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and Marron’s (A.1)-(A.5),

(8) Var(rs(x) = — / K2 + o((nh) ™).

This implies that 7, with bandwidth 2 has the
same asymptotic variance as my with the band-
width A, = h/f(x). In particular, the limiting
variances of 71, and riy are the same in a case
highlighted by Chu and Marron, that is, when
X,,..., X, are a random sample from a U(©,1)
distribution.

The bias of rip(x) has the representation (again
under assumptions akin to (A.1)-(A.5))

Bias(rip(x))

%(mQ)"(F(x))/ u’K + o(h?)

(4) h? [ m"(x)f(x) — m'(x)f(x) 2
-4 ) |/
+o(h?).

In general, Bias(/y) is different from both
Bias(/yz) and Bias(rc); this is true even if one
allows the bandwidths of iz and . to vary with
x ala h, = h/(f(x))* By considering (3) and (4)
above, and Sections 3 and 4 of Chu and Marron,
one finds, not surprisingly, that MSE(#,) is not
comparable with either MSE(i2.) or MSE(i ). It
is worth noting, though, that when X,,..., X, are
iid U(0, 1), the asymptotic MSEs of m, and m; are
identical when the two estimators use the same
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It is a great pleasure to congratulate the authors
on a most informative, thought-provoking and,
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identical when the two estimators use the same
bandwidth.

Introducing the estimator M, certainly does not
settle the mean squared error issue. However,
is attractive in that it avoids both the random
denominator problem of 75 and the down weight-
ing pathology of 7. Another nice feature of i is
that, like 7, it has a convenient form for estimat-
ing m/, so long as F is differentiable. Considering
.y also brings into light the question of estimating
the regression-quantile function m@, an object
whose importance has been stressed by Parzen
(1981). Since it is natural to use a fixed, evenly
spaced design on [0, 1] to estimate m@, the convolu-
tion estimator seems ideally suited for estimating
regression-quantile functions.

My final point concerns the use of kernel meth-
ods to test the adequacy of linear models. I was
glad that Chu and Marron mentioned the problem
of testing for linearity, and the attendant impor-
tance of how 7, and ry perform when m is a
straight line. I prefer i over riy for purposes of
testing linearity, since, as Chu and Marron point
out, M has smaller bias than iy in the straight
line case. Indeed, Hart and Wehrly (1991) show
that a boundary-corrected version of 7, (with
bandwidth h) tends to a straight line as A tends to
infinity. The limiting line is a consistent estimator
of m when m(x) = B, + 3, x. Higher-order kernels
can be used to obtain kernel estimates that are
polynomials (of any given degree) for large h. Such
kernel estimates are a crucial part of a test pro-
posed by Hart and Wehrly (1991) for checking the
fit of a polynomial.

above all, balanced investigation of the issues in-
volved in choosing between versions of the kernel
regression estimator.

Chu and Marron (henceforth C&M) understand-
ably concentrate on comparing and contrasting the
two kernel estimators probably most widely em-
ployed in the literature: the Nadaraya-Watson
(N-W) estimator, my, and the Gasser-Miiller
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(G-M) estimator, 1. I was, nonetheless, surprised
to see no mention at all of the Priestley and Chao
(1972) (P-C) estimator, which also gets cited as
being the kernel regression estimator sometimes,
and which will figure later in my comments. Con-
ceptually, however, I would like to widen the
discussion to that of competition between two un-
derlying classes of kernel regression estimators.
Earlier drafts of C&M’s paper called the G-M esti-
mator rr; (I for Integral; why C for convolution
when my is based on convolutions, as indeed are
all kernel estimators, too?) and this suited my pur-
pose well. For I would like to draw a distinction
between methods that are E for external, in their
treatment of f during the “main” kernel smooth-
ing, and those that are I for internal in this re-
spect. And fortuitously, in the random design case,
g is a representative of the E class and, in the
same random design case, the G-M estimator is,
slightly indirectly, a representative from the I class.

My personal preferences in different situations
will emerge as these comments progress. Interest-
ingly, I never plump for exactly N-W or G-M, al-
though I do recognize that often one or both of
these would be a perfectly satisfactory alternative
to my suggestion. I was originally going to suggest
that, as in the fixed design case one knows f and in
the random design case one doesn’t (usually), so the
requirement for two different kernel estimators for
the two situations, one using [ itself, the other
incorporating estimation of it, seems to be very
natural. However, it then occurred to me that the
quest for a single version suitable for all cases was
not so unreasonable because of the high quality of
(kernel) estimated f’S based on their quantiles,
that is, use of random design case choices for fixed
designs is actually perfectly sensible.

A much more detailed version of these comments,
together with certain generalizations of this work,
is given in Jones and Davies (1991).

