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with data bases: analyses of comprehensive data bases
are not subject to publication biases.) Such a system
is both ethically and scientifically sound.

CONCLUSIONS

1. Randomization is not essential for scientific
inference.

2. Randomized clinical trials are inherently uneth-
ical. They are not appropriate for life-threatening
conditions.

3. Clinical equipoise is an invention used to avoid
difficult ethical questions. '

4. Randomized consent is unethical by its nature.

5. It is possible to learn in a clinical setting and
still deliver good medicine.

6. Analysis of clinical trials should use all available
information, including historical controls.

7. Analysis of clinical trial data should use all avail-
able covariates, whether or not the trial was random-
ized.

8. Neyman-Pearson inference, in which the analy-
sis is tied irrevocably to the design, is impractical and
sometimes unworkable.

9. Bayesian inferences apply at any time during or
after a study; the course of a study can be dictated by

J. H. WARE

interim Bayesian calculations which weigh the costs
and benefits (in terms of good medical treatment) of
the various options.

10. Medical research should move away from ran-
domized trials and toward establishing comprehensive
patient registries.
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Comment: A Bayesian Perspective

Robert E. Kass and Joel B. Greenhouse

Ever since the first modern randomized clinical trial
(RCT), clinicians and statisticians have struggled with
the question of whether it is proper to deny a patient
some possibly beneficial treatment for the sake of
conducting an experiment. Even as Sir A. Bradford
Hill made his influential arguments in favor of RCTs,
he emphasized the importance of ethical considera-
tions. They are, Hill (1951) said, “. .. paramount and
must never, on any scientific grounds whatever, be
lost sight of. If a treatment cannot ethically be with-
‘held then clearly no controlled trial can be instituted.”
The problem, however, is to define the circumstances
under which “a treatment cannot ethically be with-
held.” Hill (1951, 1953) distinguished the “dramatic”
situations, in which a treatment might offer a cure for
an otherwise invariably fatal disease, from the “more
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mundane” in which a treatment might produce a
decline in mortality from, say, 15 to 10 per cent. The
dramatic cases might not require a concurrent control
group, but, he argued, the more common investiga-
tions could provide reliable information only through
the use of RCTs.

As Professor Ware has clearly shown in the case of
ECMO, the most difficult situation involves a disease
that is not invariably fatal, yet the therapy is poten-
tially of great benefit. The basic issue is whether such
cases should be considered to be like the “dramatic”
ones, or like the “more mundane,” or whether, per-
haps, there is an intermediate classification in which
some third method of study, such as adaptive alloca-
tion, should be used.

In some respects, the trial Ware describes is like
another that raised considerable debate by using an
RCT to examine the effectiveness of Ara-A, an anti-
viral agent, in the treatment of herpes simplex viral
encephalitis, a disease that had a historical fatality
rate of around 70%. In that case, McCartney (1978)
argued that none of the usual justifications for RCTs
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applied, and effectively put that situation into Hill’s
“dramatic” classification. Even with the apparent 80%
historical fatality rate of PPHN, however, the case of
ECMO differs from Ara-A in one very important way:
Ware expressed grave concern about the potential
morbidity of ECMO treatment, especially brain hem-
orrhage and subsequent severe impairment. Thus, it
seemed quite plausible to Ware and his colleagues that
there was a significant risk of permanent brain dam-
age from the ECMO therapy. From this position, they
concluded that the historical data “were not sufficient
to justify routine use of ECMO in the treatment of
PPHN ...” and they were “. .. uneasy about rapid
acceptance of a new and potentially dangerous tech-
nology ...” without good information from a well-
designed RCT.

