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Optimal Designs for Comparing Test
Treatments with Controls
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Abstract. This article outlines existing knowledge on optimal designs for
comparing test treatments with controls under 0-, 1- and 2-way elimination
of heterogeneity models. The results are motivated through numerical

examples.
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1. INTRODUCTION

In this article we consider the problem of comparing
a set of test treatments with a control or standard
treatment. Such a problem arises, for example, in
screening experiments or in the beginning of a long
term experimental investigation where it is initially
desired to determine the relative performance of the
new test treatments with respect to the control or
standard treatment. For specificity, suppose four new
methods for performing a certain task become avail-
able and we wish to conduct an experiment to compare

the new methods to the standard procedure currently -

being used to perform the given task. Further, suppose
there are 18 experimental units available for conduct-
ing the study. Thus we need to design an experiment
for comparing the control, denoted by 0, with four test
treatments, denoted by 1, 2, 3 and 4. Any particular
allocation of treatments to experimental units is called
a design and is denoted by d.

As a statistical problem, the question of how to
compare the test treatments with the control cannot
be answered unless it is asked in a more precise
manner. To begin with we need to postulate a model

for the response observed upon application of a treat- -

ment, test treatment or control, to an experimental
unit. In this article we shall consider three possible
models: 0-way elimination of heterogeneity model in
which all experimental units are homogeneous before
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application of treatments:
(1.1)

1-way elimination of heterogeneity model in which
experimental units can be divided into several homo-
geneous blocks:

(1.2) yi=n+ti+ 6 + e

2-way elimination of heterogeneity model in which the
experimental units can be conceptually arranged ac-
cording to rows and columns:

(1.3) Yip=np+t+ 6+ p + e

In models (1.1), (1.2) and (1.3) the y’s denote obser-
vations obtained after applying treatment i to an
experimental unit occurring in block j or column j and
row [, t; represents the effect of treatment i, §; the
effect of block or column j, p; the effect of row I, and
the ¢’s are independent random error terms having
expectation zero and constant variance o>

Now we can be more precise about what we mean
by comparing test treatments with a control. In par-
ticular, because our primary goal is to determine which
among the test treatments might be better than the
control, we would like to estimate the magnitude of
each t; — t, with as much precision as possible. More
precise comparisons among test treatments found to
perform better than the control at this initial stage is
generally left to later experimentation. Under the
assumptions made above, the method of least squares
yields the best linear unbiased estimators ty; — 4o for
the contrasts t; — t, under a given design d. In assign-
ing treatments to experimental units, we have to make
sure that the contrasts t; — t, are estimable. A design
satisfying this latter condition is said to be treatment
connected and we shall restrict our attention to such
designs. Clearly there are a number of designs avail-
able for the situation being considered here and we

Yij=pt i+ ey
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want to choose one which is best in some sense. For
example, we might choose a design that gives the
minimal value among all available designs of

4
(1.4) Y var(ts — tao)
=1
or
(1.5) max var(fy — tao)
1=i=<4

where var(£; — £4) denotes the variance of £, — £y0.
A design which gives the minimum in (1.4) is called
an A-optimal design and one which gives the minimum
in (1.5) is called an MV-optimal design.

Without further ado we give designs which are A-
and MV-optimal under each of the three models:

A- and MV-optimal design under model (1.1):
Assign three experimental units to each of the four
test treatments and six to the control.

A- and MV-optimal design under model (1.2), when
there are six blocks of size 3 each:
Take each column of the following array as a block:

000 0OO
1112 2 3
2 3 43 4 4

A- and MV-optimal design under model (1.3), where
there are three rows and six columns:

Assign the treatments according to the following
array:

103 4 20
0 34201
4 2 0 0 1 3

We note that even in a small experiment such as
the example given above, the determination of an
optimal design is usually not easy. During the past
several years there has been a concentrated effort to
identify and construct optimal designs for the general
problem of comparing v test treatments with a control.
The A- and MV-optimality criteria defined in (1.4)
and (1.5) have been the most widely studied criteria
with regard to the construction of such designs. Find-
ing an A-optimal design corresponds to minimizing
mean square error in inference and finding an MV-
optimal design is analogous to finding a minimax
procedure. We point out that D-optimality is not a
natural criterion for this type of problem; see the
paragraph just below Definition 2.1. Although other
optimality criteria have also been considered for com-
paring test treatments with a control, it is our view

that the published literature on these other criteria
has not reached a level of generality for summariza-
tion. In this article we shall attempt to summarize the
known results on A- and MV-optimal designs, which
we hope will be useful to both the theoretician and
the practitioner.

In Sections 2 and 3 we give general results for A-
and MV-optimal designs for comparing v test treat-
ments with a control in each of the three models (1.1),
(1.2) and (1.3). In Section 4 we give model robust
A- and MV-optimal designs. In Section 5 we suggest
various approaches for finding efficient designs in
those cases where A- and MV-optimal designs are
unknown. In Section 6 we give A- and MV-optimal
designs for comparing test treatments with two or
more controls. In Section 7 we outline Bayes A-
optimal designs. In Section 8 we give an overview of
the literature of optimal designs for comparing test
treatments with controls.

2. A-OPTIMAL DESIGNS

We shall give A-optimal designs for comparing v
test treatments with a control separately for the zero-
way, one-way and two-way elimination of heteroge-
neity. Throughout this section the control will be
denoted by the symbol 0 and the test treatments by
L2 ---,0.

2.0 A-optimal Designs for the Zero-way Elimination
of Heterogeneity

Our statistical set-up consists of n experimental
units, and our model of response under a design d is

(2.1) Yaij = u + t; + &,

where j =1, ---, rg;, 1 =0, 1, ---, v. Here and
throughout the sequel rg; is the number of experimen-
tal units receiving treatment i under a particular
design d. We assume the model to be homoscedastic.
The symbols in equation (2.1) have the same meaning
as described in Section 1. The A-optimal design
minimizes

| 1

” NN
i§1 Faio  Ta;

subject to the restriction that ryo + rg; + -+« + ra, =

n. It is easily seen that for a fixed value of ry, (2.2) is
minimized when ry; = p(ry) or p(ree) + 1 for i =
1, ..., v where p(rg) = [(n — rg)/v] and [x] denotes
the integral part of the decimal expansion for x > 0.
Thus the problem of finding an A-optimal design in
this case reduces to that of finding the value of ry
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that minimizes

(2.3) LU= nFrot vp(rao) , n—rao—vp(rao)
T'do p(rao) p(rao) +1

The minimization of (2.3) can easily be done using
a calculator. In the case v is a square and n =
m(v + v'/?) for an integer m, the A-optimal design d*
is
Fari = <o+ = Fgwy = M, Tavg = mu'’~,
2.1 A-optimal Designs for One-way Elimination of
Heterogeneity

