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Comment

Ronald W. Butler

I welcome this papér by Professor Bjgrnstad because
it calls attention to the important practical problem
of prediction which, of course, has been of scientific
interest long before the subject of statistical science
itself. This paper is also timely because I believe there
will be much future interest in this area driven by the
current concern for quality control. Indeed, most of
the stated goals and objectives in the quality control
area are predictive aims to which the predictive meth-
odology herein might be more appropriately and
profitably applied.

The first portion of Bjgrnstad’s article summarizes
efforts to produce a likelihood-based approach to pre-
dictive inference. Lauritzen (1974), Hinkley (1979)
and Butler (1986) all conditioned on sufficient statis-
tics in order to judge the compatibility of future ob-
servable values with the data. Such conditional
inference methodology is consistent with Fisher’s
(1973) use of conditioning for parametric inference in
two-by-two tables. Section 1 below elaborates on this
comparison and also motivates conditional predictive
likelihood (denoted L. by Bjgrnstad) for discrete data.
In addition, various profile-based predictive likeli-
hoods can in turn be motivated as saddlepoint approx-
imations to these conditional predictive likelihoods
(see Butler, 1989).

" Section 4 of Bjgrnstad’s article introduces new ma-
terial on predictive likelihood assessment. These as-
sessment procedures are based on the accuracy of
certain unconditional coverage probabilities which I
do not believe are either relevant or useful for assess-
ing and choosing among the various predictive likeli-
hood recipes. Section 2 below discusses an assessment
procedure based on the accuracy of conditional cov-
erages given the appropriate ancillary statistics. Since
the original motivation for predictive likelihood is
founded on ideas of conditional inference, it seems
fitting and indeed more meaningful (to me at least)
that assessment should be conditional as in Barnard
(1986), Butler (1989) and in Section 2 below.

1. CONDITIONAL PREDICTIVE LIKELIHOOD

The conditional predictive likelihood recipe
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W LI = 560,200

Ronald W. Butler is Associate Professor, Department
of Statistics, Colorado State University, Fort Collins,
Colorado 80523.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

first appeared in Hinkley (1979) in a rather disguised
form that precluded its general usage. Subsequently it
was written in the form (1) in Butler (1986, page 4)
and suggested therein for use with discrete data only.
Motivation for (1) was also provided in the same
article (page 3) which I now expand upon.

The Bayesian analyst uses the marginal distribution
of the data for model criticism (Box, 1980), i.e.,

2 fly) = ff(ylﬂ)f(ﬁ) do,

where f (0) denotes a prior distribution. In prioritizing
a generic value z of future observable Z, the Bayesian
analyst also includes the value z with the data y and
criticizes the model with

(3) fly, 2) = ff(y, z|0)f(0) db,

which is proportional in z to f(z|y), the Bayesian
predictive density. Criticism in (3) is not concerned
with whether the theta associated with the distribu-
tion of Y is the same as that of the distribution of Z
given Y = y; these have been assumed to be the same.
What is being criticized is the level of agreement
between the generically assumed value z and the ob-
served data y.

From a likelihood perspective model criticism gen-
erally proceeds by conditioning the data on a minimal
sufficient statistic r(y) for the parameter (see Cox
and Hinkley, 1974, pages 37-38), i.e.,

f(y; 0)
fr(y); 0)°

In prioritizing a generic value z of a future observable

(4) fylr(y)) =

‘we incorporate it into the data as does the Bayesian

analyst and use
(5) f(y, z|r(y, 2)) = L.(z|y),

or conditional predictive likelihood, to assess the com-
patibility of the value z with data y.

We can illustrate these principles using a simple
example in which y = (x4, - - -, x,) is assumed to be an
iid sample of Bernoulli (§) trials. Conditioning y on
r(y) = Y x; = r leads to a uniform distribution over
all (?) subsets or configurations of the r successes
(ones) and n — r failures (zeros). Suppose we are
concerned that § = pr{success} might be increasing
with trial number and wish to measure such concern
with data y = (0, 1, 0, 0, 1, 1). Then among (§) = 20
configurations, we count those which are at least as
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extreme as what is observed where extremity is meas-
ured by counting the minimal number of 0-1 inter-
changes necessary to convert a configuration into the
most extreme case (000111). Configuration (001011)
takes 1 interchange, (001101) and (010011) both take
2, and all others require 3 or more. We can therefore
measure our concern as %20 using probability condi-
tional on r = 3. The distribution of the number of
interchanges associated with the 20 configurations is

no.interchanges 0 1 2 3 4 5 6 7 8 9.
no. configurations 1 1 2 3 3 3 3 2 1 1

To configuration (010101) we would therefore attach
the probability 7zo.