1. THE FIXED UNIFORM DESIGN CASE

There is little to say about the (important) fixed
uniform design case beyond stressing the word
“very” in C&M’s statement in their abstract that
the N-W and G-M estimators “give very nearly the
same performance” in this case. Both these and
other versions of the kernel regression estimator
are essentially indistinguishable in practice as well
as in theory (apart perhaps from boundary effects,
which, like C&M, I do not consider here).

A particularly natural and simple “other version”
is the “naive” kernel formula

M) ) = (e x).

Why not save oneself a little complication and use
this formulation when the fixed uniform design
case is the only one of interest? It has the advan-
tages of being extendible to derivative estimation,
boundary correction and the multivariate case all
together. I can think of one objection that I suspect
has contributed to (1) being viewed with suspicion,
but that I claim is a red herring, namely that the
weights in the weighted average of the Y’s don’t
add exactly to one. While this matters at the
boundary, preboundary correction, otherwise the
difference from unity is asymptotically and practi-
cally negligible (witness the similarity with its
“corrected” version N-W: the uniformity of f drives
this). This estimator is precisely that of Priestley
and Chao (1972).

2. THE FIXED NONUNIFORM DESIGN CASE

If there is one main point that I would wish to
emerge clearly from these comments, it is this:
Y,,Y,,...,Y, yield information directly about the
function r(x) = m(x)f(x), and not about m(x) it-
self, in fixed or random nonuniform design cases.
This is so in the sense that i (x) has expectation
(essentially) (K *r)(x) = r(x) + O(h?), where * de-
notes convolution. I guess f is actually G’ in the
notation of the paper for fixed designs. Hence, we
have to do something about the nuisance function f
to be able to get at m itself.

Well, with f known in the current fixed design
context, that should be easy: Simply divide i (x)
by f(x), that is, use

@) wale) = (w(2)}) 3 TRy (x - ).

This is my prototype E for external method of
coping with f: 1/f(x) appears externally to the
summation over datapoints. Johnston (1979) is an
early reference on this although Hérdle (1990) gives

‘other references including earlier work, in Polish,

by W. Greblicki.

Immediate as this is, there is an alternative. As
{Y,j=1,2,...,n} pertains directly to r, so
{Y;/f(x;),j=1,2,...,n} pertains directly to m.
Kernel smooth this adjusted dataset to get

@) w0 = {fx) VEa(x - x,).

And here, £~ appears I for internally to the sum-
mation. It is Mack and Miiller (1989b) who explic-
itly proposed this and gave me much inspiration for
these comments. Formula (3) is more attractive
than is formula (2) as a basis for estimating deriva-
tives of m.
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In Jones and Davies (1991), we look at the prop-
erties of (2) and (3) in the fixed nonuniform design
case. Here, though, I will move on to the case of
random designs without any further ado.

3. THE RANDOM DESIGN CASE

As well as replacing x; by X; in formulas (2) and
(3), the challenge now is to estimate the unknown
f-dependent quantities there. There is but one rep-
resentative of the E approach with estimated f in
the literature, and it is, of course, the N-W estima-
tor, my. C&M make a number of fine points about
the comparison of N-W’s bias with that of G-M. I
might just add that the form of r.’s bias might be
the easier of the two to estimate as part of an
automatic bandwidth selection method.

So to internal estimators. G-M’s relationship
to this approach will be most clear if we first con-
sider its relationship with P-C. Write X; for the
Jjth-order statistic of the X’s and Y;; for its con-
comitant Y. The extension of (1) to “remove the
restriction that the [ X 1's are equally spaced” briefly
suggested by Priestley and Chao (1972) was

hpe(x)

(4) &
= J.‘L_jl (X = X)) YinKn(x - X»)s

(with suitable definition of Xg). As Mack and
Miiller (1989a) and others have explicitly noted,
Mpc is extremely close to riie using 8 =1 (in the
notation of C&M). But C&M show that, in G-M,
one should really use 8 = 1/2, and the equivalent
P-C-type representation of that case is

mPCv(x)
(5) %1
= J; E(X(j+1) = X 1) Y Ku(x - X))

The apparent folklore that says that “P-C is not
as good as G-M” is very largely based, it seems to
me, on comparing (4) with 7, where from now on

~all references to m¢ /G-M revert to assuming 8 =
1/2. Compare like with like instead, that is, mp,
with G-M, and we again have a pair of estimators
that are not far from indistinguishable in practice.

Now, mpc and mpe, immediately fit into the
framework of “estimated I class” methods, that is,
they are of the form

n
(6) n~t ZlﬁijKh(x - X;);
J=
cf. (3). Here §; is shorthand for any estimator of

f(X;)~'. From this viewpoint, then, the natural
interpretation of G-M is as an approximation to

M pc, and not vice-versa! Indeed, I fail to see what
fundamental role the integration in . serves. I
have already argued that forcing weights to sum
exactly to one is a minor consideration (and there is
a more immediate way of doing so in 7 p.,). Kernel
smoothing the smoothing afforded by the initial
piecewise constant function employed by G-M is,
very loosely, akin to a single kernel smoothing
using some K,*L, (exactly so with uniform L in the
fixed uniform design case) but where the other
bandwidth [ is of order n~! and doesn’t really have
a noticeable effect. So, again, this time in M p.,, We
have a simpler kernel estimator that performs very
much like G-M.