Ware’s paper raises many important issues and will
undoubtedly produce extensive discussion. We do
three things in our commentary. First, in Section 1,
we suggest a definition of conditions under which
randomization is ethically justifiable, and we indicate
how the definition may be implemented from a Baye-
sian point of view. Next, we follow Ware in assuming
that randomization was ethically justifiable and, in
Section 2, we consider the information available at
the completion of the first stage. An interesting fea-
ture of Ware’s discussion is his use of Bayesian meth-
ods to assess the evidence at that point. One important
reason for using Bayesian methods in this context is
that they do not require accounting for the design
employed in obtaining the data. Although Ware con-
siders the Bayesian testing problem, we prefer to
analyze the data via estimation. We consider prior
distributions suggested by the assumption that ran-
domization was ethically justifiable, and then compute
relevant marginal posterior probabilities. We then go
on to note the subtlety of the Bayesian testing prob-
lem, and we illustrate what we consider to be an
appropriate approach to it. Finally, in Section 3, we
mention our hope that methodology for examining
historical information could be developed and more
widely applied to problems in which there are sub-
stantial ethical difficulties with RCTs.

1. ETHICAL BASIS FOR RANDOMIZATION

In this section, we offer a perspective on the fun-
damental problem of defining the circumstances under
which randomization is ethically justifiable. Part of
our purpose is to provide a framework for Bayesianly
oriented methodology. We should note right away that
we will not discuss the deep and difficult problem of
explaining convincingly why randomization should be
used to ensure comparability among treatment groups.
(See Kadane and Seidenfeld, 1989, for a recent dis-
cussion and references.) Instead, we take up the prob-

lem of defining conditions under which ethical
concerns would not preclude randomization. This is
what we will mean when we say that randomization is
“ethically justifiable.” For simplicity, we assume the
trials we discuss are, like the ECMO trial, designed to
compare a “treatment” with a “control,” without con-
sideration of covariates. Also, in the ECMO trial there
are important issues involving cost and the allocation
of scarce resources, but we ignore such considerations
here. .

We will try to motivate our suggestion by linking it
with an observation made by Hill (1953) that the
difficulty of the dilemma depends on two things, the
severity of the disease and the state of uncertainty
about the effectiveness of the treatment. “Where life
and death (or serious after-effects) are not at issue the
problem is clearly eased. It is also eased, more often
than not, by the state of our ignorance. For, frequently,
we have no scientific evidence that a particular treat-
ment will benefit the patients and ... we are often,
willy-nilly, experimenting upon them.” In our state-
ment of conditions under which randomization is eth-
ically justifiable, we incorporate these two features of
the ethical problem, referring to “cautiousness” about
the decision to apply a treatment. When the disease
is less severe or the evidence is poor, it becomes more
acceptable to wait for better information, which, in
the sense we use the word, will mean it becomes
appropriate to exercise greater caution in selecting the
treatment.

Our basic conception is motivated by the presump-
tion that the purpose of a trial is to collect data that
bring to conclusive consensus at termination opinions
that had been diverse and indecisive at the outset.
When there are diverse opinions among knowledge-
able and thoughtful observers, however, it is because
different people attach different degrees of importance
to various pieces of information concerning the merits
of the treatment. In this situation, we may articulate
the position of a reasonable skeptic who may recognize
that some historical evidence is relevant and may

-consider plausible certain theoretical arguments on

behalf of the treatment, but at the same time appre-
ciates the dangers of adverse reactions and knows that
medical history is littered with many false claims of
success. We suppose that this reasonable skeptic is
cautious with regard to coming to conclusions about
the superiority of the treatment or the control. That
is, the cautious reasonable skeptic will recommend
action on the basis of fairly firm knowledge, but not
otherwise, with the degree of caution exhibited de-
pending on the quality of available information and
the seriousness of the disease. We then arrive at our
understanding of what constitutes the basis for an
ethical trial: Randomization is ethically justifiable
when a cautious reasonable skeptic would be unwilling
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to state a preference in favor of either the treatment or
the control.

