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Comment

Edward J. Bedrick and Joe R. Hill

We congratulate Professor Agresti for his com-
prehensive review of exact inference with cate-
gorical data. We share his enthusiasm for exact
conditional methods and believe that the coming
years will produce many important computational
breakthroughs in this area.

The mechanics of conditioning on sufficient
statistics to generate reference distributions for es-
timation, testing and model checking with loglin-
ear models for Poisson data and logistic regression
models for binomial data are well-known, but the
utility of conditioning in these settings is not uni-
versally agreed upon. Furthermore, the role of con-
ditioning in the analysis of discrete generalized
linear models with noncanonical link functions has
received little attention from most of the statistical
community. As a result, scientists and statisticians
are familiar with conditional methods, but many
are unsure how such methods should be incor-
porated into an overall strategy for analyzing cate-
gorical data. We feel that the use and abuse of
conditional methods will not be fully understood or
appreciated without such a strategy. We hope that
Professor Agresti’s survey and the ensuing discus-
sions stimulate further work in this direction.

Edward J. Bedrick is an Assistant Professor, De-
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Mexico 87109.
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CHECKING LOGISTIC REGRESSION MODELS

We would like to convey some of our recent work
on model checking for logistic regression and some
of our thoughts regarding conditional inference.
For the sake of simplicity, we assume that a single
model is under consideration. A little notation is
required. The usual logistic regression model has
two distinct parts: a sampling component and a
structural component. The sampling component
specifies that Y = (Y;,...,Y,) is a vector of inde-
pendent binomial random variables with Y, ~
Bin(m,;, w;). The structural or regression compo-
nent of the model is given by

(1) logit () = X8,

where logit(7) is an n X 1 vector of log-odds with
elements log{w,/1 — 7))}, X is an n X p full-
column rank design matrix with ith row x}, and 8
is a p X 1 vector of unknown regression parame-
ters. Under model (1), S = X'Y is sufficient for 8.
Let 7 be the MLE of 7 under this model.

The distribution of the data pr(Y; 3), indexed by
B, can be factored into the marginal distribu-
tion of the sufficient statistic S, and the condi-
tional distribution of the data given the sufficient
statistic:

pr(Y;8) = pr(Y | S)pr(S;B).

Taking a Fisherian point of view (Fisher, 1950),
inferences about $ are based on pr(S; 8), whereas
model checks use the conditional distribution
pr(Y | S). Letting s,,, = X’y,,, be the observed
value of the sufficient statistic for the logistic model,
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the reference distribution for model checking is
- n m;
(2) pr(Y= yIS = sobs) = Cobs Hl ( y; )
1= 13

where

n

1 m;
obs — Z H * |
R T A 1\ Y

(¥, ...
Yo = {9* = (9%,

0<yf=m;and X y* = s,,,}.

, ¥,.), ¥ an integer:

Note that %,  is the set of response vectors that
give the same value of the sufficient statistic as the
observed data.

Model checking examines the adequacy of the
postulated model by contrasting it with the ob-
served data. Either the entire model (i.e., both the
sampling and structural components) or specific
features of the model may be checked, neither re-
quiring reference to alternative models. A model
check is implemented by specifying a test statistic
t(Y) that quantifies the type of deviation of inter-
est, and then computing a significance level for the
statistic using the conditional reference distribu-
tion pr(Y | S = s,,,). Model checks are pure signifi-
cance tests. Unlike a hypothesis test that requires
a specified alternative, the results of a model check
are provisional and only meant to provide insight
into whether difficulties might arise if the model
were to be used for inference. Of course, a series of
model checks may suggest that the model needs to
be revised. -

We believe that conditioning on the sufficient
statistic S is the only logically defendable approach
to generating a (frequentist) reference distribution
for checking logistic models. This view is controver-
sial among frequentists, many of whom argue that
conditional methods are needlessly conservative
and that unconditional assessments are preferable.
Indeed, this criticism has been leveled repeatedly
at Fisher’s exact test. It is our opinion that most of
the criticisms are flawed because they are based on
power comparisons, which are not relevant in sig-
nificance tests. Fisher’s exact test is a global signif-
icance test of the adequacy of the following model:
Y, ~ independent Bin(m,;,0), i =1,2. It is not a
test of equal probabilities assuming independent
binomial responses. Any mathematical connection
between the two is largely coincidental and does
not justify power comparisons of the exact test with
hypothesis tests. Professor Agresti’s linking of
Fisher’s exact test to a hypothesis test is unfortu-
nate, as this will not help abate the confusion on
this issue.