Our statistical setup consists of b blocks on size k
each, k = v. The model of response under a design d
is

Yaijp = p + ti + B + eijp,

wherei=0,1, ... ,v;j=1,.--,bandp=0,1, ---,
ngy;. Here ng; is the number of times treatment i is
used in block j and the matrix N, = (ng;) is called the
incidence matrix of the design. We note that

b
ra; = 2 Ngjj.
Jj=1

We shall also let
Cd = diag(rdo, Fdi, **°, rdv) - k_lNdNé
and
1 -1 0 0
1 0 -1 0
P = . ,
1 0 0 ...-1

P being a v X (v + 1) matrix. The matrix C, is called
the information matrix of d and PC, P’ is the covar-
iance matrix of the vector of least squares estimators
of the contrasts t; — &y, ---, t, — to; here C; is a
generalized inverse of C,. We note that PC, P’ is
proportional to the inverse of the matrix obtained by
eliminating the first row and first column of C, (see
Bechhofer and Tamhane, 1981; Constantine, 1983).
Then an A-optimal design minimizes

(2.4) trace PC; P’

over all possible designs with parameters v, b and k.
Experience has shown that this minimization is
usually not easy. As in other cases of exact design
theory, it is highly unlikely that we can obtain one
method which is capable of producing A-optimal de-
signs for arbitrary values of v, b and k. Recently several
families of A-optimal designs have been discovered.
At this point it is useful to recall a celebrated result.

If there is no control and if we are interested in
comparing v test treatments among themselves, then
a balanced incomplete block (BIB) design (definition
follows) in the v test treatments would be A-optimal
(Kiefer, 1958; Kshirsagar, 1958; Roy, 1958; Kiefer,
1975). Here the A criterion is defined by expression
(2.4) with P denoting any (v — 1) X v matrix having
normalized rows orthogonal to each other and to the
vector (1, ---, 1)’, and C, denoting the v X v infor-
mation matrix of the test treatments. In fact, it has
been proved by Kiefer (1975) that BIB designs are
“universally optimal” in the sense that they are opti-
mal under a large family of criteria, which includes
the A- and MV-optimality criteria.

Definition 2.1. A BIB design with parameters v, b,
r, k, X is a block design with b blocks each containing
k < v distinct treatments such that each treatment is
replicated r times and each pair of treatments appears
in X blocks.

Unlike the case of BIB designs, the structure of
optimal designs for treatment-control comparisons
seems to depend heavily on the criterion used. Al-
though A- and MV-optimal designs are often the same,
other criteria (see Majumdar and Notz, 1983) yield
different designs, usually requiring either fewer or
more replications of the control, but otherwise bal-
anced with respect to test treatments. For example,
the D-optimality criterion selects a block design from
within a given class of designs which minimizes the
determinant of the matrix PC, P’ defined in (2.4) and
it can be shown that a BIB design is always D-optimal
when such a design exists. But for the problem of
comparing test treatments with a control, the D-
optimality criterion does not seem to be either an
intuitively or statistically suitable criterion because
the designs it selects as being optimal generally do
not provide any more information about treatment-
control comparisons than they do about comparisons
among the test treatments. On the other hand, the A-
and MV-optimality criteria each have a natural and
statistically meaningful interpretation as given above.
Unfortunately, with the presence of a control and for
the set of contrasts of interest a BIB design is almost
never an A- or MV-optimal design. However, we can
sometimes utilize BIB designs in the test treatments
to construct an A- or MV-optimal design for our
problem. We shall shortly give some sufficient con-
ditions that can be used to establish the A- and
MV -optimality of some families of such designs. For
convenience, we introduce the notation ABIB (v, b,
k—t;t) to denote a BIB design in the v test treatments
in b blocks of size & — t each argumented by ¢ repli-
cations of the control in each block. The following
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three families of ABIB designs are A-optimal for com-
paring a set of v test treatments to a control.

Family 1. An ABIB(v, b, k — 1; 1) is A-optimal
whenever (k — 2)2+ 1 <v < (k — 1)% An example of
an A-optimal design when v =7,b =17, k = 4 is given
below, where the columns are the blocks:

00O0O0OUODO
1 2 3 45 6 7
2 345 6 71
4 56 71 2 3

For each (v, k) satisfying (k — 2)?+1=<v =< (k—
1)2, there are an infinite number of values of b for
which A-optimal ABIB(v, b, B — 1; 1) designs exist.
This can be seen as follows. For each (v, k), form all
b = (,2,) subsets of size k — 1 out of the v test
treatments. Augment each subset with a copy of the
control. Then these b augmented subsets form an
ABIB(v, b, k — 1; 1) design. Further, we note that the
design which consists of the b; blocks of an ABIB(v,
b1, B — 1; 1) design and the b, blocks of an ABIB(v,
bs, B — 1; 1) design is an ABIB(v, b, k& — 1; 1) design
with b = b; + b,. For more details concerning family
1 of designs, the reader is referred to Hedayat and
Majumdar (1985).

Stufken (1987) has generalized the preceding idea
to:

Family 2. An ABIB(v, b, k — t; t) is A-optimal
whenever (k—t—1)2+ 1<t =< (k—1t)

An example of an A-optimal design when v = 8§,
b= 28, k = 8 is given below:

0000000000000000000000000000
0000000000000000000000000000
3222222111111111111111111111
4433333433333222222222222222
5554444554444544443333333333
6666555666555665556555444444
7777766777766777667766766555
8888887888887888878887887876

_ Sometimes we can use two BIB designs to construct
an A-optimal design for our problem. We give below
one such family, which is taken from Cheng, Majum-
dar, Stufken and Tire (1988):

Family 3. Forv=0a’>—1,b=v(a+ 2)(a®— 1) and
k = a, the union of an ABIB(v, v(a + 1)(a® — 2),
a — 1; 1) and a BIB design in all the v + 1 treatments,
test treatments and control, in ya(a + 1) blocks of
size k each is A-optimal whenever « is a prime power,
and v is any integer.

An example when a =3,y =1,v=8,b=40,k=3

is:

00000000000000000000O0
11111112222223333344
23456783456784567856
00000000147123123123
44555667258456564645
7867878836078007880°7
Stufken (1987) has some more families of A-optimal

designs.

To establish the optimality of these families, the
starting point is a result due to Majumdar and Notz
(1983), which we shall shortly state. However, before
stating the result we need some definitions.

Definition 2.2. d is a balanced treatment incomplete
block (BTIB) design if

Aaor = -+ = Aaoos

Agig = «+- = >\d,v—1,u,

where Ayij = Y5-1 Napnap. This definition is due to
Bechhofer and Tamhane (1981).

