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Comment: Short-Range Consequences of

Long-Range Dependence

Arthur P. Dempster and Jing-Shiang Hwang

We welcome Jan Beran’s informative sketch of the
history of long-range dependence in many fields of
applied statistical science, and likewise his review of
the results of several decades of work by mathematical
statisticians, mainly on asymptotic sampling theory
of various robust as well as normality-based efficient
estimators.

Our experience has been with applications of the
models, most recently in Hwang (1992) and Dempster
and Hwang (1992), to simultaneous estimation of em-
ployment time series of 51 U.S. states (including DC)
given short input time series of n = 48 months. Since
our data are fixed, we have emphasized issues related
to modeling both time series of sampling error, which
a priori have no long-range dependence (ignoring biases
that cannot be assessed from our data), and underlying
true time series, which appear empirically to have long-
range dependence with parameter H close to 1 (but not
greater than 1 because nonstationarity of unemploy-
ment and employment rate series is a priori implau-
sible).

.For inference about the true series; we have empha-
sized Bayesian thinking, and associated computational
issues related to likelihoods of our fixed data, always
under assumptions of normality, which appear gener-
ally to be reasonable in our case study. Although our
theoretical approach to statistical inference is very
different from that of Beran, we agree with his opening
remarks about dangers from behaving as though tradi-
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tional ways of thinking about level and variability of
underlying short-memory stationary time series mod-
els continue to hold in the presence of stationary long-
memory models. We direct our brief comments to
exposing a few basic small n distinctions between in-
ferences appropriate in situations characterized by
short-range dependence and those with long-range de-
pendence. We begin by exhibiting artificially generated
pseudorandom “time series” that render in graphical
form the main points about estimating the mean and
variance of fractional Gaussian noise (fGn) data. We
have found it convenient to use alternative notation 72
and d in place of 2 and H, where d = 2H — 1 and 7 is
chosen so that the spectral density

fa)~z*~¢

for A close to zero. On this scale, —1 <d <1 defines
the range for fGn, but 0 < d < 1 is the range of interest

for long-range phenomena, with d = 0 corresponding

to white noise and d = 1 marking the upper boundary
where the spectral density first becomes nonintegrable
at zero frequency. We use the same frequency domain
conventions as Beran, namely, that —7 <1< 7 and
that f(1) is scaled so that ¢ is its average value with
respect to uniform measure. Appropriate roles for the
alternative scale parameters 72 and ¢ are elaborated
below.

Figure 1 displays four series, each of length n = 64,
simulated from four different fGn models with d = 0.8,
0.9, 0.99, 0.999. Part of the reason for the near coinci-
dence of the curves apart from their levels is that all
four were generated from innovations based on the
same 64 normal pseudorandom values. In addition,
however, the similarity implies covariance structures
with remarkably similar forecast operators and resid-
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Fic. 1. Simulated time series of length n = 64 from 4 fGn
models.

ual prediction variances. Figure 1 is typical of what we
see in many repeated trials and suggests that discrimi-
nation among plausible values of d will be very difficult
on the basis of a single short series.

Before turning to estimation of d we point out an-
other strong feature of Figure 1 that may appear para-
doxical. Whereas the empirical curves visually have
different levels but common variability, exactly the
opposite is true of the underlying models, which were
in fact constructed to have a common u = 50, but
very different ¢? = 8.3, 18.2, 198.0, 1998.0. The key
to resolving the aspect of paradox associated with
variability is to be told that the four models were
constructed to have a common 7% = 1. From formulas
given by Beran, it follows easily that 7% as defined
above through the small A behavior of the spectrum,

_is related to o by

Z=g —F(2+d)co (";)

An approximation that is accurate to within 1% across
0 < d < 1, and includes the correct limiting behavior as
d approaches 1, is

2~ 2 _Q) —
T a<1 2(1 d).

Readers may note that the four values of ¢? are roughly
proportional to 1/(1 — d).
Since the similar empirical variabilities shown in

1.5

2 log tau
1.0

0.5

0.0

Fic. 2. Maximum likelihood estimates t* (in log scale) for the
four simulated series.

Figure 1 correspond to a very wide range of true o* as
d varies, practical estimation of ¢ in the absence of
accurate knowledge of d is impossible. Dependence on
knowledge of d is much reduced in the case of estimat-
ing %, as illustrated in Figure 2 which shows log 72
computed for a range of d values for each of the four
simulated series, using maximum likelihood for a likeli-
hood with u integrated out and d assumed known.
The key to resolving the side of the paradox relating
to u is also implicit in Beran’s discussion. His equation
(3) is mathematically interesting because it holds for
all n, and because it is an immediate consequence
of the selfsimilarity property of fractional Gaussian
motion. But he passes on without noting the unpleas-

 ant applied consequence for a statistician with fixed

data. Not only is var(X,) strongly dependent on d, but
also it grows like 1/(1 — d) as d approaches 1. It is
mathematically interesting that X, is asymptotically
at least 98% efficient for all positive d, but the virtues
of X, are compromised for small » because X, is little
better than any single observation, that is, var(X,) is
roughly ¢% Given only data like that shown in Figure
1, it would generally be foolhardy to attempt to esti-
mate u, at least without strong prior knowledge that
d is not in the range illustrated in the simulations.
Again there is a silver lining. Prediction is likely to
be what really matters to the time series data analyst.
As noted above, the near coincidences in Figure 1
suggest that the forecast functions and residual vari-
ances are robust against variation in d close to d = 1.
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Fi1c. 3. Forecast standard errors for the four simulated series.
In each pair, the upper one is the sample mean and the lower one
is the optimum forecast.

