3. SELECTION OF SMOOTHING PARAMETERS

The selection of smoothing parameters has received
considerable attention in the statistical literature.
There are several theoretical results (many of which
are due to the discussants) describing how cross-
validation or unbiased risk methods provide good
choices for smoothing parameters, at least from the
point of view of the predictive mean square error
(PMSE).

The power of the PMSE to discriminate between
different choices for the smoothing parameter is
clearly limited by the span of the representers. The
more ill-posed the problem the smaller the effective
rank of the representers (see Wahba, 1980) and the
more difficult it is to discriminate between differ-
ent solutions on the basis of PMSE. The examples
in Rice (1986) are surely a good illustration of this
phenomenon.

Wahba notes that transformations to other loss
functions cannot change the basic fact that data-based
selection of smoothing parameters is limited by the
information (visible) in the data (representers). I
agree; estimable losses can only serve to redistribute
the weight attached to these representers. In par-
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ticular, if the matrix C is unstable in the sense de-
scribed by Wahba then one would imagine that
data-dependent estimates of associated loss though
relatively unbiased will have very high variance. There
is a bias-variance tradeoff here.

Titterington’s comparison of the methods he de-
notes by (1) and (2) is most interesting. The class of
estimation criteria suggested by Gilbert are motivated
by a philosophy similar to (2) and an illuminating
discussion of this appears in Titterington (1985).
While selection procedures based on (2) are biased (a
tendency to oversmooth) the practical significance of
this bias needs to be understood. For smooth inversion
methods the computation of cross-validatory scores is
usually not too problematic. However many of the
algorithms used in image restoration and pattern rec-
ognition (see Besag, 1986; Geman and Geman, 1984;
Mendel, 1983) are such that it is hard to identify
an efficient way of implementing cross-validation.
Alternative techniques are needed. Selection rules
based on methods like (2) may prove to be very
convenient.

4. THE HAT MATRIX

The importance of the hat matrix in nonparametric
regression is emphasized by Eubank (1984). The rows
(or columns) of the hat matrix constitute the equiva-
lent kernel treated by Silverman (1984). A time series
analogy pinpoints the distinction between the aver-
aging kernel and the equivalent kernel: transfer func-
tions built up from response characteristics to impulse
patterns in the signal process generate the averaging
kernel; transfer functions built up from response char-
acteristics to impluse patterns in the raw data generate
the equivalent kernel.

The hat matrix continues to be important in general
inverse problems. For example, generalized cross-
validation and unbiased risk procedures treat all
points in the design space equally. This may or may
not be a good thing. The sensitivity of cross-validation
to remote points in the design space seems to be
worth investigating. These points are identified by
large diagonal elements in the hat matrix (leverage
values).
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