This formulation is intentionally vague. Perhaps
the simplest way to make it precise would be to rep-
resent the skeptic’s beliefs by a probability distribu-
tion and then suppose that no preference will be stated
unless the probability that the treatment is superior
is either less than p, or greater than p* for some
specified values of p, and p* with 0 <p, < .5 <p*<
1. Alternative formulations could be given using de-
cision theory, along the lines of Anscombe (1963),
upper and-lower probability (e.g., Smith, 1961), or
belief functions (e.g., Dempster, 1967). The general
features of this conception, however, do not depend
on the details of its implementation, which would
ultimately lie in the hands of the investigators and
the planning advisory board. Indeed, the judgment
itself, of whether randomization is ethically justifiable,
is necessarily subjective and is the responsibility of
the investigators and the planning board. Thus, if the
skeptic’s beliefs are represented by a probability dis-
tribution, it must be recognized at the outset that the
choices of the distribution, p,, and p* will be some-
what arbitrary. We believe that good choices can be
made, and in Section 2 we briefly indicate the sort of
thinking that is involved, but we do not wish to give
the impression that they would be uniquely specified
somehow by the nature of the problem.

We speak of a reasonable skeptic in part to empha-
size that the beliefs we specify need not be our own,
nor need they be the beliefs of any actual person we
happen to know, nor derived in some way from any
group of “experts.” Instead, we think it is possible to
imagine ourselves sufficiently cautious and skeptical
that we would think the trial ethical. Having formally
articulated the beliefs we would have in that situation,
we may then examine them. If we, personally, find
those beliefs not only in disagreement with our own
but, in our judgment, untenable by any reasonable
person, then we would find the trial unethical. On the
other hand, having gone through this exercise, we
would also be able to use these formal representations
of beliefs to analyze data coming from the trial. We
illustrate with a Bayesian analysis, in Section 2.

We began with the presumption that an RCT is
supposed to bring differing opinions to consensus. Our
reduction of the problem to a single agent, our “cau-
tious reasonable skeptic,” is largely for convenience.
As suggested earlier, a single distribution could be
used and its evolution with increasing data, according
to Bayes’ Theorem, could be followed. It might then
be assumed that this evolution, toward increased pre-
cision, would be sufficiently informative about the
ability to reach consensus that specification of diverse
opinion is unnecessary. (There are, we think, interest-
ing technical issues raised by the latter assumption,

though it is well known that different Bayesians will
eventually reach consensus with sufficiently much
data; see Savage, 1954, Sections 3.6 and 3.7.) Alter-
natively, the skeptic could be considered “to be of two
minds,” which represent extreme opinions among the
group, and this could be formalized using two proba-
bility distributions. Our initial presumption is con-
sistent with the point of view of Freedman (1987),
who, as Ware mentions, calls the state in which no
consensus exists, “clinical equipoise.” Kadane and his
colleagues in ongoing work (Kadane, 1986) have taken
much the same position as Freedman, and they have
implemented the suggestion using elicitation of expert
opinion. (In a simple trial with no covariates, their
scheme will allocate to achieve balance between the
treatment and control as long as at least one expert
opinion favors each; when all experts agree, the fa-
vored therapy will be allocated until it starts to do so
poorly that opinion changes.) We propose an alter-
native framework because we think progress can be
made without having to define a set of “experts,” and
without having to formally elicit their beliefs. The
articulation of the beliefs of the skeptic remains some-
what arbitrary, but it has the advantage of being
simple and, we think, relatively easy to understand.
We note that our proposal, like that of Kadane and
his colleagues, provides a single criterion that may be
applied both at the beginning of and during a trial, to
assess whether there is sufficient evidence to preclude
use, or further use, of randomization.

