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I studied statistically simulated Poisson Dirichlet tes-
sellations, in particular the point process of vertices
of cells. Surprisingly we found that the corresponding
second-order product density o (r) has a striking form:
it seems to be true that
ling p(r) = oo,

or, at least, p(0) seems to be very great. Usually, such
behavior of a product density is an indicator of a high
degree of clustering. By visual inspection of some
simulated tessellations we found that clusters of ver-
tices in the usual sense of the word are not typical for
these tessellations, but there appear frequently very
short edges (of otherwise “normal” cells) or pairs of
vertices very close together.

With respect to statistical shape problems related
to “landmarks” in the sense of Bookstein (1978, 1986),
I should like to ask the following question. Imagine
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It is appropriate that Professor Bookstein should
open this discussion in view of the importance of his
work and the great influence that this has had through
his own presentation in Statistical Science and his
earlier 1978 monograph. I was already deeply involved
in shape theory when I first read the latter, but did
not at that time foresee how closely our two different
and differently motivated approaches would converge.
It is all the more valuable, therefore, that he has
generously taken the time and trouble to survey their
current interactions and differences of emphasis. His
remarks will deserve careful study.

Professor Small’s contribution is full of wise in-

sights, and novel suggestions are made that I shall’

think about deeply. “Projection-pursuit” viewing of
higher dimensional shape manifolds may well be a
reality a few years from now. My current practice, not
so technologically ambitious, is to try to understand
these spaces as thoroughly as possible, and then to
seek dimension-lowering projections that retain the
important information and make it visible in a helpful
way. One example of such a procedure will be found
in my contribution to the discussion on Bookstein’s
1986 paper referred to above. Of course I agree with
the remarks that he and others have made about the
advantages of having a variety of visual displays avail-
able. I recall that Kipling wrote a fine poem on a
similar topic many years ago.
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three nonintersecting circles in the plane. Take a
random point in each of the circles, for example uni-
formly or with respect to any distribution. Form the
triangle having the three points as their vertices. Is it
possible to give the corresponding shape density?
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Professor Mardia’s contribution was a shock to me
because I did not expect to see so beautiful a solution
as that found by Mardia and Dryden to the important
problem they have studied. It makes one ask, why is
it so beautiful? What has happened to all the horrible
noncentral x?’s? Of course the Gaussian distribution
never ceases to spring surprises on us. I discussed
Mardia’s remarks with Wilfrid Kendall, and it oc-
curred to us that a dynamic approach might at least
“explain” what lies behind such a nice formula. So
here are a few remarks intended only to illuminate
the anatomy of the problem.

To start with it will be necessary to change the
notation a little. We identify Mardia’s « with s3/(4c?t),
where c is a diffusion constant, ¢ is the time elapsed
during the interval considered and s, is a linear mea-
sure of the size of the triangle Ay = (A4, By, Co) at the
beginning of that time interval. The Mardia-Dryden
formula then gives the law of distribution of the shape
at the end of the time interval when we know what
the shape was to start with. Notice that in this for-
mulation it is no longer necessary to exclude 4, =
B, = C, as a possible initial shape, for then s, = 0, and
this makes « = 0, and then the Mardia-Dryden formula
tells us that the distribution of size at the end of the
interval is uniform over the sphere, as it ought to be.

More generally let us write {(t) for the shape of
A, = (A, B;, C,) at time ¢, this being undefined at
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t = 0 if the size s, is then zero. We let the points
A, B and C perform independent standard plane
Brownian motions with no drift and with diffusion
constant c, starting at Ay, B, and C,, and we look at
the situation after a positive time ¢ has elapsed, when
we have a new labeled triangle A, = (4,, B;, C) with
size s(t) and shape {(t). Their problem was to find
the law of distribution of ¢(¢) for this given ¢t > 0 when
¢(0) is given.

