POISSON APPROXIMATION AND THE CHEN-STEIN METHOD 425

simple as possible, we further assume that the X; have
a density, and we take S, = 0 to have a clear conven-
tion. The convex hull H, of Sy, Si, - - -, S, is a natural
object that turns out to be intriguing both for its
probability theory and geometry. A priori one might
expect results on H, to be difficult and incomplete,
but—at least as far as first moments go—the theory
is surprisingly easy and precise.

The first contributions to the theory of H, are due
to Spitzer and Widom (1961). Their seminal obser-
vation was to show that an ancient result of Cauchy
could be combined with a purely combinatorial result
of Kac (1954) to obtain an exact formula for the
expectation of the length L, of the boundary of H,:

EL,=2 Y E|S.|/k.
k=1

From this beautiful formula one can obtain consider-
able information about EL,, and, in particular,
one can use it to show that EL, ~ cn pro-
vided EX? < » and EX; = 0. This observation does
not yet put us in the territory of the Poisson law—
that comes later—but it does give the first suggestion
of a counting law to be discovered.

The second paper to treat the geometry of H,, is due
to Baxter (1961). This work shows, among other re-
sults, that the number N,, of sides of H, has a remark-
ably simple expectation. In fact, it is just twice the
nth harmonic number, i.e.,
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The Chen-Stein method has added a new dimension
to the techniques available for justifying Poisson ap-
proximations. In fields such a random graph theory
(Bollobas, 1985, Chapter 4), extreme value theory
(Smith, 1988; Holst and Janson, 1990) and spatial
statistics (Barbour and Eagleson, 1984), where Pois-
son approximation plays an important role, the Chen-
Stein method has already proved to be the best general
approach, and its potential has by no means been
exhausted. Its strengths are that it makes many sorts
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In Snyder and Steele (1990), a common generalization
of these results is given. If we let ¢;, i =1, 2, ---
denote the lengths of the faces of H, and if f is any
function, then provided both sides make sense we have
the identity

ESfe)=2 % = Ef(15:]).
i k=1k

Naturally, this identity yields that of Spitzer and
Widom by taking f(x) = x, and we can also get
Baxter’s identity just by taking f(x) = 1.

Now, here is where it may pay to start looking for
a Poisson law. If we let f, denote the indicator of an
interval [a,, b.], then for any given distribution of the
X; it is not hard to determine a, and b, so that for
each n the sum G, = Y ; f (e;) satisfies EG, = A > 0. It
may be most natural to take a, = 0 in order to focus
on the small faces of H,. The variable G, is nothing
more than a sum of a random number of dependent
random variables, the f,(e;). Further, these variables
do not seem all that dependent. Thus, there is a serious
possibility of a Poisson approximation to the distri-
bution of G,.

Still, in this problem the Poisson law seems a long
way away. The first moments were obtained through
somewhat slippery trickery, and second moments do
not seem to be open to more of the same. The Poisson
law is honestly in play, yet the Chen-Stein method
has far to come to meet the challenge. Can sufficient
information be found on the second moments of G, to
complete the Chen—Stein program?

of weak dependence easy to handle, it gives explicit
estimates of the accuracy of approximation, and it
continues to give good results even when the expec-
tation A is large. The preceding survey illustrates the
first two of these aspects admirably, but it gives rather
less weight to the third, to which the following com-
ments are addressed. For details and much more about

" the Chen-Stein method, see the forthcoming book of

Barbour, Holst and Janson (1991).

A remarkable feature of the Chen-Stein method is
the form of the estimate of Theorem 1. When ap-
plied in the simplest setting, that of Theorem O,
it gives an error estimate no greater than 2 min(1,
A1) Y, p?.. Were only an estimate of the form ¢
Y2, p?, required, for some real c, it could be obtained
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by matching each X, separately to a ##(p; ,) random
variable, as in Serfling’s (1975) method. The presence
of the factor A™* shows that something subtler is going
on, and the difference, for large ), is striking: an
estimate of order np?, useful for p = o(n™"?), is
replaced by one of order p, useful throughout the range
p = 0(1). Unfortunately, in Theorem 1, the coefficient
of bs is (necessarily) only of order A /2 for X large: an
advantage of the coupling approach, referred to in
Section 4.5, is that the analog of Theorem 1 has the
magic factor A~! throughout.

