LINEAR DEPENDENCIES / BAYESIAN ANALYSIS IN EXPERT SYSTEMS 263

tool around.” In many applications, however, because
of the size of the model space and awkward integrals,
this averaging will not be a practical proposition, and
approximations are required. Draper (1993) describes
“model expansion”: averaging over all plausible models
in the neighborhood of a “good” model. Madigan and
Raftery (1991) describe an approach for Bayesian
graphical models that involves seeking out the most
plausible models and averaging over them. Raftery
(1993) applies this to structural equation models. Madi-
gan and York (1993) suggest a Markov Chain Monte
Carlo approach that provides a workable approxima-
tion to the complete solution. These methods can also
be applied to incomplete data (Madigan and Kong, in
preparation). The point is that with Bayesian graphical
models, correctly accounting for model uncertainty is
entirely possible.

Model averaging in the context of expert systems
raises special problems: displaying multiple models
requires careful software design; enhanced explanation
facilities are required; software for model prior elicita-
tion is needed. The issue of compatible priors in alter-
native models, addressed by the authors in Section
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1. INTRODUCTION

The authors of these two highly complementary arti-
cles are to be congratulated on their timely contribu-
tions to the readership of Statistical Science and to
statisticians in general. The article by Spiegelhalter
and colleagues provides a comprehensive review of the
most recent statistical developments in expert sys-
tems, guiding us through a complete analysis in the
expert system domain. Cox and Wermuth present a
pointed discussion on the interpretation and graphical
representation of linear dependencies for continuous
valued random variables. In this discussion I will ex-
pand upon the range of applications of graphical mod-
els and emphasize some specific areas discussed by the
authors. Specifically, my comments will address (1) the
role of graphical models in statistical inference, (2) data
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8, is of considerable importance. While the procedure
suggested seems reasonable, a more general framework
is required. Certainly, when precisely specified proba-
bilities are involved, the procedure should be used with
extreme caution.

INTERCAMP COMMUNICATION

Other (independence) graphical modeling camps are
to be found within decision analysis, philosophy of
science and statistics. Several different camps are lo-
cated in computer science. To date, these camps have
communicated remarkably effectively with each other,
fostering rapid progress. The challenge we face is to
maintain the communication. The gulf between the two
papers here demonstrates both the diversity of the
progress and the extent of the challenge.
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propagation in graphs and (3) limitations of graphical
models.

2. THE ROLE OF GRAPHICAL MODELS

Graphical models can play an important role in struc-
turing statistical analyses, in performing complicated
computations and in communicating results. Thus the

. motivation for creating a graphical representation of

a statistical model is threefold: (1) the graph provides
an effective vehicle for communication among research-
ers, (2) the graph displays a knowledge map of the
dependency structure posited in the model and finally
(3) the graph can be transformed into a static secondary
structure that can be used for efficient probability
calculations. Professor Spiegelhalter and his colleagues
touch on all three reasons with emphasis placed on
calculating probabilities while Professors Cox and Wer-
muth stress the value of the graph as a knowledge
map. It is particularly important to note that one may
choose to exploit any or all three reasons for using a
graphical model.

The term graphical model has a very precise defini-
tion in the contingency table literature (Darroch, Laurit-
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zen and Speed, 1980; Edwards and Kreiner, 1983;
Wermuth and Lauritzen, 1983). In this discussion I
will, however, use the term more generally to refer to
statistical models that host some conditional indepen-
dence properties. Hierarchical models (Lindley and
Smith, 1972; Morris, 1987) are a class of statistical
models that immediately come to my mind when dis-
cussing graphical models. Inherent in hierarchical mod-
els is the notion of conditional independence across
observations at one stage and across parameters at
another stage. Consider for example a two-stage nor-
mal hierarchical model used to combine information
across experiments. The observed data will consist of
a summary measure from each experiment, y;, and an
associated measure of precision, V;. In a random effects

model, it is assumed that for i = 1, 2, ..., k studies
(1) ¥il6:"~" N6, Vi),
(2) 01, "= N, 29,

where 0; represents the underlying study effect for the
ith experiment and x4 and 7? are the hyperparameters
of the mixing distribution governing the generation
of each underlying study effect. The directed graph
corresponding to this model will have % separate nodes
for each summary measure, £ separate nodes for
each underlying study effect and a node for each of
the hyperparameters. Unlike the CHILD network dis-
cussed by Spiegelhalter and colleagues (Figure 2 in
their article) and the examples considered in Cox and
Wermuth’s paper, only a subset of the nodes in the
graph representing this hierarchical model will ever be
observed. Substantially more complicated hierarchical
models, those with more stages and more dependency
structure such as the multiprocess models of Harrison
and Stevens (1976), can be represented graphically.
The value of displaying the qualitative structure of
statistical models has been vastly underutilized by
statisticians but appreciated in other branches of sci-
ence. In the medical arena, we frequently encounter
graphical representations of decision models, namely
decision trees. In its simplest form, the decision tree
is ‘a singly connected graph in which some nodes repre-
sent risk factors such as age and gender, some nodes
represent complications and symptoms and some
nodes represent decisions. For example, researchers
may be interested in investigating whether older pa-
tients who are suspected of having an acute myocardial
infarction will benefit from thrombolytic therapy. A
decision-analytic model is then built using information
from the experts (cardiologists) and from the results
of clinical trials (e.g., the rate of incapacitating compli-
cations from thrombolytic therapy for older patients).
Some statisticians are investigating methods of quanti-
fying uncertainty in medical decision analysis (Katz

and Hui, 1989) because, typically, statistical error is
not incorporated in most decision analyses. Clearly,
the expert system methodology could play a substan-
tial role in this effort —propagation of the uncertainty
attached to the decision tree inputs is naturally accom-
modated within the graphical framework.

