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Rejoinder

J. O. Ramsay

The discussants have extended the article in a num-
ber of useful directions, indicated some possible limits
on its applicability, corrected some inaccuracies and
asked some fascinating questions. Whatever the mer-
its of the article, I take considerable satisfaction
in providing the occasion for so much fine commen-
tary. I will only add a few more remarks for further
clarification.

Much attention is given to comparing regression
splines and smoothing splines in the context of the
linear smoothing of a bivariate relationship. Although
this discussion is illuminating and useful, this problem
is not the focus of the article, as was indicated at the
beginning of Section 4. Rather, my concern was with
the simultaneous nonlinear estimation of a number of
transformations given a limited amount of data. In
this context, simplifying assumptions or constraints
such as monotonicity and knot placement with only a
limited data dependency become important in order
to reduce tendencies to over-fit as well as to give some
protection against algorithmic instabilities such as
that illustrated for ACE. As Wahba has indicated,
simultaneous curve estimation is not as well under-
stood, although much progress has been made in the
additive model. Comparatively simple procedures such
as those presented in the paper should offer useful
benchmarks against which more sophisticated propos-
als can be assessed. Thus, the spirit of the article is
closer to that of Box and Cox (1964) than to the large
smoothing spline literature.

What is the essential difference between regression
and smoothing (or interpolation) splines? In both
cases data transformations are defined as linear com-
binations of certain basis functions. In either case the
role of the data in defining the basis depends on how
knots are chosen. The more knots and the more data-
driven the procedure for positioning knots, the more
dependency there is. Eubank and others are right to
caution that adaptive knot positioning can be essential
in some situations. In others simple procedures such
as positioning at quantiles will suffice, and a variety
of methods have already been explored to permit the
user to detect when this is so.

The basis for natural smoothing splines in the con-
text of the bivariate relation {x;, y;| i=1, - - -, n} is the
set of n functions k(x;, x), where k is the bivariate
reproducing kernel associated with the Hilbert func-
tion space underlying the nature of the smoothing
process. Kimeldorf and Wahba (1971) and Besse and
Ramsay (1986) discuss the relationship between L-
splines and reproducing kernel Hilbert spaces. Thus,
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in all but exceptional cases the matrix of basis func-
tion values k(x;, x;) for smoothing splines has rank
equal to the number of observations.

For regression splines the matrix of basis function
values will in general be of much smaller rank because
the number of basis functions is as a rule rather less
than the number of values x;. Computational consid-
erations thus tend to favor regression splines when
the number of estimated curves is large and/or it is
desirable to keep the number of estimated coefficients
small.

On the other hand, Hastie and Tibshirani have
provided a needed correction in pointing out the dif-
ference between rank and the number of effective
degrees of freedom, and Buja, Hastie and Tibshirani
(1988) is commended to the reader’s attention. The
situation is analogous to regression in the presence of
a large number p of highly collinear predictors. Assum-
ing that variation associated with very small singular
values of the independent variable data matrix has
little predictive value, the effective number of inde-
pendent variables can be much smaller than p, and
some rank reduction procedure such as regression on
principal components can be very effective.

Is monotonicity really a useful feature? Although
Breiman, Hastie and Tibshirani are not convinced, we
can perhaps leave this to users to decide. Nevertheless,
there are situations such as dose-response curve esti-
mation where inversion of the transformation is es-
sential, just as there are others where one should at
least consider a comparison of nonmonotone and mon-
otone transformations. Moreover, as noted above the
imposition of monotonicity is itself a sort of smoothing
procedure which can be helpful, especially when more
than one transformation is being estimated.

I do agree that we know relatively little about inter-
val estimation in this field, and I thank the discussants
for some needed cautionary remarks. However, when
interval estimates based on relatively restrictive as-
sumptions such as conditioning on specific parametric
families and using asymptotic arguments still show
that a transformation is poorly estimated, as was the
case for displacement in the automobile regression
example, we can be reasonably confident that better
techniques will not change the picture, and something
useful has therefore been learned.