2. BAYESIAN METHODOLOGY

The ECMO trial is again a good example for raising
another old subject of debate: whether to test or to
estimate. The issue is of great consequence from the
Bayesian point of view, thought it is less so within the
non-Bayesian framework. In our view there exist im-
portant situations in which a sharp null hypothesis
should be taken seriously. These are cases in which it
is believed possible, for all practical purposes, to have
the null hypothesis hold exactly. Occasionally, clinical
trials may have genuinely sharp nulls, but usually it
may be assumed that the treatment and control will
differ, the question being in which direction and by
how much. In the large majority of clinical trials it
would seem difficult to argue, as one must in adopting
a testing methodology, that small differences, if de-
tected, would be interesting. Thus, we believe that in
the case of ECMO, as in most RCT's, estimation would
be more appropriate than testing.

2.1 Marginal Inference

Inference about one parameter in the presence of
another remains a major outstanding problem in sta-
tistics. In his analysis, Ware uses profile likelihood
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together with first-order asymptotics to produce a
confidence interval. Profile likelihood, however, has
been criticized because it can give misleadingly precise
inferences about the parameter of interest. In addi-
tion, first-order asymptotics are suspect in this
small-sample case (see Cox and Reid, 1987, and the
accompanying discussion, for non-Bayesian alterna-
tives).

The Bayesian approach to this problem offers two
advantages. First, posterior distributions are not af-
fected by the design or stopping rule used in obtaining
the data. Second, in contrast to the non-Bayesian
approach, which presents various ways of obtaining
confidence intervals, from the Bayesian point of view,
once the prior is chosen, marginal inference about a
parameter is based on a single well-defined entity, the
marginal posterior distribution. That is, the arbitrar-
iness in Bayesian marginal inference is put in one
conspicuous place: the prior. Thus, from the Bayesian
point of view, one may try to better understand what
the data say about the parameter of interest by intro-
ducing alternative priors and determining resulting
inferences. We illustrate by briefly considering what
we might make of the data collected at the first stage,
that is, the 6 -survivals among 10 controls and 9
survivals among 9 ECMO patients. We assume that it
was appropriate to conduct an RCT, i.e., that the first
phase of the trial was ethical. This means we will use
various priors that we feel would represent opinions
of a cautious reasonable skeptic who was initially
unwilling to state a preference for ECMO or the
control therapy.

We will phrase our discussion in terms of a prior
probability distribution on (8,y), the parameters § and
v being defined by 6 = 7, — 7, and v = (n; + 72)/2,
where 7, = log{p;/(1 — p)}, fori=1,2 (G =1, 2
corresponding, respectively, to “control” and
“ECMO”). There is nothing special about this partic-
ular parameterization and, as we have thought about
the problem, we have found ourselves moving back
and forth between the scales of probability, odds, and
log odds. Ware uses 6 = p, — p;. The latter may be
easy to understand when the values of p, and p, are
near .5, but we think the distance between probabili-
ties of .75 and .999 should be far greater than that
between probabilities of .5 and .749. Since probabili-
ties close to 1 are being contemplated in this problem,
we prefer the scale of log odds.

Before discussing our choices of priors in quantita-
tive terms, let us mention the general issue of using
the historical controls, that is, the 2 of 13 survivals
reported by Ware, which were obtained from the chart
reviews of patients treated at CHMC or BWH in 1982
and 1983. Like Ware, we wish to use this information,
but we do not want to use it as if the historical controls
were simply a previous sample from the same popu-

lation as the experimental controls. In subjective
terms, we do not consider the historical and experi-
mental controls to have been exchangeable. If they
had been, there would have been no reason to have
used a control group in the trial. Since we are doing
this analysis under the assumption that the trial was
appropriately designed, we conclude that we should
downweight the historical control information.

In addition, the limited use of the historical control
information may be applied directly to 5, or, instead,
to v, depending on whether one thinks it informs only
about control patients or, rather, about general fea-
tures of survivability that would be common to both
the control and ECMO groups. For simplicity, we have
chosen priors of two forms, 7(8,y) = w5(8) - 7, (y), and
7(0,m) = w5(8) - m, (n). We find the independence
assumption, and the inextricably related issue of
whether to apply the historical control information to
m or vy, somewhat subtle. We like the form #(8,y) =
75(8) -+ m,(v), and in the remainder of this comment
we will focus primarily on analyses based on such
priors; we are unable, however, to spend the time to
consider the issue carefully, which would require a
deeper knowledge of the details of the therapies in-
volved. Indeed, the same may be said for our choices
of distributions for the marginal priors. Thus, we issue
the disclaimer that our analysis is illustrative only,
and we would not yet feel comfortable drawing firm
conclusions from it.