Predicting the seventh Bernoulli (8) trial based on
data (010011) using conditional predictive likelihood
(1) amounts to computing the probability of (0100111)
given r = 4, the predictive likelihood that Z ~ Bern(f)
is 1, and comparing it with the probability of (0100110)
given r = 3, the predictive likelihood Z is 0. The
former is (7)™ while the latter is (3)™ so the odds in
favorof Z=1are L(z=1|y)/L(z=0] y) =1, a quite
reasonable answer.

This Bernoulli discussion is very similar to that of
Fisher (1973, Chapter 4, Section 4) concerning the
two-by-two table

0
6
(6) 3

3
0

In criticizing the independence model he conditions
on row and column totals, i.e., statistics sufficient for
the parameters under the current model, as in (4).
The conditional probability of data as extreme as in
(6) is Yoo = (3,05,0)/(8)*.

Similar probabilities are involved when conditional
predictive likelihood is used in this context. Suppose
that our data consisted of six iid multivariate Ber-
noulli trials and we wish to predict the seventh in the
sequence. Under the assumption of an independence
model, the occurrences of the seventh trial in the
various cells have conditional predictive likelihoods
@D2=D"G7 =AD" = () so we get the
intuitively reasonable result that each cell is equally
likely to contain the future observable.

The version of conditional predictive likelihood for
continuous data (denoted as L;) is (1) with an addi-
tional Jacobian factor. This factor was included be-
cause otherwise with (1) alone one gets different
predictive likelihoods depending on which minimal
sufficient statistic is conditioned upon. With the in-
clusion of this factor one gets the same result no
matter which minimal sufficient statistic is used; thus
conditional predictive likelihood becomes a well-
defined quantity. The usage of this predictive likeli-
hood is pretty much restricted to regular exponential

families along with a few other examples. Approximate
conditional (AC) predictive likelihood (L,;) was sug-
gested in Butler (1986, Rejoinder) as an attempt to
generalize this usage to most any parametric setting
that might arise. The agreement between AC predic-
tive likelihood and conditional predictive likelihood is
quite close in the regular exponential setting; the
former is a saddlepoint approximation for the latter
(Butler, 1989, Section 2.2).

2. PREDICTIVE LIKELIHOOD ASSESSMENT

Cox (1986) has noted the need for calibrating or
assessing various predictive likelihoods in terms of
hypothetical long-run properties. By doing so, we shall
be able to assess the worth of the various recipes in
specific applications. The calibration to be discussed
here proceeds as recommended in Barnard (1986) and
Butler (1989) which I have chosen to illustrate with a
sequence of simple examples.

EXAMPLE 1. Suppose Y and Z are iid with a logis-
tic density having mean 6 and variance 1 as in Section
4 of Bjgrnstad. Then a classical solution to predicting
Z from Y can be based on the predictive pivotal
statistic A, =%(Z - Y) =%.[(Z — 0) — (Y — )] whose
density does not depend on 6. Since 6, = %(Y + Z)
then transformation (Y, Z) — (4, — 0, A,) leads to a
marginal density for A, as

M fla) = f _f6. =6, a) d@. - 0).

A 90% high-density region for A, from (1) can be
computed numerically as (+1.155) which leads to
(Y £ 2.311) as a 90% predictive interval for Z. With
sufficient assurance in the logistic model I would use
predictive pivot (7) instead of the various predictive
likelihood recipes because predictive intervals based
on (7) always have their exact preset coverage; i.e.,

priY — 2311 < Z < Y + 2.311; 6}
= pr{—1.155 < A, < 1.155} = .9

for all § € (—o0, ).