All this business about coping with, and estimat-
ing, nonuniform f is, of course, a more formal way
of looking at the insightful intuitive arguments of
C&M’s Section 3 and early Section 4.

If one takes the view that G-M’s bias is the
desirable one, it remains a nice question to obtain a
kernel estimator that has this bias but at no ex-
pense in terms of variance, that is, one with MSE

r*{m” x)}z(/ u2K)2/4+(nh)—1f(x)_102/ K?2.

This is the challenge taken up in Jones and Davies
(1991), where we argue our way to a proposal that
turns out to be fairly closely related to the main
content of C&M’s Section 6. Wu and Chu (1991)
have independently provided an alternative method
with this same property. Fan (1990), with a differ-
ent idea again, provides a method with an advan-
tage that, to me at the moment of writing, appears
to be the most exciting of them all. By the way,
following the comments towards the end of my
introduction, Jones and Davies’ estimator, for
example, reduces exactly to (1) for fixed uniform
designs, but only approximates (3) for fixed
nonuniform.

4. A SPECIFIC REMARK

The bias in C&M’s Figure 11a of the N-W estima-
tor with Gaussian kernel applied to data relating to
a linear mean, m(x) = ax + b say, and based on a
standard normal design (with density ¢), is easily
explained and corrected in this particular case as
follows. The bias is (essentially) entirely due to
the well-known variance inflation property of the
kernel density estimate (see Jones, 1991, and ref-
erences therein), that is, the variance that the
estimate associates with the design is 1 + h®
instead of unity. In fact, N-W’s expectation
(,4r)(x)/(¢5¥d)(x) = A + h®)"%ax + b here, so
the mean is (essentially) the line with slope
shrunken by the factor (1 + ~2)~1/2 (but the same
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intercept). One can therefore remedy the mismatch
of these lines by simply correcting for the variance
inflation. However, this discussion is very closely
tied to this particular situation: Variance correc-
tion is by no means a panacea, and its effects away
from the normal design are (a) less considerable
and (b) not necessarily beneficial (Jones, 1991) in
other cases (such as the remainder of C&M’s
Figure 11).

5. CONCLUSIONS

It is not so long ago that the version of the
“folklore” that I was contented with (without much
thought!) was that one used G-M for fixed designs
and N-W in the random case (e.g., Cheng, 1990).
This now seems somewhat dubious.

I have a particular liking for (1) in the fixed
uniform design context. So far as N-W and G-M go,
however, I am happy that one could afford to use
either of these instead in this case without really
changing anything. A verdict on the fixed but
nonuniform design case is given in Jones and Davies

(1991). But none of the existing versions of kernel
regression are the last word in the random design
case. There, both N-W and G-M/P-C have disadvan-
tages, as C&M make clear, yet it does not appear to
be impossible to get the best of both internal and
external estimation worlds with new—but not
overly sophisticated—methods; it is also sensible to
apply such estimators back to the fixed design case.
Hopefully, the authors might agree that thinking
in such a framework helps to clarify the issues
involved and illuminate a way forward.

I am very pleased to have been afforded the
opportunity to append some comments on this most
interesting paper.
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Comment: Should We Use Kernel Methods

at All?

B. W. Silverman

I would like first of all to thank the authors for a
most interesting, thoughtful and provocative paper.
I think it is important to broaden out the discussion
to consider other possible estimators in more detail.
The authors’ attempt to be even-handed is particu-
larly to be welcomed, and if my own contribution
does not immediately appear to be in the same vein
it is only because the authors have already them-
selves dealt with the two kernel estimators.

1. SOME PHILOSOPHICAL REMARKS

The authors have set out an interesting di-
chotomy between two different viewpoints, P1 and
P2, that might be adopted. I wonder, though,
whether a synthesis of these approaches gives the
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real clue to what smoothing methods might ideally
be aiming at. Certainly my own view would be
more like a philosophy P4: We are looking for struc-
ture in this set of numbers, without imposing rigid
parametric assumptions, but still within a statisti-
cal framework of some sort.

The statement P1 is very much along the lines of
the “exploratory data analysis” approach of Tukey
(1977). This was a very welcome reaction to the
overemphasis on uncritical model fitting as exem-
plified by P2, and in order to clear the air it needed
to turn its back on several decades of statistical
thinking. For example, Tukey’s original book—
always intended as an introductory text—nowhere
even mentioned the idea of calculating the average
of the data set. But, of course, the classical statis-
tics that had become so constraining had itself
originally developed in order to answer questions
raised by data analytic approaches. Thus, in set-
ting out a dichotomy of the P1/P2 kind, we can
either give ourselves two different extremes be-
tween which to oscillate or else two different ingre-



