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propriate loss function) across the range of small
areas. Such studies depend on “target values” for
the parameter of interest for each small area, and
generally accepted values of these target values are
rarely, if ever, available (if they were, then there
would be no need for indirect estimates). Thus, eval-
uation studies tend to produce conflicting and am-
biguous results and leave all concerned less than
completely satisfied. A good case in point are the
many problems assaciated with use of a synthetic es-
timator to adjuste for state population undercounts
in the 1990 census.

Comment
Avinash C. Singh

The review paper of Ghosh and Rao fills a very
important gap by giving a comprehensive and coher-
ent picture of various developments in small area
estimation over the last twenty years. This area is
fascinating for at least three reasons: (1) there is a
great demand for small area statistics by both gov-
ernment and private sectors for purposes of plan-
ning and policy analysis; (2) the small area problem
provides a fertile ground for theoretical and applied
research; and (3) the problem has attracted the at-
tention of both Bayesians and frequentists because
both approaches arise naturally and often seem to
give similar results.

The main theme of my discussion is to compare
and contrast the Bayesian and frequentist solutions
to the problem of small area estimation. Why is
it that for this problem the two approaches to sta-
tistical inference seem to converge in many practi-
cal examples including the one considered by Ghosh
and Rao; that is, they provide similar results for
both point estimates and the corresponding mea-
sures of uncertainty? Can we make some general
statements about the similarity between the two ap-
proaches for small area estimation? How do their
frequentist properties compare? Questions about
the frequentist properties of some empirical Bayes
methods are also raised by Ghosh and Rao in Sec-
tion 5.2. Although the task of making exact compar-
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Having emphasized some of the problems asso-
ciated with applications of indirect estimators, we
should also mention the obvious fact that these es-
timation methods provide practitioners with many
useful tools. Challenging research issues concerning
the estimation of meaningful measures of error re-
main; without such measures, we must be cautious
regarding inferences and actions based on these es-
timators. Nevertheless, in many applications, these
methods provide us with an attractive alternative to
the use of high variance direct estimates or, in some
cases, no estimates at all.

isons is a difficult one, it is possible to make asymp-
totic comparisons for large m—the number of small
areas. This will be the focus of my discussion.

1. MODEL REFORMULATION

As discussed in the review paper of Robinson
(1991), understanding of procedures for estimating
fixed and random effects helps to bridge the ap-
parent gulf between the Bayesian and frequentist
schools of thought. The present discussion will also
strengthen this point. First, it will be convenient
for our purposes to reformulate the model with fixed
and random effects for small area estimation. Now,
the general mixed linear model is given by

1) y=XB+Zv+e

where y is the n-vector of element-level data; X and
Z are known matrices of orders n x p and n x m, re-
spectively, with rank (X) = p; 8 is a p-vector of fixed
effects; v is a m-vector of small area specific random
effects and € is a n-vector of random errors inde-
pendent of v such that v ~ WS (0, G),e ~ WS (0,R).
The abbreviation “WS” stands for “wide sense”; that
is, the distribution is specified only up to the first
two moments. The covariance matrices G and R
depend on some parameters A called variance com-
ponents. For the reformulation of (1), we will re-
gard the fixed effects 3 as random with mean 0
and covariance matrix af,I where arlz, — 00. Thus,
the limiting prior distribution of 8 is uniform (im-
proper) which is commonly assumed in the Bayesian
approach. The reformulation is useful for computa-
tional convenience as well as for making connections
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between the Bayesian and frequentist approaches.
Writing o = (3T,vT)T and F = (X,Z), we have the
reformulated model,

(2) y=Fa+e, a=ad+§,

where o® = 0, ¢ = BT,v1)T ~ WS(0,I),T) =
diag(o31,@) and ¢ is independent of e.

The problem of interest is estimation (or predic-
tion) of LT for some (p +m)-vector L. In the context
of small areas, the vector L can be chosen appro-
priately to denote the superpopulation mean 6; of
each small area i. Note that if for each small area,
population size is large and the sampling fraction is
negligible, the estimation of finite population means
is essentially equivalent to that of superpopulation
means.

