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(3) It would be of interest to obtain an expansion of
the form

iX0) — i"@) =a+ L+ ...
n

We know the expression for « and its geometric inter-
pretation. What about 3?

(4) I believe that the choice of a prior distribution
is governed by the nature of the parameter and pre-
vious knowledge (though vague) about it and should
not depend on what experiment is conducted to have

Comment

N. Reid and D. A. S. Fraser

We congratulate Professor Kass on a very clear and
interesting account of the role of differential geometry
in asymptotic inference. In particular, his discussion
of information loss and recovery through conditioning,
and the geometric interpretation of this, adds substan-
tially to the long-standing discussion initiated in
Fisher’s early work.

The use and implications of conditional analysis are
central to the topics in the paper. In this discussion,
we expand a little on arguments for and justifications
of conditioning, and the use of geometric methods to
motivate this.

In the setting discussed in Section 3.1, we can write

(1) py(y10) =pra(t|a, 0)pala)

where Y = (T, A) is sufficient, A is ancillary, and the
Jacobian has been absorbed into the support differ-
entials. This factorization suggests, as the paper in-
dicates, that inference about § may be based on the
conditional distribution of T given A, without loss of
information about 6. Section 3.1.1 gives formal clarity
to Fisher’s general analysis of information loss and is
valuable in giving a precise interpretation of the
phrase “without loss of information about 6.”

Other arguments can also provide some interpreta-
tion of the phrase above. For example the likelihood
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further information on it. Jeffreys’ invariant prior may
have nice properties but it seems to depend on how
observations are generated, which may not be accept-
able to Bayesians.
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function obtained from the conditional distribution is
the same as the likelihood function from the distri-
bution of the full data Y. Another motivation for
conditioning on A when the factorization in (1) holds
is that the variability in the outcome that is described
by the marginal distribution of A is irrelevant for
inference about 6; this is an underlying theme in
Fisher’s early work expanded in Fisher (1961) and is
very clearly presented in the weighing machine ex-
ample of Cox (1958). Fisher frequently used the term
“relevant subset” to refer to the set of sample points
having the observed value for the ancillary statistic.
However, it seems clear that he attached additional
meaning to the term, derived from the physical con-
text from which the statistical problem arose. Indeed,
this additional interpretation may well have been pri-
mary in Fisher’s interpretation of conditioning and
the definition of the correct probabilities to use in
applications. There does seem to be no fully satisfac-
tory formalization of such “relevant subsets” based on

the statistical model alone. The derivation of the

Likelihood Principle from the Conditionality Princi-
ple discussed in Evans, Fraser and Monette (1986)
bears on this.

Most discussions of conditioning are motivated by
a few very compelling examples. Subsequent attempts
to formalize the operating principle to enable exten-
sion to more realistic settings are widely divergent.
One development, primarily initiated by Birnbaum
(1962, 1972) and Basu (1959, 1964) (see also Buehler,
1982), isolates ancillarity as the essential feature; the
discussion of this approach and its relation to Baye-
sian inference and the likelihood principle is well
summarized in Berger and Wolpert (1985).

Another development of conditioning in Fraser
(1968, 1979) extends and formalizes one aspect of
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relevant subsets. Location-scale and other transfor-
mation models can be recast in terms of a fixed ante-
cedent error variable, as is indicated for example by
y = XB + oe, where e is a sample from a known
distribution. With such models certain components of
the variable e are known by calculation once the
sample is available. In this sense then, they provide
the same kind of information as is provided by the
knowledge of which machine was used to take the
measurement, in Cox’s example, or indeed the same
as is provided to the bridge player by his own and the
dummy’s hand. Unconditional calculation of proba-
bilities is in this framework irrelevant, even incorrect.
In all examples of this approach, the conditioning
statistic is in fact ancillary; it is simply the motivation
for the conditioning that is different. Another advan-
tage of this approach is that it also provides prescrip-
tions for marginal and/or conditional inference for
components of vector parameters.

An alternative description of the factorization (1) is
that T is conditionally sufficient for 6, given A, as in
Section 2.2. One advantage of considering the type of
factorization provided by (1), rather than the infor-
mation factorization that follows from it, is that (1) is
helpful for clarifying the role of conditioning in infer-
ence about a parameter of interest in the presence
of nuisance parameters. There seem to be two dif-
ferent separations like (1) that isolate a parameter
component,

(2) py(y ¥, N) = pris(t]s, ¥, Mps(s| )
and

3) py(y ¥, N) =pris(t]s, YIps(s|¥, N);

in these Y would typically be minimal sufficient. In
(2) we could regard S as ancillary for the parameter
of interest ¥, and thus motivate the use of the condi-
tional distribution of T given S. This is a fairly
straightforward extension of the situation in (1) above.
In (3), however, S is sufficient for the nuisance param-
eter A. Justification for basing inference about y on
the conditional distribution of T' given S is in this
'setting more pragmatic. Although information about
Y may be available in the marginal distribution of S,
it is often assumed that this information cannot be
extracted from the marginal distribution, in the ab-
sence of knowledge of \. Investigation of information
loss in ps(s) is one approach to this justification
(Amari, 1985, Chapter 8). Another is that similar or
unbiased tests of hypotheses.can only be generated by
such conditioning, if S is complete. Often the situation
is clarified by using orthogonal versions of the nui-
sance parameter (Cox and Reid, 1987). In the very
special case that

4) py(yY ¥, N) = pris(t]s; YIps(s|N)

we have that S is ancillary for ¥ and sufficient for A,
and both the arguments above can be applied.

