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genius of Keynes was applied elsewhere, and the soli-
tary Edgeworth was at the end of his long career.

(4) Textbooks on probability by the mathemati-
cians Whitworth, Burnside and Coolidge gave exam-
ples on the probabilities of causes suitable only for the
examination room. In view of the title of SMSI, there
are better reasons for inspecting how inverse proba-
bility was treated in textbooks on statistics, or on
topics that are statistical in nature. A short list for
the period between 1880 and 1930 might include the
following books, detailed references for which are
scarcely necessary: M. Merriman (1884); A. L. Bowley
(1901); G. U. Yule (1911); D. Brunt (1917); E. T.
Whittaker and G. Robinson (1924); R. A. Fisher
(1925); H. L. Rietz, (1927). The choice of Statistical
Methods for Research Workers seems appropriate.
This book made a fundamental break with tradition
(Yates, 1951), and successive editions tolled the death

Comment

G. A. Barnard

In drafting these comments I have had the advan-
tage of seeing Robin Plackett’s, with which I broadly
agree. Matters are indeed complex.

I beg to differ from Zabell when he writes that in
1930 “Fisher and Neyman simultaneously (my stress,
G. A. B.) administered a nearly lethal blow to Bayesian
statistics, one from which it was not to recover until
the publication . . . of Savage’s Foundations of Statis-
tics in 1954.” Neyman’s continued interest in Bayesian
methods in 1929, correctly noted by Zabell, is hardly
consistent with his having shared in giving them a
near lethal blow the following year. But Fisher’s rejec-
tion of inverse probability, in the sense used here, is
already quite clear in the paper of 1912 to which Zabell
refers. The most important difference between ‘prob-
ability’ and Fisher’s ‘likelihood’ as a measure of cred-
ibility of statistical hypotheses is that ‘likelihood’ does
not obey the addition laws—as Fisher was wont to
say, “the likelihood of H or H’” is, like “the height of
Peter or Paul,” meaningless unless it is specified which
of the two is meant. In the final paragraph of his 1912
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knell of inverse probability for all to hear. The math-
ematician Neyman seems to have been rather hard of
hearing. But Harold Jeffreys firmly rejected the claim
and he carried the banner of Bayes and Laplace until
the next generation was ready to take over.
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paper, Fisher specifically says that what he has been
calling “probability” is not to be understood as capable
of summation over a set of alternative hypotheses.
True, he does not put forward the term ‘likelihood’
until 1921, but the difference of concept is already
there in 1912.

Fisher clearly persuaded Egon Pearson, who in turn
eventually persuaded Neyman to abandon Bayesian
methods, though, unlike Pearson fils, Neyman never
accepted likelihood as a valid measure of credibility
distinct from probability. Neyman’s view of the
Neyman-Pearson theory had strong “decision” as-
pects, while Pearson’s view was always more flexible.

But “eclipse” does not seem appropriate to describe
the state of a theory which, through the 1930’s and
later continued to have the support, not only of
Jeffreys, but also of such other leading users of statis-
tics as Haldane and Gini. In 1940 Deming caused to
be published a reprint of Bayes’ paper of 1763, and in
his introduction E. C. Molina makes it clear that
Bayes’ ideas continued to demand attention. Frank
Yates’ contribution to discussion of a paper of mine
in 1946 shows Fisher’s most distinguished co-worker
in statistics agreeing with a Bayesian approach to
problems of a certain type. When Maurice Frechet
organized a discussion on statistical inference for the
1949 Paris International Congress on the History and
Philosophy of Science, it was natural for him to invite

[Za

)

g

Statistical Science. RIKOIS ®

WWw.jstor.org



FISHER’S HISTORY OF INVERSE PROBABILITY 259

Fisher, Neyman and de Finetti as principal speakers,
though Fisher was unable to attend. I. J. Good’s Baye-
sian Probability and the Weighing of Evidence was
published in 1950. The decade beginning in 1949 saw
the publication in the Royal Statistical Society’s Jour-
nal of a series of discussions of foundational questions
in which various types of Bayesian and other ap-
proaches to inference were put forward.