It is actually easier to think first about the stochas-
tic motion performed by (s(t), {(t)) on the size and
shape space, which we know to be a cone with =3 =
S2(14) as unit section. The vertex of the cone corre-
sponds to the situation A = B = C (almost surely only
possible when t = 0). This combined size and shape
process is known to be a diffusion, and it is a skew
product factoring into a Bessel-type process on the
generators (for size), and driftless spherical Brownian
motion on the (spherical) cross sections (for shape),
that spherical Brownian motion being described at a
random rate dr/dt inversely proportional to the cur-
rent squared size s2 of the triangle. This decomposition
was hinted at in my 1977 note, and happily we now
have a thorough analysis by W. S. Kendall (1988) in
Advances in Applied Probability.

The formal solution to the dynamic form of the
Mardia-Dryden problem is thus to write down the law
of distribution of @8(r) for given 7 > 0, where § is
spherical Brownian motion on the sphere =3 starting
at ¢(0), and then for given t to integrate out the
dependence of B(7(t)) on the elapsed random-clock-
time 7 (), using what we know about Bessel processes.

The result, for a fixed ¢ > 0, ought to be the Mardia-
Dryden law when reexpressed in the new notation. In
fact it turns out that this diffusion approach really
does work, and I have now pushed it through to get a
stochastic calculus proof of the Mardia-Dryden result.
Details will appear elsewhere, and perhaps will suggest
higher dimensional generalizations.

I am grateful to Mardia for taking up my remarks
about Central Place Theory (which, until the statis-
ticians began to interfere, did not seem to have much
theory in it). I hope that we can follow up some of his
suggestions together. ’

I am delighted that one of my collaborators of long
standing has chosen to write on the general philosophy
of the use of computer algebra in stochastic science. I
have found it helpful to match complicated calcula-
tions with parallel simulations, in order to cover the
risk of not detecting gross errors (say extra factors of
2), and because such a practice can alert one to aspects
of a problem that have been overlooked. With the
arrival of computer algebra we have a second such
“automatic colleague” skilled in the development of
asymptotic formulae, able to tell at a “glance” whether
two monstrous expressions are indeed equivalent, able

also (with some persistent and inspired prodding) to
“simplify” expressions and so forth. Wilfrid Kendall
has now taken us a stage farther along that road,
pointing out that computer algebra can be trained to
be a good sniffer-out of unsuspected structures, al-
though emphasizing that like all good colleagues it
will make its most fruitful discoveries when supplied
with well chosen hints. And if the hints turn out to
have been unhelpful one can try again, knowing that
computer algebra can wipe out the past at will, and so
need not be prejudiced by false starts. What can be
done when computer algebra is teamed up with a
human expert is well shown in his research into shape
diffusions, and we are lucky that he has documented
the “learning” route with such helpful comments, and
so supplemented in a most valuable way the necessar-
ily terse style of the manuals.

Professor Watson rightly reminds us of the antiq-
uity of geometrical stochastics in the sense that some
specific problems ante-date its present general for-
mulation. One needs to keep a sense of proportion
when writing the history of a mathematical topic.
Sometimes one is left wondering whether anything at
all is really new. But this is an over-reaction; the
problems have always been there, and have provoked
reactions from time to time, but in most cases it has
taken decades if not centuries for the language to have
been developed in which to pose such questions in
their natural form. Thus, Woolhouse in 1863 calcu-
lated for arbitrary a and b the chance that three points
iid uniform in a rectangle of sides a and b will be the
vertices of an acute-angled triangle. At first this seems
like a demonstration that what we here call shape
theory existed 125 years ago. But that this is a mis-
taken view is made clear when one notices that the
article just quoted forms one of a series of papers by
various writers including a ‘“proof” that three points
taken iid “uniformly in space” have a zero chance of
forming an acute-angled triangle! Of the numerous
valid variants of that improper problem today, the
most attractive is: three Brownian particles set out at
time ¢t = 0 from a given point in the plane; show that
at any given later time ¢ there is a chance % that they
form the vertices of an acute-angled triangle. The
proof takes just one line—but it makes use, implicitly
or otherwise, of several branches of mathematics de-
veloped during the last century.