Definition 2.3. For integers t € {0, 1, ---, k — 1}
ands€{0,1, ---,b— 1}, dis a BTIB((¢, b, k; ¢, s) if
it is a BTIB design with the additional property that

ng €10,1}, i=1,---,0; j=1,.---,b,
Ngor = +++ = Ngos =t + 1,
Ngos+1 = *++ = Ngop = L.

A BTIB(u, b, k; t, s) is called a rectangular (R-) type
design when s = 0, and a step (S-) type design when
s > 0. The layout of these designs can be pictured as
follows, with columns as blocks, in each of the two
cases R-type and S-type:

(i) R-type.
1... .. b
1
. control
t
t+1
do
k

d, is a BIB design in the test treatments.
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(ii) S-type.
1... vees S+1... .. b
1 1
control .
control :
t t
t+1 t+1
d
A ’
k k

d; and d, are components of the design
which involve the test treatments only.

Now we are ready to state the result of Majumdar and
Notz (1983).

THEOREM 2.1. Let v, b, k be integers with k < v. A
BTIB(v, b, k; t, s) is A-optimal in the class of all
designs with the same values of v, b, and k if

g(t, s) = min{g(x, 2): (x, 2) € A},
where
, [R/2] — 15

A={(x,2):x=0,.-.

(2.5)
z2=0, ..., bwith 2> 0 when x = 0},

g(x,z) = a/Al(x, z) + 1/B(x, 2),
a=@Ww-12% c=bvk(k—1), p=v(k—1)+k,
A(x, z) = {c — p(bx + z) + bx* + 2xz + 2}/vk,

B(x, z) = {k(bx + 2) — (bx* + 2xz + 2)}/vk.

We note that there are many parameter combinations
(v, b, k) which do not belong to any of the three
families of A-optimal BTIB designs given previously
for which the result of Majumdar and Notz (1983) can
still be used to get an optimal design. Hedayat and
Majumdar (1984) have devised an algorithm for ob-
taining A-optimal designs based on Theorem 2.1 and
gave a list of all designs available by this result when
2<k=<8, k=<v=30,v=<b=50. Jacroux (1988b)
has generalized this algorithm. His algorithm is often
capable of producing A-optimal designs which are not
necessarily BTIB in their structure. In particular, the

algorithm given by Jacroux often produces A-optimal
group divisible treatment designs (GDTD’s).

Definition 2.4. d is a GDTD with parameters m, n,
Ao, A1 and A, if the treatments 1, - - - , v can be divided
into m groups Vi, - .., V,, of size n such that

(i) Aaoi=Nofori=1, ..., v and for some constant
>\09

(ii) if i, j € V,,, i # J, Aaij = A, for some constant A,

(iii) if i€ V,,j € V,, p # q, Aaij = Ao for some constant

As.

Definition 2.5. For integers t € {0, 1, --., k — 1}
ands€{0,1, ... ,b—1},disa GDTD(v, b, k; t, s) if
it is a GDTD with the additional property that

ng; € {0, 1}, i=1,..-,v, j=1, ---,b,
Ngoy = +++ = Ngos =t + 1,
Ngos+1 = *++ = Ngop = L.

A GDTD(v, b, k; t, s) is called an R-type design when
s = 0 and an S-type design when s > 0.

Jacroux’s generalization of Theorem 2.1 can be
stated as follows.

THEOREM 2.2. Let v, b, k be integers with k < v.
A BTIB(v, b, k; t, §) or a GDTD(u, b, k; t, §) having
m=2,n=uv/2and A\, = \; + 1 is A-optimal in the
class of all designs if

n(t, §) = min{n(x, 2): (x, z) € A},

where a, ¢, p, A(x, z), B(x, z) and g(x, z) are as defined
in (2.5) and where

A={(x2:2=0,...,k— 2

2=0,..., bwith 2> 0 when x = 0}
and
(2.6) n(x, z) = min{h(x, 2), m(x, 2)},
with

h(x, 2) = a/(A(x, 2) — 2/k) + 1/B(x, 2),
(2(x,2),
if B(x, z) > {A(x, 2)
—((v—1)/(v - 2))"?P(x, 2)}/(v — 1),

m(x, z) = 9 1/B(x,2)

+ (v —2)(v—-1)/{A(x, 2)
—((v—=1)/(v—2))"*P(x, 2)}

+ (v —1)/{A(x, 2)
+ ((v—1)(v — 2))/2P(x, 2)}, otherwise.

.

The quantities a, A(x, z) and B(x, z) are as defined in
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(2.5) and
P(x, z) = {C(x, 2) — B%(x, 2) — A%(x, 2)/(v — 1)}/,
C(x, 2) = {bk — bx —2 — vR(x, 2)}
AR (x,2) + 1)(k— 1)}
+ {v — bk + bx + z + vVR(x, 2)}
- {R(x, 2)(k — 1)}*/k*
+ {A(x, 2) — v(v — 1)A(x, 2)}
- {Ax, 2) + 1}2/k?
+{v(v—1) — A(x, 2)
+ v(v — 1)A(x, 2)}A3%(x, 2)/R?,
R(x, z) = [(bk — bx — 2)/v],
Az, 2) = [{(bk — bx — 2)(k — 1)
— vkB(x, 2)}/v(v — 1)].

We note that many BTIB(v, b, k; t,5) designs not
satisfying the conditions of Theorem 2.1 can be shown
to satisfy the conditions of Theorem 2.2. In addition,
Theorem 2.2 can be used to establish the A-optimality
of GDTD(v, b, k; t,5)’s having m = 2, n = v/2 and
A2 = A; + 1. Using some more elaborate computational
techniques, Jacroux (1988b) has also developed some
sufficient conditions for GDTD (v, b, k; t, §)’s having
A=M+lorm=v/2,n=2and \; = \; — 1 to be
A-optimal among all designs with parameters v, b and
k. One example of an A-optimal GDTD is that
GDTD(9, 9, 4; 1, 0) having m =3, n =3, A\, = 0,
X2 = 1 and treatment groups (1, 2, 3), (4, 5, 6) and
(7, 8, 9) given below:

0000O0OOODO
11122 2 3 3 3
4 56 45 6 45 6
78 98 9 79 1738

2.2 A-optimal Designs for Two-way Elimination of
Heterogeneity

Our statistical set-up consists of bk experimental
units arranged in a k X b array, and the model of
response under design d is

(2.7) Yap=p+t+ 8+ p+ ey,

i=0,1,---,v;j=1,.-.,b;l=1, ..., k,if treatment
i is applied to the experimental unit in cell (I, j).
Let

ng; = number of times treatment i occurs in col-
umn j,
mg; = number of times treatment i occurs in row [,
rqg; = 2,1;1 Ndij,

N, = (ngj), a(v+ 1) X b matrix,
M; = (mg;), a(v+ 1) Xk matrix,
P is the v X (v + 1) matrix defined in Subsection 2.1,
ra = (Tao, a1, -, Tav)’,
Caw) = diag(rao, rar, -+ rav)
— kT'NyNy — b MM + (bk) 'rar).

