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0) > 0. Then P(B, t)=1for t=1, 2,... and the
theory of stable populations (the Perron-Frobenius
theory of primitive matrices in demographic dis-
guise) guarantees that

X;(BB,t)
e X(1) P
(3.9)
o X(¢
lim — =constant, i=1,2,
t— oo P

where p > 0 is the eigenvalue of L(BB) of maximal
modulus, and y is the corresponding eigenvector,
with positive elements y, and y, normalized so
that y; + y, = 1. Asymptotically the absolute
numbers of young and old and the total population
size change exponentially, all at the same rate.

Here the key point is that the equilibrial frac-
tions y, and y, of young and old depend only on
L(BB) and are independent of the initial demo-
graphic composition of the population (provided the
initial population is not zero).

What happens when all the parameters of the
full model are nonzero? It appears that nobody
knows. In numerical simulations that allowed the
Leslie matrices L(g, t) to vary randomly in time,
Orzack (1985, page 559) assumed that the model
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What a pleasure it is to see outlined one of
the principal goals in applied probability, the elu-
cidation of the structure common to a range of
models that enjoy certain basic properties, followed

by an exhilarating tour through that structure °

in the case in which the basic property is that of
, branching. .

The application of these models in the context of
genetics serves several purposes. On one level, it
broadens our understanding of evolution, in this
case through the illumination of a collection of
conditions that are consistent with the molecular
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“represents an ergodic process, [so that] numerical
analysis consisted of examining the long-run be-
havior of a single sample path of the process.”
However, it is clear from the genetic submodel
that, even with constant Leslie matrices, the model
may not be ergodic in Orzack’s sense, in that the
long-run behavior may depend on initial condi-
tions. My own numerical calculations of the full
model with time-invariant parameters show that
sometimes the asymptotic composition of the popu-
lation depends on the initial conditions, and some-
times is independent of initial conditions. Still other
forms of behavior are not yet excluded. Specifying
the regions of the parameter space that give the
various forms of behavior seems to be a challenging
task.

Small-population versions of this model would
describe the production and the pairing of gametes
and the survival of young as stochastic processes.
Similar questions arise, in addition to the problem
of characterizing the probabilities of extinction.
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clock hypothesis. More generally, the contrast be-
tween the structure of the branching process mod-
els and that of more traditional population genetics
models highlights the features of the latter which
are fundamental consequences of the correlations
in offspring numbers that arise through constraints
on total population sizes.

THE STRUCTURE OF GENETICS MODELS

In the neutral case, the structure of population
genetics models is now well understood. In a popu-
lation of fixed size N, which evolves in nonoverlap-
ping generations, we could describe a specific model
for the way in which the population reproduces by
randomly labeling the individuals in a particular
generation and specifying the joint distribution of
the random variables »,, vy, ..., 7y, Where v, is the
number of offspring born to the ith individual. The
random variables {»;} will be exchangeable, and
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v, + vy + -+ +vy = N. Neutrality implies that the
v; are independent of family sizes in previous
generations, and we further assume that the distri-
bution of offspring numbers does not change with
time. :

For neutral models, much of the interesting
randomness is contained in the reproductive mech-
anism. This in turn is well, and it turns out, ele-
gantly captured in a description of the genealogy or
family tree structure induced by the model. With
minor conditions on the moments of the offspring
numbers »;, any model of the above type has, after
a suitable rescaling of time, a genealogy that is
well approximated for large N by a particular,
nice, stochastic process called the coalescent. (See
Kingman, 1982, for a description, and Donnelly
and Joyce, 1992, for the general convergence
result.)

To answer questions of genetic interest, one sim-
ply superimposes labels or genetic types on the
“demography,” or equivalently the genealogy, of
the model. The nature of the labels will depend on
the level of genetic detail being modeled, but enor-
mous generality is possible. The key is that, be-
cause of neutrality, the assignment of labels does
not interact with the genealogy.

The final component is a description of the way
in which mutation works, and again great general-
ity is possible. At an abstract level, this involves
specifying a ‘“‘mutation process,” a Markov process
on the set of possible labels. Think of this as de-
scribing the way in which the types of the individu-
als in a particular lineage change as we follow the
lineage forward through (rescaled) time. It is con-
ceptually easier, perhaps more realistic, and in fact
effectively equivalent for these models, to assume
that an individual’s type may change throughout
its life as a result of mutation, rather than only at
birth. Superimposing the labels and mutation proc-
ess onto the coalescent gives rise to an urn type
mechanism, which, for example, specifies the joint

distributions of the types in samples taken from the -

population (Ethier and Griffiths, 1987; Ethier and
. Kurtz, 1992; Donnelly and Kurtz, 1991).

A complementary approach describes the forward
evolution of the population as a measure-valued
process. Again, there is a particular measure-
valued diffusion, called the Fleming-Viot process
(Ethier and Kurtz, 1986), which arises as a robust
description of any of the above exchangeable mod-
els (subject to the same minor conditions). The
behavior of the Fleming-Viot process, of course,
depends on the details of the mutation process and
the type space (set of possible labels). There is a
discrete representation of this process in terms of a
particular interactive particle system in which ge-

nealogical processes and the urn mechanism are
naturally embedded (Donnelly and Kurtz, 1991).

It is perhaps worth noting that all of the above
also applies to most models with overlapping gener-
ations and variable population sizes provided that
the variation in population size is not dependent on
the genetic composition of the population.