I am relieved that Watson finds shape theory diffi-
cult. So do I, and until his reassuring remarks I
thought that this was merely a reflection of my own
antiquity. He will be happy to learn that the first (a
basic part) of the forthcoming book will be really
elementary, being based on a lecture I have to give to
school children later this year. (Of course “elemen-
tary” does not necessarily mean “uncomplicated.”) I
agree that it is helpful to have several different sets of
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shape coordinates, because different sets are conven-
ient for different purposes. But two basic facts should
not be forgotten. If we wish to keep to a metric directly
related to the procrustean distance, then there is no
question about it; we have to use the spherical repre-
sentation for three points in two dimensions, and the
appropriate complex projective representation for k
points in two dimensions. If on the other hand we are
primarily interested in (say) the possible occurrence
of “hot spots” in the distribution on shape space, then
we can use any convenient representation diffeo-
morphic (but not necessarily isometric) with the
standard one provided that the “null” distribution as
seen in a plotted simulation looks sufficiently nearly
uniform in the relevant region. To indicate something
of the variety of possible visual displays, here (Figure
1) is a collection of triangle shapes each one of which
sits at its proper position on the sphere S?(1%2), and
here (Figure 2) is the distribution on that shape space
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of a large iid sample from a plane Gaussian law with
o, = 50,. In each case the picture is to be interpreted
as a three-dimensional one, and the viewer must bear
in mind that, to the untutored eye, a uniform law on
the surface of a sphere looks as if there were an
enhanced density near the rim of the sphere. This
reminds us that a proper education of the eye is
essential to good practical geometric statistics. In this
example the “hot belt” around the collinearity locus
is easily recognizable, and is a genuine (and scarcely
surprising) consequence of the fact that we made
oy/0; = 5.

I am fascinated by Watson’s problem of the cubic
with random complex coefficients ¢, = a, + ib, where
all @’s and b’s are iid Gaussian. How about starting
with a nice large simulation, the shape of each trian-
gle-of-roots (z;, 2, 25) being displayed on S2(}%) as
above? It might be worth plotting separately those
root triplets having different graded values of the size

DGK DIAGRM #rHYS FIGURE DE

F1G6. 1. Some triangle shapes at home in the shape space. The shaded half-lune is the customary basic region.
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F1G. 2. Shapes of triangles with iid vertices from #(0, 0; 1, 5).

variable VY | (z — ¢) |2, where { = %Y 2;. I look forward
to seeing more of his work on this topic.

Dr. Stoyan has raised a large number of points and
queries, and it will be impossible to deal with them all
here, but I much value his interest both for its stim-
ulating character and because his remarks illustrate

“well the splendid work in stochastic geometry by
Stoyan and his colleagues in the DDR. Solutions to
some of these problems using the powerful techniques
of stationary point processes will certainly be useful,
although we must of course remember that few things
in life are really stationary. With regard to his sugges-
tion about the rhomb, my preference is for a “trap”
such as is shown in Figure 3. This is designed to catch
near collinearities although 'excluding those that are
better described as near coincidences (of two of the
three vertices). It can conveniently be employed with
the (x, y)-plots used by Huiling Le and myself, partic-
ularly because from her work we now know that the

“uniform in a convex polygon” model tends to give an
almost constant shape density (relative to dxdy) in
such a rectangular trapping region.

I agree that “random Dirichlet cells” forms a rich
topic. Formally this should be studied on CP*, but as
a start, how do we modify that shape space so that it
contains only the shapes of the convex labeled poly-
gons? It seems worth remarking that the Dirichlet
cell is more nearly dual to the whole collection of
Delaunay cells that meet at a point—and as I have
remarked in the paper, we know little about that
at present. Another approach would be to condition
the shape of the Dirichlet cell on the number of its
vertices.

For the last problem proposed in Stoyan’s contri-
bution one should point to the work of Mardia and
Dryden referred to elsewhere in the discussion and in
this reply. It appears that the switch from disk distri-
butions to Gaussian ones simplifies the question
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DGK DIAGRM #<E]1 FIGURE H A

FIG. 3. A trapping region for collinearity testing (not to scale).

dramatically, and perhaps this alternative model
would be equally appropriate for his purposes.

Finally I should like to add a special word of thanks
to Morris DeGroot for his invitation to me to write
this paper, and for his conviction, now splendidly
vindicated, that it would generate a lively and inter-
esting discussion.
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