An important feature of the above reformulation
[equation (2)] is that for known variance compo-
nents ), it provides a common model for both fre-
quentist and Bayesian approaches. Not only does it
provide a common starting point, both approaches
yield identical estimates and the corresponding
measures of uncertainty. Since the parameter of in-
terest is inherently random in nature due to finite-
ness of the small area population, it is very appeal-
ing to have a unified formulation which gives identi-
cal results. However, for unknown ), there is some
divergence between the two approaches (see Section
3). First, we will consider the case of known .

2. CASE OF KNOWN VARIANCE
COMPONENTS (A KNOWN)

In this section, we show that when distributions
are specified only in a wide sense, the Gauss-Markov
theory (in the frequentist case) and the linear Bayes
theory (in the Bayesian case) coincide. Under the
frequentist approach for model (1), the objective is
to find the best linear unbiased predictor (BLUP)
of o = (BT,vT)T; that is, & = ag + Ay is chosen to
minimize

(3) Ellao +Ay — al® -

over all vectors ag and matrix A of appropriate di-
mensions. Here §3 is regarded as fixed and the ex-
pectation in (3) is with respect to y and v. On the
other hand, under the Bayesian approach, the objec-
tive is to find the (unbiased) linear Bayes estimate
(LBE) of a as the prior information is specified in
a wide sense only. The fixed ‘effect 8 is assumed to
have a uniform, improper prior distribution. Thus,
the LBE & = Aa® + B(y — Fa?) is obtained by mini-
mizing

4) E|Ac® + By — Fa®) — o?

over all matrices A and B of appropriate dimensions.
Note that the chosen form of the linear estimator &
is intuitive and is equivalent to the general form of
a linear estimator under the condition of unbiased-
ness. Also note that the expectation in (4) is with
respect to y,v and also 3. Now, the BLUP & and its
MSE coincide with the LBE & and its Bayes risk,
respectively. This follows from the results of Sallas
and Harville (1981) and Zehnwirth (1988). Sallas
and Harville establish that the BLUP & and its MSE
can be obtained respectively as limits of BLUPs and
MSEs of o defined by the reformulated model (2) as
0% — oo. Zehnwirth (in the context of Kalman fil-
tering) shows that the BLUP of o under model (2)
is indeed the LBE and that MSE of BLUP equals
the Bayes risk of LBE. Therefore, the LBE & which
is the limit of LBEs as af, — oo coincides with the
BLUP & and the same is true of their measures of
uncertainty. The corresponding expressions can be
obtained as

() &=a= lim [a®+TF EDFT +R)~(y - Fa)]
Oﬁ—N)O

and

MSE(&) = Bayes Risk (&)
(6) = lim [T~ CFT(FT)FT + R)"FIT.

B

See Sallas and Harville (1981) for closed form ex-
pressions of the above limits. An expedient way to
get the expressions in (5) and (6) is to think of them
respectively as the posterior mean and variance of
o under normality. Notice that under normality, the
posterior mean is linear and the posterior variance
does not depend on y. Therefore, the usual Bayes
theory under normality also coincides with the lin-
ear Bayes theory when the prior distribution is spec-
ified in a wide sense only.

3. CASE OF UNKNOWN VARIANCE
COMPONENTS (A UNKNOWN)

When ) is unknown, it turns out that there is
some divergence between the two approaches. It
is possible to get some understanding of the dif-
ferences under normality. Therefore, we assume
that the errors v and ¢ are normal. Also, the num-
ber of small areas, m, will be assumed to be large
for making asymptotic comparisons. For simplic-
ity, we will illustrate results for the one-fold nested
error regression model given by equation (4.2) of
Ghosh and Rao, except that we will set k; = 1.
Here A = (A1, 22)T = (02,027 and suppose for il-
lustration that only A; is unknown. The parame-
ters of interest are small area means 6;,i = 1,...m
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where 0; = X B +v;. If X is known and +; denotes
MO + Azn‘l)' then the BLUP §; and LBE §; (or
BUP and BE respectlvely under normality) are ob-
tained from (5) as

(7N b =6 =X, B +23 - D

and from (6); we have, after noting that under nor-
mality the Bayes risk is same as the posterior vari-
ance (PV),

MSE(®;) = PV(6;)
= )\1)\2ni_1()\1 + Azni—l)_l
+&X; — @)XV X)X - X))
8) = gl()\l) +g2(>\1), say.