Breiman wonders why maximum likelihood esti-
mation is favored rather than least squares, and in
fact ACE and other techniques designed to deal with
the generalized additive model tend toward the min-
imization of the ratio of error sum of squares to the
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variance of the transformation f, of the dependent
variable y. This is a critical issue because transfor-
mation of the dependent variable affects the criterion
itself in ways rather different from what is familiar in
conventional linear modeling. This is reflected in the
fact that MLE appends a Jacobian term to the error
sum of squares in the log likelihood (7) for Gaussian
error. Failure to do so can result in serious bias (Ram-
say, 1977), and it is not clear to this author what the
rationale for minimizing a variance ratio or maximiz-
ing squared correlation is when y is transformed.

To illustrate this problem, consider the results of
the following modest simulation study. The three vari-
ables from the automobile data analyzed in Section
4.3 on the monotone spline regression were used to
generate 100 simulated sets of data as follows. For
each simulated sample, independent Gaussian errors
with mean zero and standard deviation 0.174 were
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added to the 44 values of the sum of transformed
values of displacement and weight. The transforma-
tions f; and f, used were those estimated for the
original data and shown in Figure 5, and the error
level was that estimated for these data. The perturbed
values were then back-transformed to yield simulated
city gas consumption values

yr = fallfl(xrl) + f2(xr2) + er], r= 13 MY 443

with f, being that estimated for the original data.
Each of the 100 simulated samples was then
analyzed using four procedures: (1) MLE as de-
cribed in the article, (2) minimizing error sum of
squares S(y, x; a, ), (3) minimizing the variance ratio
S(y, x; a, 0)/Var[fy(v)] and (4) ACE. The extent to
which the four procedures were able to recover the
dependent variable transformation f, is displayed
in Figure 1, which shows for each value of y the

o
o
|

Transformation
o
IS
{

Variance
Ratio

T T T T 1
=) 12 15 18 21 24
City Gas Consumption

(1/100km)

Transformation

T T T T ml
=) 12 15 18 21 24
City Gas Consumption (1/100km)

FiG. 1. Results for the transformation of city gas consumption from analyzing 100 simulated sets of automobile data by four procedures:
(1) monotone spline regression of simulated city gas consumption on displacement and weight using maximum likelihood estimation, (2) mini-
mizing the ratio of error sum of squares to variance of transformed y, (3) minimizing error sum of squares and (4) ACE. For each value of y the
minimum, 25%, median, 15%, and maximum estimated transformation values are indicated by dashed curves, and the true transformation by
the solid curve. Vertical dashed lines for the monotone spline regressions indicate knot placement.
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minimum, 25%, median, 75%, and maximum values
of fo(y) across the 100 analyses (dashed lines) as well
as the actual transformation used (solid line). In the
case of ACE, which uses a different normalization
procedure, estimated transformation values were first
matched to the true transformation values by least
squares before assessment.

Maximum likelihood estimation works well in the
sense that the true curve lies within the 25% and 75%
values (the cross-hatched area) almost everywhere,
and the variability seems reasonably small and quite
consistent with the asymptotic estimates shown in
Figure 5 of the article. Minimizing the variance ratio,
on the other hand, produces large sampling variability
and a suggestion of considerable bias. Worst of all is
least squares estimation, and this is a consequence of
that the fact that the error sum of squares can be
partially reduced in the absence of the Jacobian term
by compressing the variation in fy(y). ACE results are
similar in terms of bias to those of variance ratio
minimization because it, too, uses this criterion. I
conjecture that this bias is at least partly due to the
fact that the variance ratio can also be reduced some-
what by compressing variation in f, for the data in the

central portion of their distribution while leaving
Var[f,(y)] constant by expanding the tails.

To conclude my response, the techniques in the
paper, although possibly not competitive for the linear
estimation of a single transformation with possible
local high curvature, appear to have a useful role when
many transformations are being estimated (transfor-
mation to multinormality, extensions of familiar mul-
tivariate procedures, estimation of item characteristic
curves, etc.), where computational considerations are
critical, and where the amount of data available gives
concern about overfitting. But we have much to learn,
and it is a pleasure to acknowledge the importance of
the discussion.
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