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Crudely, r could be considered to be the maximum
change in success probability that one would expect
given that ESP exists. Also, these distributions are
the “extreme points” over the class of symmetric
unimodal conditional densities, so answers that hold
over this class are also representative of answers
over a much larger class. Note that here r < 0.25
(because 0 < 6 < 1); for the given data the § > 0.5
are essentially irrelevant, but if it were deemed
important to take them into account one could use
the more sophisticated binomial analysis in Berger
and Delampady (1987).

For g,, the Bayes factor of H; to H,, which is to
be interpreted as the relative odds for the hypothe-
ses provided by the data, is given by
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This is graphed in Figure 1.
The P-value for this problem was 0.00005, indi-
cating overwhelming evidence against H, from a
classical perspective. In contrast to the situation
studied by Jefferys (1990), the Bayes factor here
does not completely reverse the conclusion, show-
ing that there are very reasonable values of r for
which the evidence against H, is moderately
strong, for example 100/1 or 200/1. Of course, this
evidence is probably not of sufficient strength to
overcome strong prior opinions against H, (one

.0252
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Ree Dawson

[This paper offers readers interested in statistical
science multiple views of the controversial history
of parapsychology and how statistics has con-
tributed to its development. It first provides an
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Fic. 1. The Bayes factor of H, to H, as a function of r, the
maximum change in success probability that is expected given
that ESP exists, for the ganzfeld experiment.

obtains final posterior odds by multiplying prior
odds by the Bayes factor). To properly assess
strength of evidence, we feel that such Bayes factor
computations should become standard in parapsy-
chology.

As mentioned by Professor Utts, Bayesian meth-
ods have additional potential in situations such as
this, by allowing unrealistic models of iid trials to
be replaced by hierarchical models reflecting differ-
ing abilities among subjects.
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account of how both design and inferential aspects
of statistics have been pivotal issues in evaluating
the outcomes of experiments that study psi abili-
ties. It then emphasizes how the idea of science as
replication has been key in this field in which
results have not been conclusive or consistent and
thus meta-analysis has been at the heart of the
literature in parapsychology. The author not only
reviews past debate on how to interpret repeated
psi studies, but also provides very detailed informa-
tion on the Honorton-Hyman argument, a nice
illustration of the challenges of resolving such de-
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bate. This debate is also a good example of how
statistical criticism can be part of the scientific
process and lead to better experiments and, in gen-
eral, better science.

The remainder of the paper addresses technical
issues of meta-analysis, drawing upon recent re-
search in parapsychology for an in-depth applica-
tion. Through a series of examples, the author
presents a convincing argument that power issues
cannot be overlooked in successive replications and
that comparison of effect sizes provides a richer
alternative to the dichotomous measure inherent in
the use of p-values. This is particularly relevant
when the potential effect size is small and re-
sources are limited, as seems to be the case for psi
studies.

The concluding section briefly mentions Bayesian
techniques. As noted by the author, Bayes (or em-
pirical Bayes) methodology seems to make sense for
research in parapsychology. This discussion exam-
ines possible Bayesian approaches to meta-analysis
in this field.

BAYES MODELS FOR PARAPSYCHOLOGY

The notion of repeatability maps well into the
Bayesian set-up in which experiments, viewed as a
random sample from some superpopulation of ex-
periments, are assumed to be exchangeable. When
subjects can also be viewed as an approximately
random sample from some population, it is appro-
priate to pool them across experiments. Otherwise,
analyses that partially pool information according
to experimental heterogeneity need to be consid-
ered. Empirical and hierarchical Bayes methods
offer a flexible modeling framework for such analy-
ses, relying on empirical or subjective sources to
determine the degree of pooling. These richer meth-
ods can be particularly useful to meta-analysis of
experiments in parapsychology conducted under
potentially diverse conditions.

For the recent ganzfeld series, assuming them
to be independent binomially distributed as dis-
cussed in Section 5, the data can be summed
(pooled) across series to estimate a common hit
rate. Honorton et al. (1990) assessed the homogene-
ity of effects across the 11 series using a chi-square
test that compares individual effect sizes to
the weighted mean effect. The chi-square statistic
xZ, = 16.25, not statistically significant (p =
0.093), largely reflects the contribution of the last
“special” series (contributes 9.2 units to the xZ,
value), and to a lesser extent the novice series with
a negative effect (contributes 2.5 units). The outlier
series can be dropped from the analysis to provide a
more conservative estimate of the presence of psi

effects for this data (this result is reported in Sec-
tion 5). For the remaining 10 series, the chi-square
value x2 = 7.01 strongly favors homogeneity, al-
though more than one-third of its value is due to
the novice series (number 4 in Table 1). This pat-
tern points to the potential usefulness of a richer
model to accommodate series that may be distinct
from the others. For the earlier ganzfeld data ana-
lyzed by Honorton (1985b), the appeal of a Bayes or
other model that recognizes the heterogeneity
across studies is clear cut: x§3 = 56.6, p = 0.0001,
where only those studies with common chance hit
rate have been included (see Table 2).