The calibration of a predictive likelihood recipe
proceeds in the same manner. Determine the 90%
high-density region for Z from L(z | y), the predictive
likelihood, and call it I4(y). Then the coverage
pr{Z € I4(Y); 6} can be graphed against  and com-
pared to the target .9. Closeness of this graph to .9
gives assurance in the particular recipe and stands as
a basis for its calibration. Recipes for L,; and L,s,
which I shall refer to as approximate conditional (AC)
and modified profile (MP) predictive likelihoods, re-
spectively, are the same here and result in Io(Y) =
(Y + 2.459) with a coverage function of constant value
918 for all . By comparison profile (P) predictive
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likelihood and the suggestion of Barndorff-Nielsen
(BN), Lp and Lpc in this article, are the same (but
different from AC and MP) producing I,(Y) =
(Y £ 2.045) with coverage .859 for all §. Thus AC =
MP is better calibrated and preferable to P = BN for
this example. A closer examination of the forms of AC
= MP and P = BN suggests why. The former is

{_azlog f@. =0, a,)| "
0=4, a6*

(8 f@b.—9,a,)

6=6,

or Laplace’s approximation to the integral in (7) while
P=BNisf 6, — 0, ap) | s-6, and lacks the information
correction term of Laplace’s method. Further discus-
sion of this is in Butler (1989).

Sensitivity of AC = MP and P = BN to the choice
of the logistic density over the normal density as input
to the recipes can be viewed by comparison of 90%
predictive intervals I,(Y) from each model. In the
normal case all four recipes reproduce the predictive
pivot Z — Y ~ N(0, 2) leading to I4(Y) = (Y % 2.326).
This compares with (Y + 2.459) for AC = MP and
(Y + 2.045) for P = BN in the logistic case. The
former appears less sensitive in this example.

EXAMPLE 2. Suppose Xi, X,, and Z are iid uni-
form (0 — %, § + ¥%) with Y = (X, X;) as the data.
This example differs from the last one because an
ancillary statistic X, — X; = A, exists based on Y. As
we shall see, relevant and meaningful predictive pivots
as well as relevant predictive coverage probabilities
for predictive likelihood assessment require that we
condition on the observed value of A, (see Barnard,
1985, 1986; and Butler, 1989, for further discus-
sion). Consider the transformation (X;, Xz, Z) —
(X, A, = X, — X1, A, = Z — X) where X is an
estimator of 6 and (A4,, A,) is ancillary with A, a
predictive pivotal statistic. The conditional density of
A, given A, is our predictive pivot. We shall see that
the marginal density of A, does not lead to sensible
predictive intervals.

Let us suppose, for example, that x;, = .06 and x; =
.98 so that A, = .92. Such data is highly informative
about 6 having parametric likelihood f (x1, x2, 0) o
x {.48 < 0 < .56} where x {-} is an indicator. Our precise
-knowledge that 6 € (.48, .56) should therefore convert
into a tight predictive interval for Z. In fact the
support of Z, (§ — Y%, 0 + ), must be contained in
(—.020, 1.060) so this range should have 100% coverage
for Z. The marginal density of A, is

1—-2a2 if0=|a,| =%
fla,) =121 —a,)? if% =<|a| <1,
0 otherwise,
which is bell-shaped with a 95th percentile of .578 so

(X + .578) is a 90% predictive interval with uncondi-
tional coverage .9. For our data this works out to be

(—.058, 1.098). This “predictive interval” is not sen-
sible because it contains the known support of Z as a
proper subset so it should have coverage 100% and
not 90%. Note that alternative data x; = .50 and
x3 = .54 which is quite uninformative about 6, leads
to the same nonsensical “predictive interval” and the
interval’s length is unable to vary with A, so as to
reflect the informativeness of the data about the
model.

These difficulties are eliminated when A, = a is
conditioned upon leading to the conditional density
shown in Figure 1. For our data this density has
support (—.54, .54) and the horizontal portion spans
(—.46, .46). The 95th percentile is .450 so (X * .450)
or (.070, .970) is our 90% predictive interval. Note
that this is a proper subset of (—.02, 1.06), the region
known to contain Z. Also note that the interval length
is .90, the same as the coverage. Thus this interval is
only sensible if it is known to be a subset of the
support of the density (8 — %, 6 + %2). With likelihood
x {48 < < .56} then .56 — .50 = .06 and .48 + .50 =
98 are known points of support verifying that
(.07, .97) is indeed a subset of (§ — %%, 6 + 14). The cov-
erage (given A, = .92) is always 90% for any 6 since

priX — 45 <Z =X+ 45| A, = .92; 0}
=pr{|A,| = 45| A, = 92} = .9.