The next point concerns the philosophy of Section
3.1, and the marked point process approximation,
which is proposed as a way of reaching an approxi-
mation to a compound Poisson distribution. If A is
moderate, the procedure may well be reasonable, but
it is in principle inefficient as soon as A becomes large.
Take, for example, the setting of Theorem 0 again,
and suppose that p, , = Y. A process approximation
of the kind suggested cannot be good, because of the
problem at j = 1: yet, for A =1 + ¥ ., p; . large and
max;s; pj,» small, W= Y7, X; , is close to having a
Poisson distribution.

The essential drawback is that Theorem 2 for proc-
ess approximation suffers in comparison with Theo-
rem 1 from having no factor involving a negative
power of A in the estimates. The example just given
already shows that this would be impossible. On the
other hand, suppose that a type is independently
assigned from the uniform distribution on [0, 1] to
each i with X,,; = 1 and that only the resulting point
process of types on [0, 1] is of interest, so that the
information about which of the original indices i gave
rise to points is not involved. Then the distance from
the homogeneous Poisson process with rate A on
[0, 1] is the same as that of W from Poisson A, as
observed by Michel (1988), and therefore incorporates
the factor A~ of Theorem 1. This indicates that, in
exchange for some loss of information, better process
estimates might be achieved, and this turns out to be
indeed the case. Note in particular that, for compound
Poisson approximation, information about which in-
dices contribute to the sum is irrelevant, so that better
results can be expected than those derived from
Theorem 2.

As an illustration of the above remarks, take the
joint distribution of the numbers of short cycles, Ex-
ample 4.6. The framework of 4.6.2 is well suited to the
coupling approach, and the coupling analog of Theo-
rem 2 gives an estimate of at most ¥/ 2k~d, for

) Z/(n))"»

where d,, is the expected distance in the Manhattan
metric between a realization of (W, - - ., W), with

A= "(Wh DY W/(n)) - (ZI’ °

the conditional distribution given X;, = 1 but not
counting this k-cycle, and a coupled realization of
(Wi, -+, W) with its unconditional distribution.
To obtain a suitable coupling, observe that, starting
with element 1, the integers 1 to n can be ordered
using 7 by next listing the remaining elements of the
cycle containing 1 in the order of the cycle, then
choosing a new element at random from those still
remaining and listing its cycle in order, and so on. If
the rth element in the ordering is the last in a cycle,
set Y,4+1—»=1, and set Y,+,_, = 0 otherwise. Then the
cycle type of w is determined by knowledge of the
Y;’s. However, it is easy to see that {Y;, 1 <j < n}
have the joint distribution of the positions of the
records in n iid trials and are hence independent, with
P[Y; = 1] = 1/j. So couple by first realizing the
Y;’s and then, to get the correct cycle type for the
conditional distribution, just define

r,z+1—j = Ov 1 SJ< k;
Yiiae=1

Yr,;+1—j = Yp41-j, k <] = n.

It is immediate from this coupling that

k+f(n)

EYn+1—j +2 2

j=k+1

d, <

EYn+l—j

VR

J

< 3f(n){n — 2f(n)},

giving an upper estimate for A of about 6 log f(n) -
f(n)/n.

In this estimate, no advantage has yet been taken
of the size of \. However, since A\ ~ log f (n), an extra
factor of A~ would improve it to the desired order of
f(n)/n. Now the information as to which indices mark
the short cycles is not involved in the joint distribution
of (W, --., W), and it turns out that a pro-
cess approximation theorem incorporating a magic
A-factor can indeed be brought to bear. Unfortu-
nately, the best general analog of the factor A ™!
that has yet been obtained for processes is of order
A71(1 + log:\), which improves the error estimate
here to order loglog f(n) - f(n)/n but still does not
quite achieve f(n)/n. Whether the magic factor in
such process estimates can be improved to order A\ ™!
is a tantalizing open problem.

