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Comment

Neal Madras

Professors Gelman, Rubin and Geyer have presented
us with many interesting ideas to think about. These
two papers have been billed as representing opposing
sides in a debate, but to my mind they complement
more than they contradict each other. This is probably
because I find the “debate” somewhat artificial, with
each side having its merits as well as its limitations.
It is true that one long run gives more statistical
information per CPU minute than do several shorter
runs (because of warm-up time); however, if you suspect
slow mixing for some particular reason, then you
should do your best to investigate its likely sources—
and multiple runs with intelligently selected starting
points are probably the most natural way to detect
such a problem. I think that most researchers who use
Monte Carlo simulation will find useful things in both
papers.

Guarantees are hard to come by in iterative simula-
tion. At present, few Markov chains are sufficiently
tractable to yield good rigorous upper bounds on the
amount of time necessary to run simulations (although
the last paragraph of Geyer’s Section 3.5 is a nice
observation that may make even relatively weak
bounds useful in some cases). What can we do when
rigorous analysis eludes us?

Geyer claims that guarantees can come from “experi-
ments with a range of sampling schemes proceeding in
small steps from schemes known to mix rapidly to the
scheme of interest, making sure at each step that the
run is long enough by comparing it to the runs already
done.” This is a very appealing idea, and it may work
very well sometimes, but it is hard for me to believe
that this method comes with general guarantees. The
problem is that two Markov chains whose transition
probabilities are very close may have very different
properties. For example, the Ising model in statistical
physics is a family of distributions indexed by a param-
eter T'> 0 (“temperature”) and having a critical value T,
(corresponding to a phase transition in the associated
infinite system). There is a standard implementation
of the Gibbs sampler (or the Metropolis algorithm)
to the Ising model, giving a Markov chain at each
temperature 7. We need not be concerned with the
details of the model and implementation [which may
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be found in Geman and Geman (1984) or Ripley and
Kirkland (1990)], except to say that the Markov chain
is rapidly mixing if 7' is large and slowly mixing if T’
is small, and that the change occurs fairly abruptly in
a small neighborhood of 7.. Consider a sequence of
schemes in which the ith scheme corresponds to the
Markov chain at temperature T}, where 9 > Ty > - - -
If Ts > T. > T4, say, then the small value of ¢® at T
may provide a false sense of security at T, and the
entire run at 7, may be too short to permit the chain
to escape some subset of the state space, which is
metastable at 7'y but not at Ts. The resulting estimate
of ¢® at Ty would be far too small. Similar abrupt
changes can occur in simulated annealing, perhaps at
more than one “critical value” [see p. 677 of Kirkpatrick,
Gelatt and Vecchi (1983)].

It is tempting to say that we can avoid such pitfalls
if we are careful enough, but the point remains that
important questions must be answered before ac-
cepting Geyer’s claim. First of all, what can be said
rigorously about a continuum of sampling schemes?
How small should the steps be to ensure that 62 does
not change too much from one scheme to the next, if
it is indeed possible to make such assurances at all?
Second, is the procedure feasible in practice? Perhaps
for real problems it is just too time-consuming to run
lots of simulations of different sampling schemes, and
it would be just as efficient and informative to run the
scheme of interest for ten times as long. These are
intriguing problems that are worth investigating, both
theoretically and experimentally.

To provide a context for my remaining remarks, I
shall briefly describe one Monte Carlo study of a simple
lattice model of polymers known as the self-avoiding

‘walk. A linear polymer is a molecule that consists of

many “monomers” (groups of atoms) joined sequen-
tially by chemical bonds. The spatial configuration of
a linear polymer with N (monomer-monomer) bonds
can be modeled as a random walk path W = w(0), w(1),
., w(N) on the three-dimensional integer lattice Z3;
here w(i) represents the location of the ith monomer,
and w(i) and w(i + 1) are always nearest neighbours in
the lattice. But two monomers cannot occupy the same
position in space; the simplest model that captures this
effect is the self-avoiding walk, which is defined by
requiring w(0), . . . , w(N) to be distinct sites of Z2.
Let S¥% be the set of all N-step random walk paths
in 72 that start at the origin, and let S¥ be the subset
of walks in S that are self-avoiding. Let P% and P%
denote the uniform probability measures on S and S#,
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respectively, and let Ef and E% denote their respective
expectations. It is elementary that EX||w(N)||?2 = N; in
contrast, it is believed that E¥||w(N)||? ~ CN? as N —
o, where ¢ and C are constants and ¢ =1.18 . . ..
The exponent ¢ is important because it is believed
to equal the corresponding exponent for real linear
polymers in dilute solution with good solvents.