Historic reliance on voting-count approaches to
determine the presence of psi effects makes it natu-
ral to consider Bayes models that focus on the
ensemble of experimental effects from parapsycho-
logical studies, rather than individual estimates.
Recent work in parapsychology that compares ef-
fect sizes across studies, rather than estimating
separate study effects, reinforces the need to exam-
ine this type of model. Louis (1984) develops Bayes
and empirical Bayes methods for problems that
consider the ensemble of parameter values to be
the primary goal, for example, multiple compar-
isons. For the simple compound normal model,
Y, ~ N(@,, 1), 0, ~ N(p, 7%), the standard Bayes

estimates (posterior means)
2

0} =pu+D(Y,—p) and D= T

where the 0, represent experimental effects of in-
terest, are modified approximately to

8 ~pu+ VD(Y; - n)

when an ensemble loss function is assumed. The
new estimates adjust the shrinkage factor D so
that their sample mean and variance match the
posterior expectation and variance of the 6’s. Simi-
lar results are obtained when the model is gener-

TaBLE 1
Recent ganzfeld series

Series type N Trials Hit rate Y; o;
Pilot 22 0.36 —-0.58 0.44
Pilot 9 0.33 -0.71 0.71
Pilot 36 0.28 -0.94 0.37
Novice 50 0.24 -1.15 0.33
Novice 50 0.36 —-0.58 0.30
Novice 50 0.30 -0.85 0.31
Novice 50 0.36 -0.58 0.30
Novice 6 0.67 0.71 0.87
Experienced 7 0.43 -0.28 0.76
Experienced 50 0.30 -0.85 0.31
Experienced 25 0.64 0.58 0.42
Overall 355 0.34
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TABLE 2
Earlier ganzfeld studies

N Trials Hit rate Y; g
32 0.44 —0.24 0.36
7 0.86 1.82 1.09
30 0.43 —-0.28 0.37
30 0.23 -1.21 0.43
20 0.10 -2.20 0.75
10 0.90 2.20 1.05
10 0.40 -0.41 0.65
28 0.29 —-0.90 0.42
10 0.40 —-0.41 0.65
20 0.35 —0.62 0.47
26 0.31 -0.80 0.42
20 0.45 —-0.20 0.45
20 0.45 —-0.20 0.45
30 0.53 0.12 0.37
36 0.33 -0.71 0.35
32 0.28 —0.94 0.39
40 0.28 -0.94 0.35
26 0.46 —-0.16 0.39
20 0.60 0.41 0.46
100 0.41 —0.36 0.20
40 0.33 -0.71 0.34
27 0.41 —0.36 0.39
60 0.45 —-0.20 0.26
48 0.21 -1.33 0.35
722 .38

alized to the case of unequal variances, Y; ~
N@,, o?).

For the above model, the fraction of 8} above (or
below) a cut point C is a consistent estimate of the
fraction of 0, > C (or 6, < C). Thus, the use of
ensemble, rather than component-wise, loss can
help detect when individual effects are above
a specified threshold by chance. For the meta-
analysis of ganzfeld experiments, the observed bi-
nomial proportions transformed on the logit (or
arcsiny/) scale can be modeled in this framework.
Letting d; and m; denote the number of direct hits
and misses respectively for the ith experiment, and
p; as the corresponding population proportion of
direct hits, the Y; are the observed logits

Y, = log(d;/m,) ,

and ,0?, estimated by maximum likelihood as
1/d; + 1/m,;, is the variance of Y, conditional on
0; = logit(p;). The threshold logit (0.25) = 1.10 can
be used to identify the number of experiments for
which the proportion of direct hits exceeds that
expected by chance.

Table 1 shows Y, and o; for the 11 ganzfeld
series. All but one of the series are well above the
threshold; Y, marginally falls below —1.10. Any
shrinkage toward a common hit rate will lead to an
estimate, 6} or 6}, above the threshold. The use of

ensemble loss (with its consistency property) pro-

vides more convincing support that all 9, > —1.10,
although posterior estimates of uncertainty are
needed to fully calibrate this. For the earlier
ganzfeld data in Table 2, ensemble loss can simi-
larly be used to determine the number of studies
with 0, < —1.10 and specifically whether the nega-
tive effects of studies 4 and 24 (Y, = -1.21
and Y,, = —1.83) occurred as a result of chance
fluctuation.

Features of the ganzfeld data in Section 5, such
as the outlier series, suggest that further elabora-
tion of the basic Bayesian set-up may be necessary
for some meta-analyses in parapsychology. Hierar-
chical models provide a natural framework to spec-
ify these elaborations and explore how results
change with the prior specification. This type of
sensitivity analysis can expose whether conclusions
are closely tied to prior beliefs, as observed by
Jeffreys for RNG data (see Section 7). Quantifying
the influence of model components deemed to be
more subjective or less certain is important to broad
acceptance of results as evidence of psi performance
(or lack thereof).