Fisher’s exact test is, in fact, a simple case of a
global check for a logistic regression model where
the structural component of the model includes
only an intercept. The probability function #(Y) =
pr(Y | S =s,,,) serves as the test statistic for a
global model check. The deviance and Pearson
statistics are possible alternatives to #(Y).

Bedrick and Hill (1990, 1991) discussed a general
strategy for checking logistic models, including
global model checks, outlier detection and good-
ness-of-link checks. Exact reference distributions
for residuals can also be obtained in this frame-
work. To illustrate the idea, let e; = (Y; — m;%;)/
{@ - h)m,;#,(1 — %)}/ be the ith standardized
Pearson residual, where h; is the estimated case
leverage. The e,’s are usually treated as standard
normal variables, which is unrealistic if the sample
sizes are small, say 5 or less. The inherent discrete-
ness of the Y, can be handled directly by condition-
ing on S and calibrating the e; relative to the
marginal conditional distribution pr(Y;|S =
Sos). For example, when m; =1, the marginal
conditional distribution of Y, is Bernoulli with pa-
rameter pr(Y; =1|S = s,,,). The conditional dis-
tribution of e; is a location-scale change of the
conditional distribution of Y; because the fitted
values and leverages are functions of s,,,. The
conditional distribution of Y, can be extremely
skewed, multimodal or restricted to a proper subset
of [0, m;]. We prefer to assess the extremeness of
the Y; directly when the conditional reference dis-
tribution is not unimodal or not centered near the
fitted value. Large differences between the normal
and conditional assessments of the residuals are
common in the presence of extreme skewness and
multimodality. Although it is difficult to reconcile
differences between conditional and unconditional
assessments, we are uncomfortable with the nor-
mal approximation when the conditional reference
distribution exhibits these characteristics.

The vasoconstriction data set analyzed by Pregi-
bon (1981) highlights several issues concerning
conditional versus unconditional asymptotic meth-
ods. Pregibon fitted a model with two predictors to
the 39 binary responses. Normal approximations to
the deviance and Pearson residuals suggest that
observations 4 and 18 in Pregibon’s data listing are
poorly accounted for by the model. Although no
statistician would take literally these large sample
assessments, how much faith can one place in
benchmarking residuals with a normal distribu-
tion, even if it is used solely as a diagnostic to point
out poorly fitted points? We computed %, , after
rounding off the covariate values to three decimal
places. The reference set %,  contains three re-
sponse vectors (see Table 1), each with conditional
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TaBLE 1
Time in seconds needed to generate %, . on SUN
SPARCstation IPC

Source n Ym; #%,° Time

o

p
Bedrick and Hill (1990) 2 10 274 1637 14.5
6

Bedrick and Hill (1990) 23 53 6034 3.6
Cook and Weisberg

(1982, page 193) 3 30 33 131 1.6
Finney (1947, page 47) 2 6 283 1496 2.3
Pregibon (1981) 3 39 39 3 1271

“# 9%, is the number of responses in %, _.

probability 1/3 under the model. Clearly, in this
situation, there is insufficient information to criti-
cize the model based on conditional assessments.
The conditional and the unconditional asymptotic
assessments of the residuals are in conflict, in part,
because of the near degeneracy of the conditional
reference distribution. We agree with Professor
Agresti that many frequentist statisticians would
be uncomfortable with the conditional approach
here. However, in the light of the inadequacies of
the unconditional asymptotic approximations, what
direction should one turn to handle such data? Are
bootstrap methods a viable alternative to asymp-
totics for model checking? Some researchers have
suggested so (see Williams, 1987), but this issue
has not been fully explored. In closing this section,
we would like to ask Professor Agresti whether he
has some good advice on general strategies for
handling such problems?

AN ALGORITHM TO GENERATE %,,,

Model checking is feasible only when the refer-
ence set %, that determines pr(Y |S = s,,,) can
be generated readily. A complete enumeration of
% ,. is necessary because a variety of assessments
are usually required. We will discuss an algorithm
we developed to generate %,,,. For simplicity, as-
sume that the model contains an intercept and,
then without loss of generality, that the covariates
are nonnegative. The ideas extend easily to arbi-
trary covariates values.

For models with only an intercept term, %, is
equivalent to the set of 2 X n contingency tables
with fixed-column totals m,,..., m,, and fixed-row
totals s,,, = X;¥; ops and X ;m; — s.;,. As is well-
known, the enumeration of these tables can require
enormous CPU time even for tables with modestly
sized margins. The computations of %/, for mod-
els that also include covariates may appear more
difficult. In fact, fewer computations are necessary
because each covariate imposes an additional con-
straint on the set of feasible responses. For models

. to get y,,...

with several covariates, %,,. can often be obtained
in a small fraction of the time necessary to gener-
ate the set of 2 X n contingency tables with fixed
margins.