It was in reaction to such discussions and to criti-
cisms of his ‘fiducial argument’ that Fisher, at the age
of 65, was induced by his friends to write Statistical
Methods and Scientific Inference as a general account
of his views up to that time. These continued to
develop, as the successive editions show. Those of us
who read many of the chapters in draft took Chap-
ter II, as its title indicates, to be a sketch of “The
Early Attempts and their Difficulties” as Fisher saw
them. Viewed in this way, it seems to me to stand up
better than Zabell suggests. After Boole discovered his
“general theorem of development in Logic” he saw, as
did Carnap nearly a century later, that use of his
theorem may sometimes enable us to enumerate

. “equally possible cases” in a nonarbitrary way. But
the footnote to his later paper which Zabell quotes
makes clear that Boole did not retract his statement
in “The Laws of Thought,” that “when the defect of
data is supplied by hypothesis, the solutions will, in
general, vary with the nature of the hypotheses as-
sumed.” Section 21 of Chapter XX of Boole’s book
remains a very powerful caution against the abuse of
Bayes’ theorem in areas of natural science where
objectivity is a primary aim. He indicates very clearly
what we can, and what we cannot, derive from the
theorem.

The attention Fisher pays to Venn and to Chrystal
seems odd nowadays. While Venn’s book was popular
and influential in its day, his exposition is shallow
compared with that of Boole or of the Reverend Leslie
Ellis. But Venn was President of Fisher’s Cambridge
College throughout Fisher’s student career, while a
mastery of Chrystal’s Algebra was essential to success
in the early part of the Mathematical Tripos. Its
“reign” in this respect was only just ending when I sat
for the Cambridge scholarship examinations in 1932.
This goes some way to account for Fisher’s use of the
word “dramatic” in the address to a broad audience at
Michigan State University of 1957. The misspelling
there of “Crystal” suggests that Fisher’s proofreading
was there somewhat below his usual standard.

As Plackett says, Fisher’s work needs to be read
with caution. Care is also needed, as is indicated, for
example in Barnard (1987) where failure by both
D. V. Lindley and myself to notice a cross heading
showing that the case in question was one where the
available observations were of two different kinds led
to serious misunderstandings.

Plackett has pointed to the rediscovery of Mendel-
ism in 1900 as an influence on Fisher’s thinking. It is
to be regretted that Fisher inserts his highly signifi-
cant reference to Mendelism into his section on Boole,
instead of making clear its importance by devoting to
it a section on its own. To paraphrase Fisher’s exam-
ple, we are interested in a black mouse, B, which may
be homozygous (§ = 1) or heterozygous (§ = 2). To
test for heterozygosity, we mate B with a brown mouse
and obtain the result E: All seven offspring are black.
Mendel’s laws tell us that Pr{E |6 = 1} = 1 while
Pr{E| 0 = 2} = 1/2". If = denotes the prior probability
that B is heterozygous, i.e., that 6 = 2, we have, by
Bayes’ theorem,

w/128
/128 + (1 — =) - 1°

Prip = 2| E} =

If one of B’s parents was known to be brown, or if
each of its two black parents was known to have
produced some brown offspring, then we would know
from Mendel’s laws that = = %3, and given the exper-
imental result E we could then infer that the proba-
bility that B is heterozygous is Ys. As Fisher says,
“cogent knowledge a priori would have been available
and the method of Bayes could properly be applied.
But if knowledge of the origin of the mouse tested
were lacking, no experimenter would feel he had war-
rant for arguing as if he knew that of which in fact he
was ignorant.” All we can say on the basis of the result
E alone is that the likelihood ratio for # = 1 against
0 = 2 is 1284, Computations such as these are routine
in pedigree analysis. They would have been familiar
to young Fisher, who entered Cambridge as an under-
graduate the year after Bateson, Mendel’s great cham-
pion, was appointed to the chair of biology. Young
Fisher soon became himself a champion of Mendelian
ideas and the fact that “likelihood” does not obey the
addition rule of probability would thus have been
obvious in this context. If we knew =, we could specify
the probability that the result of a further crossing of

B with a brown mouse would be brown; but without

knowledge of B’s provenance this would not be pos-
sible. The two available likelihoods of # = 1 and § = 2
could not be meaningfully added.