More recently we have witnessed in the statistical
literature the use of graphical representations to under-
stand the dependency structure in order to perform
the “correct” computations. For example, Bernardinelli
and Montomoli (1992) use a graphical representation
of a hierarchical model of relative risk mortality to
display the qualitative structure of the data but also
to indicate which conditional distributions must be
specified to calculate the joint distribution. Gilks et
al. (1993) construct a graphical model for modeling
precursors of cervical cancer in an application of Gibbs
sampling in medicine for a similar specification pur-
pose.

Finally, as Professor Spiegelhalter and his colleagues
have indicated, the graphical model can be used to
perform efficient probability calculations in high dimen-
sional problems. The main goal is to have queries
regarding certain sets of variables answered quickly.
This is achieved through local computations performed
through an algorithm designed to capitalize on the
dependency structure embedded in the statistical
model. In the expert system setting, the computation-
al efficiency of the propagation algorithm is obvious.
However, it has been shown that even in standard
models, computation within a graphical framework can
be beneficial. Normand and Tritchler (1992) discuss the
use of a graphical model as the computational device
for updating parameter estimates in a hierarchical
model and show that the graphical model characterizes
the hierarchical model and its computations in a unified
way.

3. DATA PROPAGATION IN GRAPHS

. Because one of the central roles for the expert system
is that of updating the system once evidence has been
realized, I will recast for the reader the essence of how
this is achieved. The task at hand is the following:
information is observed and consequently, the joint
distribution needs to be updated in light of this new
information. Essentially the problem becomes one of
conditioning and a brute force approach is clearly un-
desirable in high dimensional problems. It is worth
recalling that there were over a billion possible config-
urations in the CHILD network. Propagation refers to
the transmission of hereditary features to or through
offspring and this is the “divide and conquer” strategy
employed in graphical models: the joint set of random
variables is divided into subgroups, a source subgroup
is identified, a marginal is taken in the source subgroup
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and then that marginal multiplies a function on a
destination subgroup. A marginal is then taken in the
destination subgroup and that marginal multiplies a
function on its destination subgroup and so on and so
on. Professor Spiegelhalter and his colleagues refer to
the subgroups as belief universes and equate these
universes to the cliques of the relevant undirected
graph. A clique is a set of random variables such
that no further factorization of the probability function
characterizing the distribution is possible; that is, there
are no further independence constraints on the
elements in the clique. Ideally the state space of the
cliques should be small otherwise the efficiency gains
through the use of the propagation algorithm will be
lost. The propagation algorithm described in the article
by Professor Spiegelhalter and colleagues is based on
the junction tree. The junction tree may be thought of
as a singly connected graph in which each node consists
of sets of random variables (the cliques). In the case of
multinomial random variables, any node in the junction
tree may be used as a root for propagation. The steps
necessary to transform the original directed graph into
the junction tree (referred to as compilation by Profes-
sor Spiegelhalter and his colleagues) are many and
sometimes nontrivial.

4. LIMITATIONS OF GRAPHICAL MODELS

The (potential) limitations of graphical models that I
envision are related only to one of my three motivating
reasons for using graphical models, and these have to
do with efficient computation. First, Professor Spiegel-
halter and his colleagues have indicated the importance
of the size of the state spaces of the cliques obtained
after triangulation in measuring the computational
benefits of a graphical model approach. In preserving
all the induced dependence relationships in a model
through the “moralizing” procedure, the dimensional-
ities of the cliques are increased. These dimensionali-
ties are further increased after triangulation. It is not
immediately clear in which statistical models the com-
putational advantages of a graphical model approach
will be realized. Further research into identifying
classes of statistical models that could benefit from
the computational efficiency of graphical models needs
to be undertaken.

Second, the junction tree algorithm for propagation
in graphical models works well in models in which the
random variables arise from a multinomial distribu-

tion. There does exist an algorithm that mimics the
junction tree algorithm in models for which some of
the variables are multinomial and some are Gaussian.
However in these latter graphs (mixed graphs), only
means and variances are propagated. Moreover, there
is an additional requirement in the compilation pro-
cess for marked graphs, that of strong decomposabil-
ity, that further increases the dimensionalities of the
cliques. In addition, for graphs that host other distribu-
tions, Monte Carlo methods have to replace exact
methods.

Third, I am not satisfied with how well one can
assess model fit in graphical models. I have a difficult
time assessing model adequacy in a logistic regression
model with more than five covariates! I will not equate
my model-checking capabilities to those of Professor
Spiegelhalter and his colleagues but surely model as-
sessment involving the number of variables typified
in the expert system domain requires a tremendous
amount of skill. In the CHILD network, how can one
assess whether age at presentation is related quadrati-
cally to disease or whether age at presentation is re-
lated quadratically to lung disease but only linearly to
the remaining five diseases? How important is correct
specification of the functional form of the model vari-
ables and how important are “missing links” in pre-
dicting the state of a particular configuration? The
node monitors proposed by Professor Spiegelhalter and
colleagues are admittedly using a prequential approach
but I hope research will extend to model diagnostic
methods using other endpoints.

Graphical models will play an increasingly important
role in the structuring of statistical analyses for com-
plex problems. These models enhance communication
among researchers, thereby facilitating scientific mod-
eling, and provide a unifying approach to computation.
Research into automating algorithms for distributions
other than the multinomial and the Gaussian distribu-
tions should be explored. More examples of graphical
models need to identified and analyzed, and the effects
of model misspecification on prediction quantified. In
closing, I thank the authors for presenting their valu-
able ideas.
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