Consider the initial model commonly used for
Bayesian analysis of discrete data:

Y| piyn; ~ B(Pi, ni)’
0; ~ N(;L, 1'2), 0, = IOgit(Pi)’

with noninformative priors assumed for p and 72
(e.g., log 7 locally uniform). The distinctiveness of
the last “special” series and, in general, the differ-
ent types of series (pilot versus formal, novice ver-
sus experienced) raises the question of whether the
experimental effects follow a normal distribution.
Weighted normal plots (Ryan and Dempster, 1984)
can be used to graphically diagnose the adequacy of
second-stage normality (see Dempster, Selwyn and
Weeks, 1983, for examples with binary response
and normal superpopulation).

Alternatively, if nonnormality is suspected, the

‘model can be revised to include some sort of heavy-

tailed prior to accommodate possibly outlying se-
ries or studies. West (1985) incorporates additional
scale parameters, one for each component of the
model (experiment), that flexibly adapt to a typi-
cal 6, and discount their influence on posterior
estimates, thus avoiding under- or over-shrinkage
due to such 6,. For example, the second stage
can specify the prior as a scale mixture of normals:

oi -~ N(I'L, 7271'_1),
kY, ~ Xk
v 2 ~ xf.

This approach for the prior is similar to others for
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maximum likelihood estimation that modify the
sampling error distribution to yield estimates that
are “robust” against outlying observations.

Like its maximum likelihood counterparts, in ad-
dition to the robust effect estimates 6,*, the Bayes
model provides (posterior) scale estimates v;*. These
can be interpreted as the weight given to the data
for each 6; in the analysis and are useful to diag-
nosing which model components (series or studies)
are unusual and how they influence the shrinkage.
When more complex groupings among the 6, are
suspected, for example, bimodal distribution of
studies from different sites or experimenters, other
mixture specifications can be used to further relax
the shrinkage toward a common value.

For the 11 ganzfeld series, the last ‘“outlier”
series, quite distinct from the others (hit rate =
0.64), is moderately precise (N = 25). Omitting it
from the analysis causes the overall hit rate to drop
from 0.344 to 0.321. The scale mixture model is a
compromise between these two values (on the logit
scale), discounting the influence of series 11 on the
estimated posterior common hit rate used for
shrinkage. The scale factor 47|, an indication of
how separate 60, is from the other parameters, also
causes 03, to be shrunk less toward the common hit
rate than other, more homogeneous 6,, giving more
weight to individual information for that series (see
West, 1985). The heterogeneity of the earlier
ganzfeld data is more pronounced, and studies are
taken from a variety of sources over time. For these
data, the v can be used to explore atypical studies
(e.g., study 6, with hit rate = 0.90, contributes more
than 25% to the x2,. value for homogeneity) and
groupings among effects, as well as protect the
analysis from misspecification of second-stage
normality.

Variation among ganzfeld series or studies and
the degree to which pooling or shrinking is appro-
priate can be investigated further by considering a
range of priors for 72. If the marginal likelihood of
72 dominates the prior specification, then results

should not vary as the prior for 72 is varied. Other-
wise, it is important to identify the degree to which
subjective information about interexperimental
variability influences the conclusions. This sen-
sitivity analysis is a Bayesian enrichment of
the simpler test of homogeneity directed toward
determining whether or not complete pooling is
appropriate.

To assess how well heterogeneity among his-
torical control groups is determined by the data.
Dempster, Selwyn and Weeks (1983) propose three
priors for 72 in the logistic-normal model. The prior
distributions range from strongly favoring individ-
ual estimates, p(72)dr « =1, to the uniform refer-
ence prior p(7%)dr « 72, flat on the log 7 scale, to
strongly favoring complete pooling, p(72)dr oc 773
(the latter forcing complete pooling for the com-
pound normal model; see Morris, 1983). For their
two examples, the results (estimates of linear treat-
ment effects) are largely insensitive to variation in
the prior distribution, but the number of studies in
each example was large (70 and 19 studies avail-
able for pooling). For the 11 ganzfeld series, 72 may
be less well determined by the data. The posterior
estimate of 72 and its sensitivity to p(r2)dr will
also depend on whether individual scale parame-
ters are incorporated into the model. Discounting
the influence of the last series will both shift the
marginal likelihood toward smaller values of 72
and concentrate it more in that region.

The issue of objective assessment of experiment
results is one that extends well beyond the field of
parapsychology, and this paper provides insight into
issues surrounding the analysis and interpretation
of small effects from related studies. Bayes meth-
ods can contribute to such meta-analyses in two
ways. They permit experimental and subjective evi-
dence to be formally combined to determine the
presence or absence of effects that are not clear cut
or controversial (e.g., psi abilities). They can also

* help uncover sources and degree of uncertainty in

the scientific conclusions.