Then an A-optimal design minimizes trace PC,,, P’.
We shall now highlight some of the results from recent
literature.

Family 1. Let p be an integer and v = p%, b=k =
p® + p. A b X b array in which each test treatment
appears once in each row and in each column and the
control appears p times in each row and in each
column is A-optimal.

One easy way to construct members of this family
is to start with a Latin square of order p?> + p and
change symbols p>+ 1, - .-, p?2 + p to 0 (control). We
illustrate this in the following example with v = 4,
b=k=6:

1 23 456 123400
6 1 23 45 012340
56 1234 0012314
4 561 2 3—>4 001 2 3
3 45 612 340012
2 3 4561 234001

This and some more general results are available in
Notz (1985).

Majumdar (1986) has generalized the preceding
family of A-optimal designs to also include the follow-
ing designs.

Family 2. Let p, « and v be integers, v = p? k =
a(p®+ p) and b = y(p® + p). A k X b array in which
each test treatment appears « times in each column
and vy times in each row, and the control appears ap
times in each column and yp times in each row is
A-optimal.

One way to construct members of this family is to

" form the array

(Lij)3 i=1"”7a; j=19"’77

where each L;; is a member of Family 1.
Family 3. A k X b array is A-optimal if

(i) it is an A-optimal block design for 1-way
elimination of heterogeneity with columns
as blocks, and

(ii) the total number of replications for each
treatment, test treatment or control, is di-
vided equally among the k rows.

(2.8)
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This has been given by Jacroux (1986). The follow-
ing is an example whenv =9,b =24, k= 3:

041025783096008079162345
105802005304466907213879
310140220730950680976458

We note that when considering this last array as a
block design with columns acting as blocks, it is a
BTIB (9, 24, 3; 0, 18) design which satisfies the
conditions of Theorem 2.1 (hence it is A-optimal) and
because the total number of replications for each
treatment are divided equally among the rows, condi-
tion (ii) of (2.8) is satisfied.

In general, the method used to construct most of
the families of row-column designs given in this sec-
tion is to find an optimal block design having param-
eters v, b and k and having the numbers of replications
assigned to the test treatments and control divisible
by k, then arrange treatments within blocks so that
condition (ii) of (2.8) is satisfied. The fact that an
arrangement within blocks satisfying (2.8(ii)) can
always be found when the numbers of replications as-
signed to the test treatments and control are divisible
by & essentially follows from Hall’s (1935) “marriage
lemma.”

3. MV-OPTIMAL DESIGNS

In this section we give a number of results concern-
ing the MV-optimality of designs for comparing v test
treatments with a control for the zero-way, one-way
and two-way elimination of heterogeneity. The nota-
tion introduced in Section 2 is also used throughout
this section.

3.0 MV-optimal Designs for Zero-way Elimination
of Heterogeneity

Our statistical setup is the same as given in Subsec-
tion 2.0. An MV-optimal design minimizes

(3.1) 1n<1:':1<1i (1/rgo+ 1/ry)
subject to the restriction ryo + rgy + -+ + rgo =n. It
is easily seen that an MV-optimal design d* has
Pgwi =T fori=1,.-.-,v
and
Fgvo =N — UF,
where
. JF if 7 is an integer,
r= {[f] +1, otherwise,
and

2n+v—v?— (vt + 02— 20° + 4n%) 2
2v(v—1)

F=

We note that for a fixed value of n, the A- and MV-
optimality criteria may select substantially different
optimal designs from those available. For example,
when n = 30 and v = 15, an A-optimal design ;7 will
havergo=5andrz=1or2fori=1, ---, 15 whereas
the MV-optimal design d* will have rs, = 15 and
rax = 1f01‘i=1, ey 15.

3.1 MV-optimal Designs for the One-way
Elimination of Heterogeneity

Our statistical setup is the same as given in Subsec-
tion 2.1. We note that any design which is A-optimal
among all designs having parameters v, b and
k and which estimates all contrasts of the form ¢; — ¢,
with the same variance will also be MV-optimal.
Thus we see that all designs given in Subsection 2.1
as being A-optimal are also MV-optimal because all
GDTD(v, b, k; t, §)’s estimate contrasts of the form
t; — t, with the same variance. However, Jacroux
(1987a) has developed some additional sufficient
conditions which can be. used to establish the
MV -optimality of various GDTD(v, b, k; x, z)’s which
cannot be proven to be A-optimal using any known
results. As an example of the types of results
which can be proven for MV-optimality, we have the
following.

THEOREM 3.1. Using the same notation as intro-
duced in Theorem 2.2, let d* be a BTIB(v, b, k; t, §)
where

n(t,§) = min{n(x, z): (x, z) € A,
(bk — bx — 2)/v is an integer}

and for positive integers p and gq, let B(p, q) denote
the smallest value of y such that

(1, —1)(_552 _‘zﬂ:) (_}) =< var( fd*i - fd*o)-

If for any (x, z) € A such that n(x, z) < n(t, §), it
holds that

VkB(x, z) < (bk — bx — z — vR(x, z))
- B(vkB(x, 2), (R(x,2) + 1)(k — 1))
+ (v—bk+ bx + z+ vR(x, 2))
- B(vkB(x,2), R(x, 2)(k — 1)),
then d* is MV-optimal among all designs.

Using some more complex computational tech-
niques, Jacroux (1987a) has obtained some further
results similar to Theorem 3.1 which can be used to
establish the MV-optimality of various GDTD(v, b, k;
t,5)shaving0 <A\, — A, < lor m = v/2, n =2 and
A2 = A — 1 whose A-optimality remains unknown.
For example, when v = 6, b = 11 and k = 3, as well as
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when v = 6, b = 16 and k = 4, an A-optimal design is
unknown. However, we are able to give designs whose
MV-optimality can be established using results such
as Theorem 3.1. These are exhibited below.

Example 3.1. v=6,b=11and k= 3.
000O0O0OOOOT1 4
1 112 2 23 33 2 5
4 5 6 4 5 6 45 6 3 6
This design is a BTIB (6, 11, 3; 0, 9) design.

Example 3.2. v=6,b=16 and k = 4.

000O0O0OOOOOOOOOOO OO
112313121212 1312
2 5 4 4 2 5 43 35 4 3 2 4 3 4
36 65 4605 6 4665 56 65
This design is a GDTD (6, 16, 4; 1, 0) having treatment

groups (1, 4), (2, 5) and (3, 6).

It is interesting to note that the design in Example
3.1 is an S-type BTIB design, while the design given
in Example 3.2 is a GDT.