Conditional distributions are typically much easier
to compute than marginal distributions, especially
in high dimensional problems. In some problems, it
seems possible to develop conditional techniques from
a purely pragmatic point of view: one conditions on
some components of the problem of less direct inter-
est, simply for computational or inferential simplicity
or convenience. Often the geometry of the sample
space can be helpful in determining the most effective
direction for conditioning (Fraser and Massam 1985).
Work in progress by H.-S. Lee at the University of
Toronto shows that often a preferred marginal dis-
tribution can be well approximated by a suitably
designed conditional distribution.

Kass’ paper emphasizes the role of geometry in
asymptotics, and it is in this area that the development
of the Riemmanian metric and affine connections
have proved to be most useful. Geometric arguments
can also be useful in exploring the local structure of
the sample space. In Fraser and Reid (1988), a one-
dimensional conditional distribution for inference
about a real parameter y in the presence of a nuisance
parameter is constructed by differential arguments
that examine likelihood change on the sample space
in a local manner. An extension to that development
that determines a conditional distribution for a pivotal
statistic depending on y is in progress.

As an example, if we have two samples of size n
from exponential distributions with rates A and yA
and sample totals y; and y,, the method of local
differential analysis in Fraser and Reid (1988) leads
to the conditioning equation

dy; + y/?dyz = 0.

This leads to the conditional distribution given S =
y1¥». Further details are provided in Fraser and Reid
(1987); the conditional distribution gives a large-
sample approximation to the usual marginal analysis
that refers y, /¥y, to an F distribution on (n, n) degrees
of freedom. For the pivotal version of the local analysis
the conditioning equation is

dy, + ydy, = 0;

this leads to conditioning on a y-dependent function
S, = ¥1 + ¢¥y.. The resulting conditional distribution
is the same as the usual marginal distribution. It would
be interesting to see clearly the differences between
the local analysis just described and the asymptotic
methods, which are local in a different manner.
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Rejoinder

Robert E. Kass

I am very grateful to the discussants for their com-
ments, which have substantially enriched the material
presented here. The remarks of Professors Amari,
Barndorff-Nielsen, and Reid and Fraser require no
reply. I do, however, wish to answer the specific quer-
ies raised by Professors Bernardo and Rao.

With regard to Rao’s query (1), concerning charac-
terizations of the information metric, I would refer
interested readers to the original work of Centsov
(1972) and the newer work of Picard (1989). I am not
sure what Rao has in mind in his query (2) about the
choice of affine connection. Part of the answer may
come from the results-of Centsov and Picard, but if
Professor Rao is referring to the choice of « in the
a-connection, perhaps helpful to the intuition is
the observation in Kass (1984) that vanishing of the
a-connection coefficients when a« = —1, =13, 0, 1
occurs for the bias-reducing, skewness-reducing,
variance-stabilizing, and natural parameterizations,
respectively, and when a = V3, it occurs for the para-
meterization in which the expected values of the third
derivatives of the loglikelihood vanish. These para-
meterizations were characterized in differential equa-
tion form, in the one-parameter case, by Hougaard
(1982). There is also a very nice answer to part of
Rao’s query (3), due to Amari (1985, 1987a). In brief,
Amari used higher derivatives of the imbedding 5(-),
defining a curved exponential family, to define both
higher-order curvatures and appropriate statistics
based on higher-order derivatives of the loglikeli-
hood function. With these he obtained a complete
decomposition of the information in the sample as
an asymptotic expansion with geometrically-
interpretable terms of decreasing order associated
with the loglikelihood derivatives.
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Finally, Professor Rao’s point (4), and Professor
Bernardo’s request for comments in the rejoinder,
concern Jeffreys’ general rule for choosing a prior. I
have a few things to say about this, though for the
sake of brevity I will not try to argue my opinions in
detail.

As a preliminary remark, I emphasize that by “ref-
erence prior” I mean a prior chosen according to any
formal rule that may be applied without detailed con-
sideration of the data-analytic context. Such a prior
need not be considered “noninformative” in any well-
defined sense. This is an important point, since it is
dubious that the concepts of ignorance and lack of
information can be given satisfactory definitions. I
believe the idea of selecting a prior by convention, as
a “standard of reference,” analogous to choosing
a standard of reference in other scientific settings,
is due to Jeffreys (1955) page 277. This notion

“and terminology was adopted by Box and Tiao (1973)

page 23. Unfortunately, Bernardo (1979) used the
term “reference prior” for a specific rule, rather than
the general concept, and this occasionally causes
confusion.

There is great convenience in conventional choices,
throughout statistics and throughout science. But con-
venience should not be confused with necessity: one
might say that conventions are useful as long as they
are not taken too seriously. Thus, I see the conven-
ience in reference priors, just as I recognize the con-
venience in conventional levels of significance. In
applications, however, such conveniences must be
questioned. Sometimes they are justifiable time-
savers, especially for communicating results, but often
they are not. I consider reference priors to be “default”
choices, but they are to be used only when their