We generate %, by recursively looping be-
tween the minimum and maximum potential
values for y,,...,y,, and checking whether the
generated responses are in %, . The minimum and
maximum values are determined from the counts
assigned to preceding cells in the recursion and by
“infeasibility criteria” (Hirji, Mehta and Patel,
1987) that restrict cell values based on the
constraints imposed by the covariates. The infea-
sibility criteria eliminate potential responses from
consideration once it becomes obvious that further
steps in the recursion will not produce an element
in @obs'

The basic idea of the algorithm is straightfor-
ward. Given Y;=y;, j=1,...,i— 1, define the
minimum and maximum potential values of Y, as
follows: min; is the maximum of 0 and the smallest
integer Y, such that

i—-1 n
Yixizsobs_ Zyj i Z m;x;,

Jj=0 J=i+1
whereas max ; is the minimum of m; and the largest
integer Y, such that

i-1
Yixi = Sops — Zoijj'
J=

Here, the inequalities must be satisfied element-
wise, and y, =0, x4 = 0,,,. Because the covari-
ates are nonnegative, any element in %, with
Y=y, j=1,...,i—1 must have min; <Y, <
max ;. Potential responses in %,  are generated by
looping between min; and max; (i=1,...,n — p)
s Yn— p» then solving for y,_,,7 ...,
¥, by forcing the constraint X'y = s_;,:

n

n—-p
Z YeXp = Sops — Z Yi%;.
k=n—-p+1 Jj=0

The generated tail values y,_,.;,...,%, are not
necessarily integers, so we must check whether
(¥15---> ) € %, The efficiency of our algorithm
depends critically on the data labeling. The data
should be arranged to minimize the amount of
looping. The bounds min; and max; only crudely
utilize that Y°,y; is fixed by the inclusion of an
intercept in the model. A more careful analysis
typically provides tighter bounds, which results in
faster execution time.
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We implemented a FORTRAN version of our al-
gorithm on a SUN SPARC station IPC with 16 Mb
RAM. Table 1 gives the CPU seconds needed to
generate %, for several published data sets. The
single covariate data sets (p = 2) are dose-response
problems with relatively large sample sizes per
dose, whereas the remaining examples have many
small-sized samples. The summaries suggest that
generating the reference set %, is feasible for
many practical problems. We are currently investi-
gating alternative methods to widen the range of
problems that can be handled. We hope to report
these results in the near future.

A COMMENT ON NONCANONICAL
LINK FUNCTIONS

In Section 2.2, Professor Agresti states:

It is not possible to construct ‘exact’ confidence
intervals for association measures that are not
functions of the odds ratio. They do not occur
as parameters in generalized linear models
with Poisson or binomial random component
using canonical links. Thus, the usual condi-
tioning arguments do not eliminate nuisance
parameters. '

Professor Agresti’s comment raises several impor-
tant issues concerning conditional inference and
model checking that we will try to clarify. To be
precise, we will consider three distinct models for
the two-by-two table. Let Y; and Y, be indepen-
dent and, for i = 1,2, let Y; be a binomial random
variable with index m; and natural parameter «;,
that is,

log{pr(Y = y; a)} = y;0q + mlog{1 + exp(a,)}
+ yp05 + mylog{l + exp(ay)}
+ c(my, my, y1, ¥2),

which is a two parameter linear ez'(ponential family

indexed by o = (ay, ay).
If

a;(¢) = log(yy) + log(o)
and
ap(9) = 13g(¢),
0 < ¢ < o, for some fixed ¥, 1<y, < o, then

S =Y, + Y, is sufficient for ¢, so pr(Y; =y,|8S =
S,ps) does not depend on ¢. (It does depend on v,

which is known.) This, of course, leads to Fisher’s
exact test.
If, however,

ay(7) = log

™+ (1 -7)8, }
(1 - 7)(1 - 6,)

and
ay(m) =log{r/(1 — 7)},

0 < 7 < 1, for some fixed 6,, 0 < 6, < 1, then S =
(Y,,Y,) is minimally sufficient for =. According to
Basu (1979), this disallows Fisher’s conditioning
argument. Basu commented:

Is there a logically compelling reason why we
should reparameterize the model in terms of
(¢, ¢) instead of (6, 7)? I cannot regard the
Fisher conditionality argument as anything but
an ad hoc method that appears to succeed once
in a while but fails completely when the same
problem is restated in a slightly different form.

Should Fisher’s disciples be disturbed by this
counterexample? The answer is a categorical NO.
The two models previously described are not differ-
ent parametrizations of the same model. They are
fundamentally different models. In particular, the
first model is a one-parameter linear exponential
family. On the other hand, the second model is a
one-parameter curved exponential family nonlin-
early embedded in a two-dimensional linear model.
These facts, not the failure of Fisher’s conditioning
argument, explain why the dimension of the mini-
mal sufficient statistic is one for the first model and
two for the second.