3.2 MV-optimal Designs for the Two-way
Elimination of Heterogeneity

Again our statistical set-up is the same as that given
in Subsection 2.2. Using arguments similar to those
used in Subsection 3.1, we see that all of the A-optimal
row-column designs which estimate treatment con-
trasts t; — t, with the same variance will also be MV-
optimal. Thus all the A-optimal row-column designs
listed in Subsection 2.2 are also MV-optimal. In ad-
dition, a k X b array is MV-optimal if

(i) it is an MV-optimal block design for 1-way elim-
ination of heterogeneity with columns as blocks,
and

(ii) the total number of replications for each treat-
ment, test treatment or control, is divided equally
among the k& rows.

Example 3.3. For v =6,b = 16 and k = 4, the row-
column design given by

0 64503120056 20314
106 420531043%506 2
2103 4606332051405
352015 4046102630

is MV-optimal as shown in Jacroux (1986).

We close this section by noting that all of the
optimal designs given in this and the preceding section
.possess a high degree of balance in many respects. For
example, in terms of the number of replications for
test treatments, in terms of the number of joint ap-

pearances between the test treatments and the control
and between the test treatments themselves in blocks
or rows and columns, etc.

4. MODEL ROBUST OPTIMAL DESIGNS

There are circumstances in which the experimenter
is not sure whether to fit a one-way or a two-way
elimination of heterogeneity model to the data. For
example, the performance of several technicians are
being compared to the incumbent (control) and the
days of the week as well as the hours within each day
are the two possible sources of heterogeneity. In such
a situation it would be highly desirable to obtain a
design which is A- or MV-optimal under each of these
models. Hedayat and Majumdar (1988) studied this
aspect of the problem and gave some families of model
robust designs. The families were constructed using
the Euclidean plane, the projective plane and some
other geometrical structures. The exact description
of the families are somewhat involved; some typical
examples are given below.

Example 4.1. Let v = 4, k = 3 and b = 6. The
following design is A- and MV-optimal for both 1- and
2-way elimination of heterogeneity models:

1 03 4 20
03 42 01
4 2 0 01 3

In fact, this design is A- and MV-optimal for the 0-
way elimination of heterogeneity model as well.

Example 4.2. Let v ="T, k = 4 and b = 28. The
following design is A- and MV-optimal for both 1- and
2-way elimination of heterogeneity models:

0000000 123456717
1234567 0000000
2345671 23456171
4567123 4567123
1234567 1234567
2345671 2345671
0000000 4567123
4567123 0000000

Before closing this section we would like to mention
that the designs in families 1 and 2 in Subsection 2.2
are A- and MV-optimal under zero-way, one-way and
two-way elimination of heterogeneity models, whereas
the designs in family 3 are A- and MV-optimal at least
under one-way and two-way elimination of heteroge-
neity models. We would also like to mention that in
our settings, designs that are known to us to be A- or
MV-optimal in the n-way elimination of heterogeneity



470 A. S. HEDAYAT, M. JACROUX AND D. MAJUMDAR

are also A- or MV-optimal in the (n — 1)-way elimi-
nation of heterogeneity where n = 2, 1. However, a
general result of this nature has not been proven.

5. OTHER EFFICIENT DESIGNS

Even though, for each set of v test treatments there
is an A- or MV-optimal design for a zero-, one- or
two-way elimination of heterogeneity model, the task
of finding this design can be very difficult indeed. For
situations where an A- or MV-optimal design is un-
known, there are several alternative ways of planning
an experiment. Here are some possibilities.

5.1 Limit the Class of Competing Designs to a
“Reasonably Rich” Subclass, So That an A- or
MV-optimal Design within This Subclass Can
Be Constructed

For example, under a one-way elimination of het-
erogeneity model the BTIB designs form such a sub-
class. For v =3, b = 12, k = 2 the A- or MV-optimal
design is not available in the literature, but a design
which is A- and MV-optimal among all BTIB designs
is given by

00 0O0OO0OOO0OOT1I1 2
111222333233

This approach has been studied in Hedayat and Ma-
jumdar (1984) under the A-optimality criterion, and
some series of such designs have been catalogued.
Numerical evidence indicates that optimal designs
obtained in this fashion are generally highly efficient
in the class of all designs. There are, however, isolated
instances where they perform poorly. A similar study
for the MV-optimality criterion has been carried out
by Jacroux (1987b).

5.2 Search for an Approximately A- or MV-optimal
Design

This can be carried out in two steps. First compute

(5.1) (1) g(t, s) or (i) g(¢, s)/v
with
g(t, s) = minfg(x, 2) : (x, 2) € A},

where the function g(x, z) has been defined in Subsec-
tion 2.1. These give lower bounds to the values of the
A- and MV-criteria, respectively. The second step
consists of guessing a good design d based on available
theory. Compute the corresponding value of the
expression (2.4) or max;;<, var(tz — t5) for this
design and compare with the appropriate minimum
value given in (5.1). If the comparison is poor in the
opinion of the experimenter, then he should modify
his guess and try again.

Let us demonstrate this approach by an example.
Let v =21, b = 30 and k = 9. Here the minimum given

by (5.1(1)) is 2.589 and that given by (5.1(ii)) is
.1233. Our experience shows that BIB designs in the
test treatments augmented by one or more replications
of the control in each block are often highly efficient,
as seen in families 1 and 2 of Subsection 2.1. In our
case we can try a design, d, which is an ABIB(21, 30,
7; 2). For this design the value of (2.4) is 2.618 and
max, <<, var(tz — tz) = .1247, giving an efficiency of
at least 98.87% for both the A- and MV-optimality
criteria. So this is indeed a highly efficient design.
This approach of approximating an A- and MV-
optimal design by an augmented BIB design has
been studied by Stufken (1988).

Another method of tracking down a good approxi-
mation has been given in Cheng, Majumdar, Stufken
and Tire (1988). It consists of first determining the
point (¢, s) which minimizes the function g(x, z) given
in (5.1). In case a BTIB(v, b, k; t, s) exists, it is both
A- and MV-optimal. If it does not, then at least one
of the following two designs is expected to be a good
approximation:

(i) A design with the same number (bt + s) of repli-
cations of the control as a BTIB(v, b, k; t, s) and
which is “combinatorially close” to a BTIB design.

(ii) A BTIB design with the number of replications
of the control “close” to bt + s.

We demonstrate the idea by an example when v =
5,b =17 and k = 4. Here (¢, s) = (1, 0) and g(t, s) =
2.04. There is no BTIB(5, 7, 4; 1, 0). Consider the
following two designs:

0000000 0000001
df1111122 40011222
2233433 1334343
4545545 2455554

Here bt + s = 7, d; is a non-BTIB design with seven
replications of the control, whereas d, is a BTIB design
with eight replications of the control. The value for
expression (2.4) for d, is 2.058 giving it an efficiency
0of 99.2%. The value for expression (2.4) for d, is 2.143
giving it an efficiency of 95.2%. Thus both of these
designs are highly efficient under the A-criterion, d,
being the better of the two.