We used a total of 42 priors of the form () -
7, (), and 42 of the form =;(6) - =, (). We obtained
the 42 by choosing 6 marginal densities 7;(6) and, for
each of these, selecting 7 marginal densities which
became either =, (y) or m, (n;) (that is, the same set
of 7 densities was used for both v and ;). For each of
the 84 priors, we computed the posterior probabilities
P{6>0]|y} and P{6> .4 |y} (where y is used to denote
the data). The latter probability was chosen because
we presume that an odds ratio of 3:2 would be sub-
stantial enough to be of great interest and log(3/2) =
.405 = 4. That is, we use P{é > .4 | y} to represent the

‘posterior probability of a substantial superiority of

ECMO, based on the first-stage data and the given
prior.

We present here only an abbreviated explanation
and summary of our analysis, giving results based on
just a few of the priors we tried. (Further details may
be obtained from us.) We used five priors on § that
were centered at 6 = 0. Two were Cauchy and three
were Normal. We began with the intention of selecting
a prior that would be fairly liberal, in the sense of
assigning a nontrivial probability to a very large effect,
and at the same time would assign most of the prob-
ability to more moderate effects. Thinking in terms of
the odds ratio e’, the Cauchy(0,6%) prior on 6 with
oc = 1.099 has 75th, 90th and 95th percentiles at odds
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ratios of roughly 3:1, 30:1 and 1000:1. Thus, this
prior, for example, assigns probability % to {¥s < e’ <
3}. This seemed quite suitable as a starting point. We
also considered a Cauchy with ¢¢ = .405, which assigns
probability % to {% < e’ < %} instead of {¥ < e’ < 3}
and is a considerably tighter distribution on the odds
ratio scale. The three Normal distributions had stand-
ard deviations of oy = .60, 2, and 10. (The first of
these was chosen to match the Cauchy with oc = .405
according to the probability assigned to the interval
(=0oc, ac).)

As far as the prior on v or 7, is concerned, we began
with the Binomial likelihood p?(1 — p)** based on the
historical controls. We then transformed to the log-
odds scale log(p/(1 — p)) and applied the Normal
approximation to the posterior based on a uniform
prior, the location and precision of the Normal ap-
proximation being the posterior mode (the MLE) and
the observed information. This gave Normal(u,s%)
with © = —1.7 and on = .769. As explained above, we
wished to “downweight” the historical control infor-
mation, and we did so in several ways. The first was
to use a 50:50 mixture of the Normal(—1.7,(.769)%)
distribution with a uniform distribution. Since the
resulting posterior is a mixture of the posteriors based
on the Normal and uniform priors, we obtained the
posterior based on the uniform prior as a by-product
of the computation. We also tried Cauchy(u,s¢) dis-
tributions, first with = —1.7 and ¢¢ = .419. We chose
oc = .419 so that the resulting Cauchy distribution
would assign the same probability to (u — on, p + on)
as did the Normal with oy = .769, i.e., probability .683.
We then acknowledged that in most trials we would
expect greater success than historical information
might indicate, so we increased u to p = 0, which
seemed to us to be a substantial increase. (We did this
for both Normal and Cauchy distributions; we also
tried doubling the scale parameter.)