I contend that predictive coverage conditional on
A, = .92 is the relevant probability upon which to base
our prediction of Z. Similar conditional coverages are
used in constructing confidence intervals for 6 as
suggested by Fisher (e.g., 1934) with Efron and Hink-
ley (1978) and Barnard (1985) providing particularly
insightful discussion. The ancillary A, = .92 specifies
the accuracy the data attains for the estimation of 6;
the numerical example above suggests that it has the
same role for predicting Z. I believe such probabilities
are the most appropriate measure of the worth of
various predictive recipes.

This example has been useful for motivating predic-
tive assessment using conditional coverages. Unfor-
tunately none of the predictive likelihood recipes is
applicable to this problem. Profile based recipes fail

f(aplAa) 1

T 1 T T T

1 1 1
sla -1 - 3lal 0 slal 1= 5la

FIG. 1. The predictive pivot for Z in Example 2 where A, = Z — X
is the pivotal statistic and A, = X, — X1 is the predictive ancillary.
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because 6, is not unique. Recipes which condition
on sufficient statistic R = (R,, R,), where R, =
min(X;, X,, Z) and R, = max(X;, X,, Z), fail for a
more subtle reason; ancillary statistic B, — R; provides
predictive information about Z so that conditioning
on R conditions out this information preventing
us from extracting full predictive information from
f(x1, x2, 2; 0). In fact, this situation arises in any
curved exponential family setting in which dim(R) >
dim(f) so that R consists of § supplemented by an
exact or an affine ancillary (Hinkley, 1980; Barndorff-
Nielsen, 1980). As stated in Butler (1986, page 3),
conditional predictive likelihoods (given R) should be
used only when the density of R bears no extractable
information about Z. This is clearly not the case when
there are ancillaries or approximate ancillaries within
the sufficient statistic.

EXAMPLE 3. In normal linear models (Section 2,
Example 5) this assessment procedure leads to the
classical predictive intervals as the best. Using the
author’s notation, the transformation

B—-8
Y

na?/a?
.= 67Y = CB) ’
A, =[(n = p)'ne? |2V VA(Z — CoP)
where V =1 + Co(CTC)™1CE, leads to a predictive
pivot given by the conditional density of A, given
A, = a. When errors (¢, &) are iid N(0, ¢2), then
A, and A, are independent so the marginal density
of A, ~ t,_,(I) is the pivot which extends the classical
predictive interval given originally by Fisher (1935).
Nonnormal errors generally lead to dependence be-
tween A, and A, so that conditioning on A, = a leads
to the use of f(a,| A, = a) and not f(a,) as a pivot
when dealing with nonnormal linear models (Barnard,
1986).
There is a distinct preferential ordering of predictive

likelihoods for this example using normal errors. Con-

ditional and AC likelihoods agree here, have the most
accurate coverage probabilities and treat A, as
o thtp—1(I). The MP likelihood is a close second best

and treats A, ~ tn-,—2(I) while BN and P likelihoods
treat A, as t;-,(I) and ¢ (I), respectively. The latter
two are quite inadequate because they fail to adjust to
the degrees of freedom in the model.

EXAMPLE 4. Suppose X;, X,, and Z are iid uni-
form (0, 8) as discussed in Burridge (1986) and Ex-
ample 4 of this paper. Transformation

X a/0 R
X -\ A= mil}(le Xz)/o
/ A, = Z/§

with § = max(X;, X,) reveals that A, and A, are
independent so the pivot is based on A, with density

_ 1%
A 90% predictive interval is (0, 1.8266) with 90%
coverage for all 6.
Profile predictive likelihood exactly reproduces this

pivot and is preferred here. Conditional predictive
likelihood after normalization is

ifag, = 1,
a, > 1.

%' ifz <4,

and has 90% predictive interval (0, 50) with coverage
.986. Clearly it is too long. The BN-likelihood agrees
with this, while the AC and MP likelihoods are not
applicable. The conditional likelihood above is derived
as the conditional density of U,, U, given T = t where
(Ui, U,, T) are the order statistics of (X;, X5, Z),
T is sufficient for 6, and U,, U, are orthogonal to T
in (x;, xs, z)-space. This does not agree with the
result of Bjgrnstad who shows that one gets a
different answer by taking conditional predictive
likelihood as f (u | t) where U = max(X;, X;) and T =
max(X;, X5, Z).