Finally, with the availability of today’s high-speed
computers and supercomputers, one can find an A- or
MV-optimal design by a complete search among all
possible designs if the parameters v, b and k are not
too large.

6. A- AND MV-OPTIMAL DESIGNS FOR TWO
OR MORE CONTROLS

So far we have been discussing optimal designs for
comparing test treatments with one control. There are
circumstances when the test treatments have to be
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compared with two or more controls. Suppose we
denote by S the set of all controls and by T the set of
all test treatments. Then, an A-optimal design is one
which minimizes

Y X Var(fdg - tAdh),

gES hEeT
and an MV-optimal design is one which minimizes

max var(ty — ta),
gES,heT

among all designs under a zero-way, one-way or two-
way elimination of heterogeneity model. Majumdar
(1986) has studied this problem, and has identified
designs which are A- and MV-optimal in various set-
tings. In this set-up the mathematical structure of
optimal designs is more complex and further research
needs to be done to better understand them. To give
the reader an idea about the nature of these designs,
we present an example of an A- and MV-optimal
design for one-way elimination of heterogeneity and
an example of a design which is optimal for each of
zero-, one- and two-way elimination of heterogeneity.

Example 6.1. Suppose four test treatments are to
be compared with three controls in 30 blocks of size 3
each under the one-way elimination of heterogeneity
model. Denoting the test treatments by A, B, C, D
and the controls by 1, 2, and 3 the A- and MV-optimal
design is:

112112112112111111

233233233233AAABBC

AAABBBCCCDDDBCDCDD
222222333333
AAABBCAAABBC

BCDCDDBCDCDD

Example 6.2. Suppose eight test treatments are to
be compared with two controls in a 12 X 12 array
under a two-way elimination of heterogeneity model.
Denoting the test treatments by A, B, C, D, E, F, G,
H, and the controls by 1, 2, the A- and MV-optimal
design is given by .

AB

Moo=~ TO"EHOOW

o= TIOQEEHDOQ

Wrroo=RRrTIQEEOO
QW oo~ T oOodEO
am@rroo~Rr~ToOMEH
HOQWrPoo=~=Tox
HEHOQ@E PO~ T
QEEHTQE P> oD = =T
TOoOHAEHOQWE>» OO~ —
FDIQEETOQE > DD
~FRIOQEEHTQW > oD
MR TOEEOOQOE >

This design is model robust in the sense of being A-
and MV-optimal for zero- and one-way elimination of
heterogeneity models as well.

7. BAYES OPTIMAL DESIGNS

In this section we look at the problem of finding
optimal designs for comparing test treatments with a
control, when prior information is available on the
parameters of the model. For mathematical tractabil-
ity, it is convenient to consider this approach in the
framework of “continuous” designs. This means con-
ceptually allowing the r;’s and the ng’s to be real
numbers and carrying out the optimization. In imple-
menting such optimal designs for the zero-way elimi-
nation of heterogeneity model it is necessary to round
the nonintegral r;’s to the nearest integers, keeping
the total number of observations in mind; for the one-
way elimination of heterogeneity model we have to
round the nonintegral ng’s to the nearest integers,
keeping the total number of observations in mind.

7.0 Bayes A-optimal Designs for Zero-way
Elimination of Heterogeneity

The model for the observations is assumed to be
Yaij = p + U + &y,

as in Subsection 2.0. We shall utilize prior information
available on the parameters

”’+t0’“+t1”"’”’+tv’

which represent the expected responses under the
treatments. We start by rewriting the above model in
matrix notation:

Yd = Adt + &,

wheret = (u + ty, -+, u+t,),e= (e, --+,¢&,)" and
Agis an n X (v + 1) matrix of zeros and ones. Here n
is the total number of observations. The (j, i) entry
of A, is 1 if the jth observation receives treatment

,,i=0,1, ..., v, and 0 otherwise.

The error distribution given t in the representation
of Y, is assumed multivariate normal,

(7.1) Yu|t ~ N(Ast, Ch);
and so is the prior distribution of ¢,
(7.2) t ~ N(p, Cy).

Then the posterior distribution of t is (cf. (7) of
Lindley and Smith, 1972)

t~ N(Bd)\d, Bd),
where

B;' = A/Ci'As + C3?
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and
)\d = A!{Cl_lyd + Cz_lﬂt.

Our objective is to estimate the vector of control-
test treatment contrasts, which can be written as

0 =Pt

where Pis the v X (v + 1) matrix defined in Subsection
2.1. To estimate 6 in a decision theoretic framework,
we assume the squared error loss,

L@, 0)=0@-6'6-0

where § is an estimator of 6. It is well known that for
a given experiment the standard Bayes estimator of ¢
is its posterior expectation PBs\, and the expected
loss with this estimator is trPB,P’, the trace of the
posterior dispersion matrix PB,P’. Therefore, we
shall choose a design d which minimizes

trPB,P’.

This approach was taken, for example, by Owen (1970)

in the context of one-way elimination of heterogeneity

model. This criterion is called Bayes A-optimality.
Let us illustrate this method for the special case

Cl = 02[, Cz = diag(co, C1y =, Cl).

Here the problem reduces to minimizing

v(pao + gm)™' + ¥ (pai + m)7
i=1
where pg; = rg/n, 1t =0, 1, ---, v, ¢ = ¢;/co and
m = ¢%/nc,. The quantities p;; are nonnegative real
numbers satisfying

Pio+Par+ - +pau=1,

because we are allowing the ry’s to be real numbers in
this continuous design approach. It is not difficult to
see that a Bayes A-optimal design is given by

Ty = npdoi, 1= O’ 1, e, U pdoo =1 _pdol’

Pat = -+ = Pap = (@(m — Vv) + D)(v + Vo)™~

Example 7.1. Let v=4and n = 36; m = Y%, q¢ = 3.
Then pay = Pa2 = Pdys = Pdys = 736, Pagp = ¥36. The
Bayes A-optimal design is rq; = rqe = ras = raa =7
and r4 = 8; the control is applied to 8 units and each
test treatment to 7 units. In case no prior information
is available, using the results stated in Subsection 2.0,
the A-optimal design consists of applying the control
to 12 units and each test treatment to 6 units.

Smith and Verdinelli (1980) took a somewhat
different approach to Bayes A-optimal designs.
Following Lindley and Smith (1972), they modeled

u:in (7.2) as

u: = A, ¥; A, is a known matrix
and ¥ ~ N(», Cs).