Selected results are given in Table 1, and the cor-
responding marginal densities appear in Figure 1.
Based on our limited knowledge of the clinical situa-
tion, we follow the rationale sketched in the previous
two paragraphs and focus on the posteriors labelled
C and D. These were based on a Cauchy(0,(1.099)%)
prior on & and an independent prior on vy that was
intended to use, yet downweight the historical control
information. It may be seen that these two methods
of downweighting the historical controls gave sim-
ilar results: the first-stage data supplied sufficient
information to alter the skeptic’s opinion from
P{6 > 0} = .5 to P{6 > 0]y} = .95, and to yield a
probability of a substantial effect of ECMO, meaning
an improved odds of survival of at least 3:2, of
about .90.

To save space in this already-lengthy commentary,
we refrain from making additional remarks about this

TABLE 1
Marginal posterior probabilities and Bayes factors based on
selected priors
Prior on v Pls>0lyl Plo>.4|y} DS
factor
A N(-1.7,(.769)?) 91 .82 (1.2)71
B uniform 97 93 3.1
C mixture 95 .90 (2.5)7*
D C(0,(.419)% 94 .88 @n
_ 2 %ok
BN .1'7’('769) ) .96 .93 2.1
Prior on n,

E C(0,(.419)% .99 97 (15.7)7*

For priors labeled A-E the marginal prior on 6 is Cauchy
(0,(1.099)?), and the marginal prior on < or 7, is specified in the
second column. The first column contains labels used to identify
the densities in Figure 1. The ** at the prior labeled F indicates
that for this distribution on vy, a Normal(0,(10)?) prior on 6 was
used.

analysis, except to say that we feel our choices of
priors produced a satisfactory range of appropriate
skeptical opinions, taking into account the historical
controls. (We hope to make more extensive remarks
available elsewhere.)

We now return, again briefly, to the conception of
a skeptic “being of two minds.” We may consider two
marginal prior distributions of 4, one centered to the
left of 6 = 0, one centered to the right, and we will
wish to see whether, according to both resulting pos-
teriors, there is a large probability assigned to {6 > 0}
or {§ > .4}. For these data, clearly we need only
examine the posterior based on the prior centered
to the left of 6 = 0. We chose Cauchy(uc,0%), where
uc = —.405 and o¢ = .405. This distribution is centered
at an odds ratio of 3:2 in favor of the control, and it
assigns a probability of .75 that 6 <0, and a probability
of .5 that ECMO is worse by an odds ratio between
3:1and 1:1. This seems, to us, to correspond roughly
to a mild yet definite skepticism. We then used each
of the seven priors on v and 7, discussed previously.
We mention here only the results that were least
favorable to ECMO, which were based on the Nor-
mal(—1.7,(.769) ) prior on v. With this prior we ob-
tained P{6 > 0|y} = .67 and P{6 > .4 | y} = .52. Thus,
even in this overly conservative case, the skeptic’s
prior probability from the more “pessimistic” of his
“two minds” changed from .75 that ECMO would do
more harm than good, to about .5 that ECMO would
be substantially better.

In summary, based on our analysis, a small part of
which has been reported here, we find that although
the information favoring ECMO from the first-stage
data is by no means overwhelming, it does seem to us
probably sufficient to terminate randomization. The
main purpose of this exercise, however, has been to
show how Bayesian sensitivity analysis may be used
to achieve an understanding of the information pro-



INVESTIGATING THERAPIES

315

04

0.3

0.2

0.1

0.0

I
2

F1G. 1. Marginal posterior densities of & for priors specified in Table 1.

vided by the data, even in small samples, without
complications stemming from the design. In addition,
we have tried to indicate how we might think about
choosing priors when randomization is ethically
justifiable.

2.2 Posterior Odds

From the Bayesian point of view, hypothesis testing
is very different from estimation. Unlike many pos-
terior interval probabilities, the posterior odds on a
sharp null hypothesis is generally very sensitive to the

choice of prior densities under the null and alternative
hypotheses. This is because the Bayes factor based on
data y is the ratio of two marginal densities of Y at
the observed value y: the numerator is the marginal
density at y under H,, an1 the denominator is the
marginal density at y under H,. The observation y is
often in the tail of each density, and the ratio is thus
likely to vary substantially when the priors are
changed. The two sets of priors that Ware has chosen
do not really cover a “wide range.” Assuming the
testing problem were appropriate (and we have sug-
gested above that in this case it is not), we think a
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more thorough analysis would be needed before it
would be appropriate to draw conclusions. We illus-
trate with a few calculations below.