This structure in turn raises a number of ques-
tions about the branching process models in the
article. I wonder what can be said about the geneal-
ogy, or correlations in ancestry, of several individu-
als in stable branching populations. Genealogical
ideas are proving useful in the measure-valued dif-
fusions that arise from spatial branching processes.
Is there a theory of stable populations in the spatial
context? On more specifically genetic matters, how
is the analysis affected if mutation rates depend on
the individual’s type? This is encompassed in the
genetics framework above; it is dependence on fea-
tures like age, as the author points out, that cannot
be captured in the genetics models. While it is
possible to analyze genetics models that incorpo-
rate selection and recombination, for example via a
generalization of the Fleming-Viot process (Ethier
and Kurtz, 1991), this is much less straightforward
and their structure less transparent. The author
notes that it is difficult to incorporate genuinely
diploid features into the branching framework, but
perhaps some forms of selection are easily modeled
as multitype processes.

THE MOLECULAR CLOCK

In discussions of the molecular clock, there is a
danger of confusing two different measures of the
rate at which evolution occurs. Focus attention on
a particular part of the genome in question—it may
be a gene locus or possibly a single nucleotide site.
If we were to watch the evolution of the population
over time, we would observe many mutations, most
of which (at least in the classical genetics models)
are destined to be lost from the population rela-
tively quickly. From time to time, however, one of
these mutant types will sweep through the popula-
tion and after some time the entire population will
be of that type. The mutation is said to fix and a
mutant substitution is said to have occurred.
Define k,, the rate of evolution in terms of
mutant substitutions (Kimura, 1983), as the rate of
such occurrences.

Alternatively, one could choose an individual at
random from the current population and trace its
ancestral lineage backwards in time. (All the mod-
els in question are haploid so that the individual
will have exactly one parent, grandparent, great
grandparent and so on). Define k,, the rate of
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evolution along an ancestral lineage, to be the rate
at which mutations occur along this lineage. Sym-
metry considerations ensure that %, does not
depend on the individual chosen and, in fact, in
genetics models, the whole population will share a
common ancestor after a relatively small period of
time (in evolutionary terms) in the past, after which
the actual lineages of different individuals will be
the same. (The period of time is of the order of the
population size).

As they have been defined, it appears that the
two evolutionary rates, k£, and &, are measuring
different things. Let us explore their relationship
further. Any mutation that fixes in the population
must occur on the ancestral lineage in question, so
that k, = k,. How many of the mutations on the
ancestral line will actually fix in the population?
Consider such a mutation, in the distant past. Its
probability of fixing is the probability that a type
initially present in one individual fixes in the popu-
lation conditional on the fact that that individual is
the one whose forward lineage survives the longest.
Since fixation here implies that the individual’s
descendants outlive those of all its contemporaries,

P(fixation of mutation on ancestral lineage)

fixation of a type initially
present in one individual

B a particular individual’s | °
lineage survives the longest

Symmetry arguments ensure that, in the neutral
case, the denominator is N~!, where N is the
number of haploid individuals in the population. If
(as is usual) it is assumed that mutations occur at a
constant rate u to all types, then an analysis of the
diffusion approximation (see Ewens, 1979, equa-
tions 4.17, 4.18, and 5.60) shows that the numera-
tor above is N™1(1 — §) for § <1 and O for 6 = 1,
where 0 is a scaled mutation rate. (6 is of the order
of Nu with the exact scaling depending on the
specifics of the reproductive mechanism being mod-
-eled). Thus ’

P(ﬁxation of a mutation on the ancestral lineage)
= max(1 — 4,0).

In a study of molecular evolution, we would have
focused on a single (or possibly three) nucleotide
sites, and 6 is likely to be very small, say of the

order of 10~2, so that &, = k. (There is also depend-
ence between the process of mutations along the
ancestral lineage and the fate in the population of
each mutation, but this too will be negligible for
small 4.) In this context, then, the interchanging of
k, and k, is not serious. Inferences concerning the
latter require information only on the ancestors of
sampled individuals rather than on the entire evo-
lutionary history of the population. Of course, even
this information is not directly available, and
current inferential techniques rely on rather unre-
alistic additional assumptions. In studying the evo-
lution of whole genes, however, § may be of order 1,
and so k, and k, are in fact measuring quite
different things.

Observe also that while the individuals in the
ancestral lineage are special—they are individuals
whose (forward) lineage survives a long time—this
is entirely for “demographic” reasons. If the muta-
tions are neutral, the inclusion of an individual in
the ancestral lineage is independent of its genetic
type and of the process of mutations. It follows that
k, = u, the rate at which mutations occur to an
individual. In particular, k, does not depend on
either the population size or on the details of the
reproductive mechanism of the population. This con-
clusion remains valid even if mutation rates differ
for different types (provided neutrality still ob-
tains). Further, if the (maximum) mutation rate is
small relative to the population size, &k, ~ k,, and
the same will be approximately true for k.. This
fact, that %k, = u independent of the population
size, is the original form of the molecular clock
hypothesis. The usual derivation is different (see
Kimura, 1983).

In branching process models, it is clear that k&,
and k, do measure different things. Indeed, fixa-
tion of a mutant type requires the extinction of all
the subpopulations descending from the other indi-
viduals alive at the time of the mutant’s birth.
Late in the (supercritical) population’s history, this
will effectively never happen, and %k, will be
zero. It is not unnatural then for Jagers’ article
to reinterpret the molecular clock hypothesis in
terms of &,,.
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