ExAMPLE 5. This final example is meant to gen-
eralize and summarize predictive likelihood assess-
ments. We judge the value of a recipe according to the
closeness of its coverage probability function to preset
values; e.g., 90% high density predictive interval I4(Y)
has coverage function

C)] pr{Z € I5(Y)| A = a; 6} vs. 0,

which would ideally be .9 for all §. Meaningful and
relevant coverage is computed conditionally on A,, the
value attained by a maximal ancillary statistic based
on data Y.

The examples above resulted in preferential order-
ings of recipes that were uniform in 6 and this occurred
because the coverage functions could be based entirely
on the distributions of ancillary statistics. Examples
for which this is not the case can be found in Butler
(1989) along with further discussion as to when such
coverage functions are flat. Deciding amongst the
various recipes when coverage functions are not flat
was fairly straightforward for the examples in Butler
(1989), although it need not always be so. There is a
temptation to compare coverages at and near é, the
MLE based on Y. Whether or not this is sensible
needs to be considered, however, there is reason to
believe that such a procedure would be sensible. This
is because coverage functions are determined only
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from the ancillary statistic A, (as well as the model)
while 6, a complimentary portion of the data, is being
used to assess the accuracy of these coverage func-
tions. In parametric inference the roles of these sta-
tistics are reversed in that the ancillary statistic A,
assesses the accuracy of § in determining the true
model. Practical examples are needed to bear out the
sensibility of basing recipe choice on coverages at and
near 6.

Many practical models such as generalized linear
models do not admit exact ancillary A, upon which to
condition. In such instances we must find approximate
ancillaries as has been done in Hinkley (1980) and
Barndorff-Nielsen (1980, 1983).

I do not agree with Bjgrnstad’s suggestion that
pr{Z € I4(Y); 8} as an unconditional probability can
be used to meaningfully assess the various recipes.
Also measuring the worth of an interval (or its asso-
ciated recipe) by its guarantee of 90% coverage,
inf, pr{C,(Y) = .9} where C,(y) = pr{Z € Io(y)|
y; 6}, amounts to a worst case scenario assessment.
This could be a very unrepresentative assessment
measure to use as a basis for recipe choice.

Comment

Tom Leonard, Kam-Wah Tsui and John S. J. Hsu

Professor Bjgrnstad is to be congratulated on an
excellent review of an important area. Previous statis-
tical practice largely referred to point predictions and
estimated standard errors when predicting future ob-
servations from current data. When analyzing time
series, contingency tables or nonlinear regression
models, it is often thought necessary to refer to asymp-
totics, even to obtain an approximate standard error.
However, methods are now available permitting pre-
cise predictions based upon finite samples. Moreover,
the applied statistician can refer to an entire predic-
tive likelihood or density or probability mass function,
summarizing the information in the data about any
future observation. This broadens the type of nonlin-
ear model, with several parameters, which may yield
useful predictions. These predictions can now be ex-
pressed in terms of probability statements, thus en-
hancing their interpretability, e.g., for noisy data sets.

Tom Leonard is Associate P}*ofessor, Kam-Wah Tsui
is Professor and John S. J. Hsu is a graduate student,
Department of Statistics, University of Wisconsin-
Madison, Madison, Wisconsin 53706.
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Let p(y | 8) denote our density (or probability mass
function) for an n X 1 vector y of current observations,
given a p X 1 vector 8 = (6, ---, 6,)” of unknown
parameters, and p(z | §) represent the corresponding
density for an independent m X 1 vector z of future
observations. If w(8) is the prior density of 6, for 6
lying in the parameter space ©, then the predictive
distribution '

(1) p(z|y) = J;p(zw)r(oly) deé
of z given y is also representable in the form

_pz|0)r(@]y)

, 0.
w0y, z)

2 p(zly)
Here we have
3)  w@ly) «=@)p(y|0), 0€,
denoting the posterior density of 8, given y, and

() m(0|y, z) « p(z|0)=(0]y),

denoting the postposterior density of 6, given y and z.

0 €0,