We also believe the probability on which Ware
focuses his interpretation is inappropriate. He empha-
sizes the probability, say ¢, that ECMO is inferior,
rather than the probability 1 — ¢* that it is superior.
Since the null hypothesis has non-negligible probabil-
ity, ¢ and g* are quite different. Based on a uniform
prior on p; and a conditionally uniform prior on p.,
Ware finds g = .01 and ¢* = .11. The issue in empha-
sizing either g or g* is not whether the test is one-
sided or two-sided, but how one would view a truth
that EMCO and conventional therapy had identical
population survival rates. In our opinion, if this truth
held, we would expect conventional therapy to be
recommended. Thus, we think the number deserving
attention in Ware’s calculation is ¢* = .11. It is,
perhaps, tempting to emphasize g = .01 because of the
natural psychological tendency to equate posterior
odds with the more familiar p-values: since a p-value
of .11 would not be considered small, one might think
g* = .11 was not very convincing. However, such an
identification should be avoided. Posterior odds and
p-values are very different probabilities, and there is
no reason to think that intuitions about one will
immediately translate to the other (at least without
further adjustment for sample size and priors). In a
horse race, 8:1 odds against winning might not quite
qualify a horse as a “long shot,” but by any bettor’s
reckoning, odds of 8:1 are large. (By Jeffreys’ rule of
thumb, 10:1 is the rough cutoff between “substantial”
and “strong” evidence; Jeffreys, 1961, Appendix B.)
Thus, if Ware’s prior were considered appropriate, we
would conclude from ¢* = .11 that there was fairly
clear evidence against the null hypothesis.

Our own calculations are based on the “odds factor”
or “Bayes factor” for testing Hy: 6 = 0 against the
alternative H,: 6 # 0. Under H, we write p = p; = p»
and then, with self-explanatory notation for the
Binomial likelihoods, the Bayes factor becomes

[p*x(1 —p)mrmn e, (y) dy
JIpy (L =p)™™p(1 = pa)™ 2w (3, v) do dy

where p, p;, and p, are functions of v and é, which
were defined in the previous subsection. Note that the
Bayes factor is equal to the posterior odds of H,, if we
take the prior odds of H, to be 1:1.

Our purpose here is to show how we might obtain
an assessment of the evidence over a realistically
broad range of priors, if we believed that the issue was
whether the population survival rates for ECMO and
control therapy were exactly equal. (We repeat: we do
not really believe this.)

For this analysis, we used three of the marginal
priors used previously on 4 and all of the priors used

previously on v or », (for a total of 42 priors). The
resulting Bayes factors for the priors discussed in the
previous subsection are given in Table 1. Thus, for
example, for prior D, if we assume even odds a priori,
then there are odds of 2.5 against H, a posteriori. An
additional result, not found in the table, is that a
uniform prior on p under H, and on (p;, p») under Hu
produces a Bayes factor of (3.6) ~'. These results may
be contrasted with the posterior odds of 8:1 against
H, based on Ware’s conditionally uniform prior. His
prior and resulting odds are interesting, but they are
clearly not what we would call “conservative,” given
that we wish to conform to the assumption that the
trial was ethical.

Again we refrain from further detailed comments,
except to call attention to prior F, which has a Nor-
mal(0,(10)%) marginal distribution on 6. The Bayes
factor is 2:1 in favor of the null. This illustrates the
more dramatic sensitivity of the Bayes factors, in
contrast to the marginal interval probabilities.