To estimate g, one needs an efficient method for
generating walks with distribution P#. This is a non-
trivial problem, but it can be done using a Markov
chain method known as the pivot algorithm [due to Lal
(1969)]. One iteration of the pivot algorithm consists
of choosing a site at random on the current walk and
applying a randomly chosen reflection or rotation to
the part of the walk subsequent to the chosen site; the
resulting walk is accepted if and only if it is self-
avoiding. Little is known rigorously about this chain
except that it is irreducible. However, for the analogous
chain for Py on Sy (in which every proposed walk is
accepted), Madras and Sokal (1988) proved that (in
Geyer’s notation) (1) 1 — A = 1/N, and (2) the “excess
variance” o%/y, of the quantity g(W)= ||w(N)||? is
2 log N + O(1), which is much smaller than the univer-
sal upper bound (1 + Ane)/(1 — Amax) = N. Thus the
correlations for the quantity of interest decay much
more rapidly than do those for the chain as a whole.
Simulations indicate that a similar phenomenon occurs
for the self-avoiding case as well. This is another exam-
ple of the caveat that Geyer mentions in Section 3.5.

A related phenomenon is that the length of time
needed to approach equilibrium is governed by A,
and not by ¢%y,. In principle, one should not begin
sampling before the entire chain has reached equilib-
rium, and we may not be able to see whether the chain
is in equilibrium by just looking at the time series of
a single quantity whose autocovariances may decay
atypically fast. To be careful, we may need to monitor
several different functions that we believe summarize
the important features of our chain. (For self-avoiding

walks, these might include the number of right-angle

turns in the walk, the size of the smallest cube con-
taining the walk, and so on.) The “warm-up” problem
" is not always easy to handle, and I was surprised by
Geyer’s dismissal of the need for “formal analysis.”
Returning to the pivot algorithm, how should we
guard against seriously underestimating its asymp-
totic variance ¢?? One way is Geyer’s continuous family
of schemes, where the initial (rapidly mixing) scheme
is the one for P% and the intermediate schemes are the
analogues for probability measures on Sy that penalize
self-intersections without prohibiting them. But as I
argued above, this method alone may not eliminate all

reasonable doubts. As a check against having been
overly optimistic, we could also follow Gelman and
Rubin’s approach and use several runs. However, one
major difficulty with adapting their approach to gen-
eral state spaces such as S¥ lies in the creation of an
overdispersed starting distribution. Except for SIR,
the methods of Gelman and Rubin’s Section 2.1 are
not applicable to our target distribution P¥. Of course,
what we would really like to do is generate W’s from
S% so that g(W) is overdispersed, but it is not at all
clear how to do this. One possibility is to choose several
initial walks deterministically (some very straight, oth-
ers very compact), but we could aspire to do better.
(For this particular chain, a fortuitous way out of this
dilemma is described in the next paragraph.)

My final remark is a counterexample to Gelman and
Rubin’s assertion that “if we could start by sampling
from the target distribution, then we do not need itera-
tive simulation at all” (Section 3.2). Consider this sce-
nario: You have an hour of CPU time available. You
have a Markov chain with small “excess variance” ¢?/
0, but you don’t know how long the chain takes to
reach equilibrium. You also have a noniterative proce-
dure that generates variates from the exact target
distribution, but it does so relatively slowly; say it
requires about 5 minutes per variate. You could use
the whole hour to get 12 i.i.d. variates, but a much
better plan is to invest 5 minutes to get one variate,
which permits us to run the Markov chain from an
initial value that we know is exactly in equilibrium.
And in fact, this is precisely the situation for self-
avoiding walks: A noniterative method known as di-
merization generates walks from the exact distribution
P%, not efficiently enough to produce many i.i.d. walks,
but well enough to get a single initial value for the
pivot algorithm, at least for N < 3,000 (Madras and
Sokal, 1988). Alternatively, dimerization allows us to
use the method of Gelman and Rubin without having
to use an approximate starting distribution.

In conclusion, useful rigorous bounds are as yet
beyond reach in the great majority of simulations, and
we must live in a world without guarantees. All that
we can do is try to understand our model as best we
can and have a variety of tools at our disposal to guard
against certain dangers. There are no methods that
work well in every situation; our choice of tools depends
upon the particular problem.

ACKNOWLEDGMENT

This research was partially supported by the Natural
Sciences and Engineering Research Council of Canada.