This is known as the hierarchical linear model. It
follows from (7.1), (7.2) and (7.3) that the posterior
distribution of t is (see (12) and (13) of Lindley and
Smith, 1972)

(7.3)

t ~ N(BlaAls, B2)
where
Bi' = AiCT'Ay + (Co + A;C3A5)™!
and
A = ALCTYY + (Co + A,C5A5) Agn.

In case the prior information at the third stage is
vague, i.e. C3' — 0, these expressions reduce to

4 =AsCT'Aq + C3}
— C3'Ax(A5C3A) A5 CE?
and
Ma = AiCT'Y.
The posterior distribution of ¢ becomes
t ~ N(BigMia, Bia).

For the hierarchical linear model with vague prior at
the third stage, a Bayes A-optimal design for estimat-
ing 0 = Pt minimizes trPB,;P’. For the special case

C, = ¢%l, C, = diag(co, c1, -

, (1 0 .. 0
Ai = (0 1 ... 1)’
Smith and Verdinelli (1980) shows that the problem
can be reduced to minimizing

) cl),

(1 —vpa) ' + (pa + m)™" + mlvpa(ps + m)]™!

over p, in the interval (0, v™"), where m = ¢/nc,, as
defined earlier. The value of p; which minimizes the
above expression is given as the unique root, p*, in
the interval (0, v™?), of the following equation in p,:

(ps + m)*(2vps — 1) — (v — 1)pi(1 — vps)? = 0.

We point out that this quartic equation differs from
the corresponding equation given on page 617 in Smith
and Verdinelli (1980). A Bayes A-optimal design d* is
given by

Fgrp =+ = Igny = NP*, raxg = n(1 — vp*).

Example 7.2. Let v = 4, n = 36, m = Y; the same
values as in Example 7.1. In this case p* = .141
approximately. After rounding off to the nearest
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integer, the Bayes A-optimal design d* is given by
Ta*1 = Tg*a = Iq*3 = I'gx4 = 5, I'gxo = 16. This means d*
allocates 5 units to each test treatment and 16 units
to the control.

7.1 Bayes A-optimal Designs for One-way
Elimination of Heterogeneity

The model for the observations is assumed to be
Yaijp = p + & + B + eijp,

as in Subsection 2.1. We shall utilize prior information
onyj=u+to+0,j=1,---,b,and b, =t; — ty, i =
1, . .-, v. In many experimental situations, the control
is a standard treatment which has been previously
studied in the blocks under consideration. This natu-
rally gives us a prior on v;, ---, v5. On the other
hand, the prior on 6,, - - -, 8, consists of our belief, or
the prior information available about the relative per-
formance of the test treatments with respect to the
control. The model for the observations can be rewrit-
ten as

Yaijp = 0: + v; + eijp
with6,=0,i=0,1,-.-. ,vandj=1,.--,b.
In matrix notation, the model is
Yd = Fd0 + G“y + ¢

where 6 = (01, ---,0,),vy=(v1, -+, vs)’, Fgis an
n X v matrix and G is an n X b matrix where n is the
total number of observations. The (I, i) entry of F; is
one if the Ith unit receives treatment i, i =1, ..., v
and zero otherwise. The matrix G can be written as

Ly 0 - 0
0~ 1, -+~ O

0 0 e 1,
by permuting the entries of Y, if necessary. The
symbol 1, stands for a & X 1 vector of 1’s. Here k,,
ko, -« -, ky are the block sizes. We are allowing for the
possibility that all blocks are not of the same size.

The error distribution given 6 and v in the repre-
sentation of Y, is assumed to be multivariate normal,

Yil0,y ~ NEF.0+ Gv, E);

so0 is the joint prior distribution of § and v,

()=~ 5))

where the vectors u,, u, and the positive definite
matrices E, T and B are assumed known. The posterior
distribution of 6 is

0 ~ N(Dde, Dd)

b

where
D;'=FyE + GBG')'F,+ T
and
M, =F,(E + GBG')™(Ys — Gu,) + T .

It has been pointed out by Owen (1970, page 1921)
and Giovagnoli and Verdinelli (1983, page 697) that
this derivation of the posterior with D, positive def-
inite is possible even in limiting situations when
T' — 0 and/or B™' — 0 provided rank (Fy: G) =
v + b, which means that all the parameters 6, - ..,
0y, Y1, +++ , Y are estimable. The limiting cases cor-
respond to assuming a vague prior on the parameters.

Our object is to estimate 6, the vector of control-
test treatment contrasts. The Bayes estimator of 6 is
D,M, with expected loss trD, under the squared error
loss L(é, 9)=6-06)06-06).A Bayes A-optimal design
is a design d which minimizes trD,. A study of the
problem of determining Bayes A-optimal designs has
been made by Owen (1970). We shall now outline
Owen’s results.

We start by assuming a structure for the matrix E,

E = GEG’ + A
where E = (e;;) is a symmetric matrix and
A = diag(eily,, - -

a diagonal matrix with diagonal blocks eI, ---,
es1i,. This means that the errors within block j have
variance (e; + e;;) and covariance e;;, whereas the
covariance between errors in blocks j and & is e,
j=1,.-.,b;h=1,...,b.

This structure of E implies that

D;'=-Fi(GHG' — A™)F;+ T!

where H™! = diag(ki ey, - - - , kvey) + diag(ey, - - - , €,)(B
+ E)~'diag(ey, - - - , e). Clearly, F,G is N, the matrix
obtained from the incidence matrix N, by deleting the
row corresponding to the control. Hence,

D;' = —=N,HN} + diag(as, +-+, o) + T

‘o ebIkb)$

where a = (o, -++, &)’ = Nyp with p = (e7?, .- -,
e;"'). We note that in the special case where T~ — 0,

B_l—)O, kl = e = kb, 91.= cee = eb= 0-2’ we get
62D;1 — (PC,P’)™', which appears in expression
(2.4).

In addition to the specified structure on E, we
assume that the 6’s have equal prior variances and
prior covariances. This means that for some 62 and p
(-w-1)7"<p<1),

T= 62((1 - p)Iu + pJuv)-

As mentioned in the beginning of the section, we will
extend the definition of the incidence matrix N, to
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include all (v + 1) X b matrices with non-negative real
entries. These matrices have been called approximate
or continuous block designs by Giovagnoli and Wynn
(1981).

The following theorem is due to Owen (1970, Theo-
rem 3).

THEOREM 7.1. If T = 6%((1 — p)I, + pdJ,,) and if the
numbers of observations to be allocated to the control
in each block is fixed, i.e., ngo:, -- -, naws are given,
then the Bayes A-optimal design is given by

Ngxjj = (kj - ndoj)/ v,

i=1---,v, j=1,.--,b.