3. ADDITIONAL COMMENTS

3.1 Alternatives to RCT’s

In Section 1, we suggested a definition of conditions
under which randomization would be ethically justi-
fiable, and in Section 2.1 we illustrated the construc-
tion of probability distributions that could represent
beliefs when the conditions were satisfied. But in
matters of life and death there is, as we indicated,
an increased willingness to proceed with whatever
appears to be the better treatment, regardless of the
trustworthiness of the current evidence. In such cir-
cumstances it becomes extremely important to make
the best possible use of available information. We
have in mind careful study of prognostic factors, so
that important covariates could be identified and eval-
uated, possibly using a subsample of the historical
records. Formal adjustment procedures could be used
(see, for example, Cochran and Rubin, 1973). As Corn-
field (1954) said,

... It is a good deal more difficult to control
variables in observational than in experimental
[studies] . .. But there is no difference in princi-
ple. There are no such categories as first-class
evidence and second-class evidence. There are
merely associations, whether observational or
experimental that, in a given state of knowledge,
can be accounted for in only one way or in several
different ways. If the latter, it is our obligation to
state what the alternative explanations or vari-
ables might be and to see how their effects can be
eliminated . ..

We understand that it took a lot of work for Ware
and his colleagues to define the entry criteria and to



INVESTIGATING THERAPIES 317

find 13 historical controls. Nonetheless, this is in large
part a question of resources and, at this point, it
becomes difficult to discuss the ethical problems with-
out considering the larger societal question of resource
allocation. We believe there is room for development
and application of alternative methodology so that,
with sufficient effort; it would be possible to provide
a more satisfactory basis for the ethical judgment
required in commencing an RCT. In assessing treat-
ments of potentially great benefit, we think we might,
in many cases, conclude that RCT’s would not be
ethically justifiable, and that information sufficient to
persuade even a cautious skeptic would be available
from observational studies.

3.2 Two-Stage Designs

In the case of ECMO, Ware and his medical asso-
ciates believed that the historical data did not justify
the use of ECMO without an RCT, and in an attempt
to balance ethical and scientific concerns, they de-
signed the ECMO trial using an adaptive two-stage
treatment assignment procedure. It is interesting to
note that one of the first RCTs done at the NIH (in
1953) was a trial investigating prevention of blindness
in premature infants who were receiving high con-
centrations of oxygen therapy to reduce the incidence
of brain damage and death. In an attempt to steer
a middle course between the need to minimize the
possible increase in mortality for those on the new
curtailed-oxygen treatment, and the concern that con-
tinued use of a high concentration of oxygen might
result in an unnecessarily high incidence of blindness,
Sir A. Bradford Hill implemented an adaptive two-
stage treatment assignment procedure similar to the
one used by Ware. The outcome indicated that the
relative risk of blindness for a baby receiving high
oxygen was three times that for a baby with curtailed
oxygen and, as a result, the practice of giving prema-
ture infants a high concentration of oxygen was widely
modified (Greenhouse, 1989).

The virtue of an adaptive two-stage procedure in
which all the patients receive the same therapy during
the second stage is that the second-stage patients
would.receive great scrutiny and might be considered
quite comparable to the first-stage patients. However,
because of possible changes over time in patients
studied and, perhaps, the treatment administered,
comparability remains an important concern. Such
two-stage designs would be most helpful if used in
conjunction with thorough assessment of covariate
information of the kind mentioned above for the
analysis of trials with nonconcurrent controls.

4. CONCLUSION

In describing the design and analysis of the ECMO
trial, Jim Ware has presented a case study on the
ethics of clinical trials to which statisticians, clinicians
and ethicists will refer for a long time to come. Reac-
tions to experiments on sick babies are highly emo-
tional, and Ware is to be greatly commended for
sharing his struggle and his attempt to conduct an
ethically and scientifically sound investigation of
ECMO. His paper forces all of us to think harder
about the ethical basis of RCTs and helps us to
understand more deeply the issues involved. For this
we thank him.
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