In the 1958 talk (Collected Works 272) to which
Zabell refers, Fisher stresses that the interest in the
theory of probability shown by the “old masters”
Fermat, Pascal, et al. was associated not only with the
high social status of gamblers but also with technical
developments that enabled highly accurate unbiased
dice, etc. to replace primitive knucklebones. A throw
of such unbiased dice provides a model of an “experi-
ment” in which there are several possible outcomes,
each arising with a precisely defined probability. Men-
delism was the first theory arising in natural science
for which such experiments form the standard



260 S.ZABELL

model—given the genetic constitutions of the animals
or plants involved in a cross, the probabilities that a
given offspring will have a given genotype are precisely
specified. Later in this century, we saw the develop-
ment of quantum mechanics in which probabilistic
predictions of experimental results form the very basis
of the theory. So revolutionary was this idea that
Einstein, to the end of his life, refused to accept that
the quantum-theoretical description of physical real-
ity could be complete; yet the evidence is very strong
that it is so. Mendelism and the quantum theory have
provided an intellectual climate in which the notion
of a repeatable experiment having a number of alter-
native outcomes, each with precisely specified “exper-
imental probability” is now commonplace. Our
formalizations of probability theory have not kept
pace with these developments, so that, for instance,
there is as yet no agreed notation which serves to
distinguish the meanings of the | in Pr{E | H} = p and
Pr{E|F} = q, where H is a statistical theory from
which it is deduced that the probability of E is p (as
in the example above when we deduce that = = 24),
and where F denotes an incomplete specification of
an experimental result and E provides a more com-
plete specification of the same result. In the second
case, we can define Pr{E | F} as = Pr{E & F}/Pr{F},
but such a definition makes no sense in the first case.

To understand Fisher’s thinking on probability, it
is necessary to understand that he always thought of
himself as primarily a natural scientist, concerned to
explore and test the consequences especially of theo-
ries such as Mendel’s. For Fisher “probability” was,
by definition, “experimental probability.” The use of
this concept in genetics and in quantum physics pro-
vided a philosophical ground in which the idea of a
“statistical model” could flourish. The dominant po-
sition Fisherian statistics achieved between 1925 and
1965 is surely due to the fact that Statistical Methods
for Research Workers was directed at those who wished
to use such models, and this period saw the successful
application on a wide scale of the same type of model
in agriculture, biometrics and industrial research and
production. .

In suggesting that 1954 saw the beginning of a
“return” to inverse probability, it seems to me that
Zabell is underestimating the novelty of the ideas of
Ramsey and de Finetti, whose mathematical theory of
“personal probability” is something of which there is
no counterpart in 19th century thought. Equally,
Jeffreys’ theory of “probability” has no earlier coun-
terpart, in that it makes a nearly successful attempt
to formalize the way in which, in natural science, the
notion of “simplicity” operates in the formulation of

scientific laws. For example, Jeffreys’ theory provides
reasons why the Mendelian ratios (in the absence of
differential viability, etc.) should be taken as rational
numbers like %5 rather than “approximately 0.67” or
such other real numbers. Again, the “decision” aspects
of Neyman’s approach, leading to Wald’s general for-
mulation of decision theory, are new in this century
apart from the hints given by Gauss in a special
context. On the other hand the “logical probability”
concept of Keynes and Carnap does have its counter-
part in the 19th century, in Laplace and in Boole and
the ideas criticized by, for example, Bertrand.

We now have before us the exciting tasks of explor-
ing the interconnections of all these ideas and many
more. For example, in a clinical trial, the “decision”
to terminate the trial at some stage has decision-
theoretical aspects that make a Bayesian analysis
helpful; but given that the trial has been terminated,
the data represent a contribution to medical science
that may better be looked at from a Fisherian point
of view. Such data often need to be combined with
data from other trials in which the relevant parameter
values may be expected to differ in magnitude though
not in sign, giving rise to problems of a type interme-
diate between those we call “significance tests” and
those we call problems of estimation. And a clinician
who has to choose a treatment for a given patient,
taking trial results into account along with other
information specific to the patient, can be helped by
sophisticated Bayesian analyses such as those being
developed by Spiegelhalter and others. In industrial
research, experiments may naturally group themselves
into sets—for example, of experiments to estimate the
rate constants of chemical reactions to be used in
industrial processes. For such a set, the collection of
rate constants may be regarded as a population having
a distribution that can be regarded as approximately
known; such a distribution can be usefully introduced
as an approximate prior into the analysis of each
experiment. It will ill become us to allow our contin-
uing and developing attempts to come to terms with
the Protean concepts of uncertainty to become bogged
down in battles of an Athanasian versus Arian type.
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