In view of Theorem 7.1, the problem of finding a
Bayes A-optimal design reduces to finding an optimal
allocation of the control or any one test treatment to
blocks. Let x; = ngj, i=1, ---,v;j=1, ---, b. Then
trD, can be expressed solely as a function of x =
(x1, - -+, 2)’. Owen (1970) has given an algorithm for
determining the optimal x. This algorithm needs at
most b steps. Owen also gave explicit forms for x in
special cases. Here we quote the example given in
Owen (1970, page 1932).

Example 7.3. Let b = 4, k, = 100, k, = 120, k3 =
130, k, = 140. There are v = 9 test treatments and one
control, e; = 10, e; = 20, es = 30, e, = 40 and

1 —-02 02 -0.1
a-[-02 38 0o o1
0z 0o 2 03]
01 01 03 5
04 —02 03 0.2
g [-02 06 o1 o

03 01 08 -0.1
02 0 -01 1.0

6* = 0.25, p = 0.11.

The optimal allocation is x; = 10.98, x, = 13.00,
x5 = 13.93, x4 = 14.91. The nearest integer allocation
gives a design with the following blocks:

Block 1 has 11 units for each test treatment and 1 for
‘control,
Block 2 has 13 units for each test treatment and 3 for

control,
Block 3 has 14 units for each test treatment and 4 for

control,
Block 4 has 15 units for each test treatment and 5 for

control.

If no prior information is available then the optimal
allocation will be

Ng+oj = ‘/;nd‘ij = 3ng+;

fori=1,---,v;5=1,--.,b.

A careful study of the problem of finding optimal
block designs for comparing test treatments with a
control using the “continuous” design approach, in
case no prior information is available has been made
by Giovagnoli and Wynn (1985a).

Giovagnoli and Verdinelli (1985) investigated Bayes
A-optimal designs for the one-way elimination of het-
erogeneity model in the hierarchical linear model of
Lindley and Smith (1972). Toman and Notz (1987)
have recently extended Bayes A-optimality results to
two-way elimination of heterogeneity models.

8. HISTORICAL REVIEW

Cox (1958, page 238) advocated augmenting a BIB
design in test treatments with one or more replications
of controls in each block as a means of getting good
designs. He neither formally mathematized the prob-
lem nor gave any justification for his suggestion. How-
ever, based on what has been developed during the
past several years, we know that this is an excellent
method of getting efficient designs in many cases.
Fieller (1947) gave a solution for A-optimal designs
for the zero-way elimination of heterogeneity model
which is applicable when v is a square. Pearce (1960)
proposed a class of designs for comparing test treat-
ments with a control and gave their analysis for the
one-way elimination of heterogeneity model. Freeman
(1975) studied some designs for comparing two sets of
treatments for the two-way elimination of heteroge-
neity model. Pesek (1974) compared a BIB design
with an augmented BIB design, as suggested by Cox
(1958), in estimating control-test treatment contrasts
and noticed that the latter was more efficient. Das
(1958) has also looked at augmented BIB designs.

Bechhofer and Tamhane (1981) were the first to
study the problem of obtaining optimal block designs.
However their optimality consideration was neither
A- nor MV-optimality, but for the problem of obtain-
ing optimal simultaneous confidence intervals under

" a one-way elimination of heterogeneity model. Their

discoveries led to the concept of BTIB designs; Notz
and Tamhane (1983) studied their construction.
Constantine (1983) showed that a BIB design in
test treatments augmented by a replication of the
control in each block is A-optimal in the class of
designs with exactly one replication of the control in
each block. Jacroux (1984) showed that Constantine’s
conclusion remains valid even when the BIB designs
are replaced by some group divisible designs.
Majumdar and Notz (1983) gave a method of ob-
taining A- and MV-optimal designs among all designs
for the one-way elimination of heterogeneity model.
Hedayat and Majumdar (1984) gave an algorithm and
a catalog of A- and MV-optimal designs and studied
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approximations. Ture (1982, 1985) also studied A-
optimal designs and their approximations and con-
struction. Hedayat and Majumdar (1985) gave families
of A- and MV-optimal designs. Notz (1985) studied
optimal designs for the two-way elimination of heter-
ogeneity model. Majumdar (1986) considered the
problem of finding optimal designs for comparing the
test treatments with two or more controls.

Jacroux (1987a, b, 1988a) gave new methods for
obtaining MV-optimal designs under one-way elimi-
nation of heterogeneity models, gave catalogs and
studied approximations. Jacroux (1986) studied opti-
mal designs for two-way elimination of heterogeneity
models, utilizing techniques of Hall (1935) and Agar-
wal (1966). Hedayat and Majumdar (1988) studied
designs simultaneously optimal under both one- and
two-way elimination of heterogeneity models. Jacroux
(1988b) generalized the Hedayat and Majumdar
(1984) algorithm for finding A-optimal designs.
Cheng, Majumdar, Stufken and Tire (1988) gave new
families of A- and MV-optimal designs and some
approximations for one-way elimination of heteroge-
neity models. Stufken (1986, 1987, 1988) studied
A- and MV-optimal designs for one-way elimination
of heterogeneity models, gave families and studied
approximations.

There are many other design settings in which it
would be useful to identify optimal designs for com-
paring test treatments with controls. One such setting
is that of repeated measurements designs. Some as-
pects of optimality and construction of designs in this
area have been investigated by Pigeon (1984), Pigeon
and Raghavarao (1987) and Majumdar (1988).

Giovagnoli and Wynn (1985a) studied A-optimality
of designs for one-way elimination of heterogeneity
models set in the context of approximate theory, i.e.,
with an infinite number of observations. Christof
(1987) made some further investigations along these
lines. Spurrier and Edwards (1986) did a similar study
for optimal designs for finding simultaneous confi-
dence intervals.

Bayes optimal designs have been studied in the
context of approximate theory. Owen (1970) studied
Bayes A-optimal designs, Giovagnoli and Verdinelli
(1983) studied Bayes ¢, criteria, including D- and E-
optimality. Verdinelli (1983) gave methods for com-
puting Bayes D- and A-optimal block designs, and
Giovagnoli and Verdinelli (1985) investigated the
Bayesian approach under a hierarchical linear model.

This area of research continues to grow in several
directions. Among some recent technical reports are:
Toman and Notz (1987) on Bayes A-optimal designs
for two-way elimination of heterogeneity models; Ting
and Notz (1987a) on optimal designs for two-way
elimination of heterogeneity models; Ting and Notz
(1987b, 1988) and Jacroux and Majumdar (1987) on

optimal designs for one-way elimination of heteroge-
neity models with & > v.

It seems appropriate to make a comment on ran-
domization. In running optimal designs we often have
to follow a well structured pattern. This does not,
however, mean that there will be no room for random-
ization. The labelling of the treatments, experimental
units under a zero-way elimination of heterogeneity
model, blocks under a one-way elimination of hetero-
geneity model and rows and columns under a two-
way elimination of heterogeneity model can be
randomized.
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