A careful Fisherian analysis of the second model
uses the ancillary part of the minimally sufficient
statistic S = Y for model checking. This ancillary
statistic is related to the curvature of the second

" model. Assuming the model passes inspection, in-

ference about m must be made conditional on the
ancillary (Hinkley, 1980).

If, instead of either of the these two models,
a = (o, ay) were unconstrained, then, in our opin-
ion, no completely coherent argument has been
given to justify conditioning on any statistic, no
matter what the parameter of interest is. If the
parameter of interest is the odds-ratio ¥ = exp(o,
— ay), then conditioning provides a mathematical
device to derive similar confidence intervals for .
On the other hand, if the parameter of interest
is 0 = (w; — my)/A — w,), where w; =1/{1 +
exp(—«;)}, then this device does not work but
reasonable confidence intervals still exist. Given
that this mathematical device works only in special
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cases, is there any reason that conditional coverage
should be desired?

In summary, for the first model, pr(Y | S) is the
reference distribution for model checking and
pr(S; ¢) is the reference distribution for inference
about the parameter ¢. For the second model, pr( A),
where A represents the ancillary component of

Comment

Diana E. Duffy

1. INTRODUCTION

Professor Agresti is to be congratulated for a
well-written and timely survey on exact conditional
inference for contingency tables. At this point in
time, 8 to 10 years after some of the key initial
advances in computing strategies (Pagano and
Halvorsen, 1981; Mehta and Patel, 1983; Pagano
and Tritchler, 1983a, 1983b), it is instructive to
take stock of both where the field is presently and
where the field may be headed. For practitioners
and applied statisticians, Agresti offers a practical
introduction to currently available exact methods.
For researchers in methodology and in statistical
computing and algorithms. Agresti offers directions
for possible future research.

Exact conditional inference for contingency ta-
bles involves assessing the exact (discrete) sam-
pling distribution of test statistics and parameter
estimates of interest after conditioning on the suffi-
cient statistics for nuisance parameters. The suffi-
cient statistics for nuisance parameters correspond
directly to certain margins in the corresponding
contingency table; as long as one operates within
the arena of loglinear models, conditioning on these
margins will eliminate the nuisance parameters.
The exact sampling distribution of interest is then
the distribution over all possible tables that could
be observed with certain fixed margins (i.e., those
margins fixed by the sampling design plus those
margins fixed by the conditioning). I will refer to
this set of tables as the conditional reference set. It

Diane E.- Duffy is Director, Statistics and Data
Analysis Research Group, Bellcore, 445 South Street,
Morristown, New Jersey 07962-1910.

S =Y, is the reference distribution for model
checking and pr(S| A; «) is the reference distribu-
tion for inference about the parameter w. For the
third model, model checking is not possible, and
pr(Y; «) is the reference distribution for inference
about any parameter of interest (i.e., any function
of a).

is worth noting the following correspondence be-
tween conditional and unconditional problems: the
conditional reference set for a problem with a set
S, of margins fixed by the sampling design and a
set S, of margins fixed by conditioning is identical
to the sample space for a (different) problem in
which margins in both S, and S, are fixed by the
sampling design. For example, the conditional ref-
erence set for testing independence in a 2 x 2 table
under product binomial sampling (one-fixed mar-
gin) is equivalent to the sample space for a 2 x 2
table with both margins fixed.

In this commentary, I would like to expand on
two areas that offer challenges for future work.
Throughout this discussion, I adopt Agresti’s nota-
tion as described in his Section 1.2 in toto, and I
refer to points in his paper by simply giving his
name and the section number.

2. BAYES AND RELATED INFERENCES

The existing literature on Bayesian methods for -

" analyzing contingency tables dates at least to Lind-

ley (1964). One way to categorize the proposed
methods is through the choice of prior. The sim-
plest methods are those for 2 x 2 tables under prod-
uct binomial sampling with beta priors; see Altham
(1969, 1971) for examples. Generalizations to full
multinomial sampling and to I x J tables for I or
JJ > 2 lead to Dirichlet priors on the cell probabili-
ties. These are discussed in Good (1967, 1975, 1976),
Good and Crook (1974), Gunel and Dickey (1974),
Crook and Good (1980), and Albert and Gupta (1982,
1983a, 1983b). Normal priors on logarithmic func-
tions of the cell probabilities are discussed in
Leonard (1975) and Nazaret (1987). Empirical
Bayes analogs of the Dirichlet and normal ap-
proaches are described in Albert (1987) and Laird



