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Lundy and Kruskal, 1985; Kruskal, Harshman and
Lundy, 1989; Lundy, Harshman and Kruskal, 1989).

Krijnen and Ten Berge (1991) developed variants of
the basic PARAFAC algorithm to put nonnegativity
constraints on the solution by using special least
squares regression algorithms from Lawson and Han-
son (1974). Durrell et al. (1990) refer to programs for
three-way and four-way PARAFAC models (Lee, 1988)
which also included nonnegativity constraints.

3.6 Additional Issues

In the above sections, the general focus has been on
models and algorithms, but there are several issues in
connection with these models which have not been
mentioned so far. Very prominent, for instance, in
Harshman’s work, has been the question of prepro-
cessing (i.e., centering and standardisation) of the data
before the three-way analysis. Harshman and Lundy
(1984b) discuss this issue in great detail touching on
both algebraic and practical aspects (see also Kroonen-
berg, 1983). Ten Berge and Kiers (1989) and Ten Berge
(1989) provide some theoretical results with respect to
the iterative centering and standardisation proposed
by Harshman and Lundy.

Another issue in this context is the postprocessing
of output, that is, representation, graphing and trans-

Comment

Donald S. Burdick

Multilinear models are fascinating because of the
richness of their mathematical structure and the use-
fulness of their applications. The authors have done a
fine job of presenting both of these features. I welcome
their paper and hope that it has the effect of stimulat-
ing interest in this important topic.

Having said that, I must add my opinion that it is
a mistake to shy away from tensors. The geometry of
tensor products can be a source of valuable insight
when struggling with the complicated details of multi-
linear algebra. The geometric perspective is especially
useful when trying to make sense out of the nonunique-
ness that occurs when model parameters are not identi-
fiable.

For example, the concept of tensor products of vector

Donald S. Burdick is Associate Professor, Institute
of Statistics and Decision Sciences, Duke University,
Durham, North Carolina 27706.
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formations of the basic output of the programs to
enhance interpretability (see especially Harshman and
Lundy, 1984b; Kroonenberg, 1983).

Smilde (1992) raises the issue of variable selection
for three-way data, as well as the problem of nonlineari-
ties in the data and their effect on the solutions. These
issues can also be seen as a serious concern in such
areas like ecology where nonlinearities are the rule
rather than the exception (see, e.g., Faith, Minchin and
Belbin, 1987).

A final point is that within the framework of the
analysis of covariance structures, McDonald (1984) has
discussed the PARAFAC model, cited its limitations
and proposed an altogether different (stochastic) ap-
proach to the kind of three-way data psychologists
often encounter.

4. CONCLUSION

With the above comments, I have attempted to give
a rough outline of research on the PARAFAC model.
The model itself is only one of several conceivable
models for three-way data, but a fully fledged exposé
is not feasible here. What makes the PARAFAC model
special is that it has a unique solution, a situation
which is fairly unique in three-way land.

spaces can shed light on the structure of the T3 model.
Let Y denote an I X J X K data array and write

Y=u+e

where u is given by (19). The data array Y is uncon-
strained, which is tantamount to saying that Y is an
arbitrary vector in R ® R’ ® R¥, the tensor product
of real Euclidean spaces of dimensions I, J and K,
respectively. The array u, however, is constrained by
expression (19). What is the nature of that constraint?
Expression (19) stipulates that u liein @ ® & ® C,
where @, & and € are the respective subspaces of R/,
R’ and RX spanned by the columns of A, B and I,
respectively. The least squares fit of 4 to Y is the
projection of Y on @ ® & ® C. From a geometric
perspective, the nonidentifiability is obvious, because
the projection of a data vector on a subspace is un-
affected by changes in the basis spanning the subspace.
Replacing A by AM amounts to no more than a change
of basis for Q.
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The perspective of tensor geometry is even more
helpful in acquiring insight into the T2 model. The
constraint implied by (25) or (26) is that u lie in @ ®
® ® RX. Other examples of the value of the geometric
perspective could be cited, but perhaps these will
suffice to make the point.

There is, I admit, some validity to the authors’ stated
reason for avoiding tensor terminology. Much of the
extant literature on tensors is written either for physi-
cists or for mathematicians, and neither slant is partic-
ularly well suited for the statistical applications at
hand. There is a tendency for the treatments to be on
the one hand too abstract and on the other too special-
ized because of the focus on tensor powers of RV.
The concepts of covariance and contravariance, for
example, arise when a tensor is regarded as an abstrac-
tion whose numerical representation is the result of an
arbitrarily chosen coordinate system. The chemometri-
cian need not struggle to understand these concepts.
The numbers in his or her arrays are real data and not
just coordinates with respect to some arbitrary basis.

Contrary to the impression one might get from
books, the theoretical underpinnings of basic tensor
product geometry are not difficult to comprehend. A
key idea is the tensor product mapping, of which the

Rejoinder

Sue Leurgans and Robert T. Ross

We thank the editors for securing the comments
of Kroonenberg and of deLeeuw, both of whom have
contributed to the development and application of
multiway methods in psychometrics, and of Burdick,
a statistician with chemistry collaborators. Much of
the work on multilinear models is deeply embedded in
subject matter, and many contributions have been
made outside the single application (spectroscopy) we
have emphasized here. We thank the discussants for
adding their views of important contributions in a
variety of areas.

Our reply consists of a section with comments on
mathematical issues raised by all discussants and a
section of specific responses to selected points raised
by each discussant.

1. GENERAL COMMENTS

We think one reason for the increased interest in
arrays in recent decades is that arrays are no longer
theoretical abstractions, but can be defined and manip-
ulated in many high-level languages. The statistical

outer product is a canonical example. The feature which
distinguishes a tensor product mapping from other
bilinear functions with two vector arguments, for ex-
ample, the inner product, is its preservation of linear
independence. Thus, if the F; columns of A are linearly
independent and the F; columns of B are linearly inde-
pendent, the F,F; outer products of columns of A with
columns of B are linearly independent. The span of
these F\F; outer products is by definition the tensor
product @ ® &, where @ is the span of the columns of
A and ® is the span of the columns of B.

This presentation omits some mopping up details
that are required for a fully rigorous definition of the
tensor product of vector spaces. The essential features
of the concept, however, are there. Anyone who can
follow the development in the previous paragraph has
a handle on a set of conceptual tools that can provide
a valuable framework for interpreting multilinear mod-
els. These conceptual tools require names. We can use
the existing tensor terminology or invent new terms.
Others may have added bells and whistles that we
don’t want or need, but the terminology of tensors
exists for the tools we do need, and it has been around
for years. I say we should use it.

package S (Becker, Chambers and Wilks, 1988) is just
one of the programs that permits array calculations.
Besides changing the nature of the questions that are
important, the ability to calculate easily enables one
to check conjectures.

The mathematical theory of arrays that needs to be
applied to these questions requires some features that
are more general than most descriptions of tensors.
The most basic requirements are that the number of
levels in each way of the array be arbitrary and not
necessarily equal and that the elements of the array
not be required to satisfy any symmetry assumptions.
The different ways of the array need to be treated
symmetrically in mathematics, although different ap-
plications may treat the ways differently. The notation
employed will vary with the purpose of the exposition;
see our reply to Burdick below. Other examples of
publications on array results are Knuth (1965) and
Lickteig (1985) [from the Geladi (1989) paper cited by
Kroonenberg] and Lickteig’s references.

The basic question about arrays is how to approxi-
mate an array by a simpler array or how to decompose