The error estimate of order f(n)/n can be attained
here by observing that short cycles arise in the main
only from the early Y;’s. More precisely, construct the
cycle types of permutations of 1, ---,nand 1, ---, M
simultaneously (M > n) from the same sequence
{Y;, j = 1}. The short cycles in the two permutations
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differ only on the set

n M
(5 m=)o( 5 n).
Jj=n—f(n)+1 j=n+1

where

J+f(n)
B,-=fY,-=1m( U {Y,=1;),
1

r=j+
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The authors of this article mention that their inter-
est in Poisson approximation was motivated by ques-
tions in sequence matching. Sequence matching refers
to the comparison of two or more sequences to locate
regions that are exceptionally similar. While these
questions are of interest in computer science, my own
motivation to study sequence matching has been mo-
lecular biology. Section 5 of the paper is devoted to a
biological example. I will take this opportunity to
expand upon some statistical questions of interest
to molecular biology.

Biology is embarked on one of the most exciting
scientific endeavors of the century. The widely publi-
cized Human Genome Initiative (Understanding Our
Genetic Inheritance. The U.S. Human Genome Proj-
ect: The First Five Years, FY 1991-1995, April 1990;
DOE/ER-045 2P) has as its goal the analysis of the
structure of human DNA and the determination of
the location of the estimated 100,000 genes. Other
model organisms are included in the Initiative to
provide the comparative information necessary for
understanding the human and other genomes. Medical
doctors and legislators may choose to focus on the
understanding and possible consequent treatment of
more than 4000 human genetic diseases. Some may
well view the project as providing the initial data for
a fundamental understanding of the processes of life.
In any case, the rate at which information is being
gathered is astonishing. International DNA databases
began to be formed in 1982. The databases are DDBJ
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whose probabiiity is no greater than

fm, § 1 10 _,f)
n jaaj Jjt+fn) n

However, by the argument above (and probably by
that of Section 4.6.1), the error in approximating the
joint distribution of the short cycles in the permuta-
tion of 1, -- ., M by the joint Poisson distribution of
the Z’s is of order M~ for fixed n, and can be made
arbitrarily small by choice of M. Hence A < 4f(n)/n.

(Japan), EMBL (Europe) and GenBank (US). By
1986, Release #42.0 of GenBank had 6.7 X 10¢ nucleo-
tides (bases) of sequence data. Release #62.0 cited by
the authors had 37.2 X 108 nucleotides, while the most
recent release #65.0 in 1990 has 49.2 X 108 nucleotides.
New technology promises to accelerate the rate of
sequence determination. Molecular biology has been
an experimental and empirical science. The flow of
sequence information is changing the character of the
subject.

Our interest in Poisson approximation began with
an early analysis of the DNA database. DNA se-
quences average 1000 nucleotides in length and have
a four letter alphabet adenine (2), guanine (G), cyto-
sine (C) and thymine (T). In 1981, Temple Smith and
I devised a method or algorithm for finding similar
regions of sequences. Briefly, this method optimized a
score for all segments I of sequence x = x;x; -+ x,
and all segments J of sequence y = ¥,¥; - -- y,. The
score, in its simplest form, counts +1 for a match or
identical letter from I and ¢/, counts —u for a mismatch
or nonidentity and counts —§ for a letter inserted or
deleted from a sequence (an indel). For example
AAGTC and AGCC can be arranged or aligned as

AAGTC
A—GCC

to receive score S = 3 — u — 6. They can also be
aligned as

AAGTC 2
AGCC—

to receive score S = 1 — 3u — 8. The algorithm, based
on dynamic programming, provides a straightforward