Plots not shown here indicate that the optimum fore-
casts t steps ahead for t =1, 2,..., 64 are indistin-
guishable from the optimum (BLUE) estimates of u
after t = 5 or 6, and these in turn differ only trivially
from X, which does not depend on d. Figure 3 indicates
that X4 rapidly becomes a fully efficient forecast as ¢
increases, but that prediction errors increase by about
50% as d moves from 0.8 to 0.999 across much of the
forecast range t = 1, 2, ..., 64. From Figure 3 it can
be checked that prediction error variances for d = 0.99
and 0.999 grow roughly like 2 log ¢ which is the limiting
rate at d = 1. Of course, for d <1, stationarity ulti-
mately restricts prediction error variance for large t to
a? + var(X,).

Figure 1 supports a suspicion that d is hard to
éstimate from a single series. Figure 4 reinforces the
suspicion by showing the log-log periodograms of the
four series, along with the four model spectral densities
on the same log-log scales. Figure 4 shows that estima-
tion of d is, in effect, estimation of slopes of nearly
linear functions in the log-log scale, and shows also
that the (almost sufficient) periodograms are highly
similar. Figure 5 shows plots.of a marginal likelihood
of d found by integrating out x and ¢ using uniform
priors for u and log o® These plots are perhaps the
best visual way to show that the simulated series are
really somewhat different, but also show that, while
each series gives strong evidence of d > 0, there is little
ability to discriminate among the larger values of d
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FiG. 4. Spectral densities and periodograms on a log-log scale.
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Fic. 5. Marginal likelihood function of d based on the above
simulated series.

that critically affect estimability of 4 and ¢ Figure 6
exhibits sampling variation of the likelihood functions
of d based on 50 independent simulations from the
same 4 models. The solid lines in Figure 6 show the
products of the 50 likelihoods, simulating estimation
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F16. 6. Marginal likelihood functions of d based on 50 independent samples.

of d from 50 independent samples, allowed to have
different x# and ¢. From 50 samples, practical estima-
tion of d is seen to be possible.

From the viewpoint of studies of the sampling behav-
ior of probability models, the boundary d = 1 marks a
radical change of behavior. But from the inverse infer-
ence viewpoint appropriate in applied statistics, it ap-

pears that one should be permitted to cross the barrier
with scarcely a ripple affecting the machinery of infer-
ence. For example, the Figure 5 likelihood functions of
d appear as though they should have natural exten-
sions beyond d = 1. At present, it is easy to include the
cased = 1, since the limiting stationary distribution of
the process of the differences of fGn as d approaches
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1 with fixed 7% is easily defined either through its
covariance function or its spectral density, but we are
not aware of studies of possible natural extensions
beyond d = 1.

Comment

Emanuel Parzen

All statisticians should be made aware of the mes-
sage of Jan Beran’s comprehensive and stimulating
paper, that the practice of statistics cannot be success-
ful without applying awareness of long memory and
long tail behavior in data. The data he discusses, espe-
cially “NBS precision measurements on the 1-kg check
standard weight,” demonstrate that statisticians who
analyze data must be aware of the trichotomy that
should be answered as one of the first steps in a data
analysis: should the data be regarded as white noise
(independent or zero memory), short memory (weakly
dependent) or long memory (long range dependent). 1
would like to describe some heuristic concepts that I
find useful for understanding, diagnosing, and model-
ing long range dependence.

Given a time series sample Y(t),t = 1,. .. ,n, I define
the sample spectral density (or periodogram) as a func-
tionof w, 0 < w<1:

Ir_ | Y(t)exp(—27itw)|?
LalY®)?

The spectral density f(w),0 = w <1, is defined (as a
descriptor of the hypothetical population of sample
paths in the probability model) as the limit as n tends
to o« of E[f(w)].

A time series is called short memory dependent if
flw) is bounded above and below (white noise if the
spectral density is constant). ’

A time series is defined to be long memory if f(0) is
infinity (more generally if f(w) has zeroes or infinities
at some frequency). An important role is played by the
spectral density f(1/n) at frequency 1/n. It can be used
to express the variability of the sample mean Y, =
(1/n)Er_,Y(t); asympotically VAR[Y,] = (1/n)f(1/n)C for
a suitable constant C depending on the index J of the
(self-similar) representation

flow) =
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flw) = w™°L{w)

where L(w) is a slowly varying (log-like) function at
w = 0, and L(0) > 0. The Hurst exponent H in Beran’s
formula (3) corresponds to long memory index ¢ =
1—2H.

In addition to spectral techniques, we recommend
changepoint and cusum analysis techniques to provide
diagnostics of various types of long memory behavior,
based on weak convergence theorems for cusum pro-
cesses such as

[n1] v
Gl = o3, X0 = Yo
t=1 g

0<7<1,

where & is the sample standard deviation.

The cusum process is important for applications to
quality control problems of identifying changepoints
in the series under the null hypothesis that it is white
noise.

To identify if there is long memory dependence and to
detect changepoints in correlated data, one approach
could be to estimate the exponent § = 1 — 2H, H the
Hurst exponent, in the spectral density formula f(1/n) =
n’L(1/n).

Values of the “fractal dimension” delta have received
‘much public attention since they are used to describe
music and how the brain works. U.S. News and World
Report, June 11, 1990, writes (p. 62): “Surprisingly, the
same mathematical formula that characterizes the ebb
and flow of music has been discovered to exist widely
in nature, from the flow of the Nile to the beating of
the human heart to the wobbling of the earth’s axis.”

Estimation of & (which can be considered estimating
a “fractal dimension”) is a central research problem of
the analysis of long memory time series. Beran notes
that it has analogies with the problem of estimating
the tail index of a long tailed distribution. One expects
to estimate how f(1/n) depends on n essentially from
the values of the sample spectral density in a band of
low frequencies (omitting zero frequency) to be selected
by suitable criteria.