Now, an EBLUP is defined by substituting a consis-
tent estimator %; for )\ in 6; (denote by 8;(y, X)) and
an EB estimator is deﬁned by substituting X1 in 6;,
to be denoted by 8;(y, A;). For facilitating compari-
son of the two approaches, we will assume that M
is REML. Clearly, the two estimators so defined are
identical. The “naive” approximations to the corre-
sponding measures of uncertainty obtained from (8)
by substituting X1 for \; are also, of course, identi-
cal. The qualifying term “naive” is used to indicate
that the extra variability due to estimation of \; is
not accounted for.

In the expression (8), the terms g1(\;) and ga(A;)
are respectively O(1) and O(m~!). For finding the
order of the extra term due to estimation of ), first
consider the frequentist approach. It can be shown
by the 6-method, similar to equation (5.3) of Ghosh
and Rao, that

(9) mse(@,(y, A1) =g1(M1) +g2001) +g3(\1) + o(m™1),

where g3(\1) = n; 2)\2(/\1+)\2n'1) 3V(3y) and V(};) is
the asymptotic variance of ;. Notice that the term

g3(\p) is also O(m~1). Substituting }; in (9), we get’

an estimate of MSE; but the order of bias is O(m‘l)
not o(m™1). This is so because the bias in gl()\l)
is O(m~1), although biases in gz(};) and gs(),) are
o(m~1). To correct this, the approximation of Prasad
and Rao (1990, PR for short) can be used under the
assumption E(3; — \;) = o(m™1) as

0 mse(;(y, A1) = [g1(31) + g3(A1)] +g2(A1) +g3(01)
=g1(3p) +g2(5\1) +2g3(3y).

For the Bayesian approach, corrections for under-

estimation of PV(6;) due to estimation of 31 can

be made by using results of the asymptotic (as
m — oo) hierarchical Bayes (HB) theory (cf. Kass

and Steffey, 1989). This technique is justified be-
cause the HB estimator (i.e., the posterior mean of
0;) is asymptotically equivalent to the EB estimator
6;(y, 1), the order of error in the approximation be-
ing O(m~1). Also, the HB technique is convenient in
practice because, for large m, the posterior distribu-
tion of )\, is independent of the choice of prior. Now,
analogous to (5.11) of Ghosh and Rao [note that 3 is
absent in the expectation operator because variabil-
ity due to B is already accounted for in the PV(6,)],
we have the posterior variance

(11a) V(6;ly) = E»,, V(6ily, M) + Vi, y E@;ly, A1)
(11b) =E),,(g1(01) +82(01)) + Vapbi(y, A

It follows from Kass and Steffey (1989) that

(122)E) 1, (g1(M) + £2(V) = g1(01) +82(A) + O(m™h),
Vaup8i(y, M) = > APV + o(m™)

(12b) N
=g5(A1) + o(m™1), say,
where d(}y) is (8/0A)8i(y, A1)l,.5,- Note that if g
were known, then g3(%;) simplifies to A3n;2(%; +
Agn; h-4(3, y,— T,B)z_V(Xl) which is more directly com-
parable to the term gs(A1) of the frequentist approx-
imation (9). Incidentally, for 8 known, X1 will be the
usual ML and not REML.

In the approximation (12a), the neglected term is
O(m~1). The accuracy of this approximation can be
improved by including terms of order O(m~!). By
using the §-method, Singh, Stukel and Pfeffermann
(1993) obtain an improved Bayesian approximation
as

V(G,-Iy) = [g1(5\1) +g2(:\1) + sg§*(3\1)]

(13) - 3
+g5(A\1)+o(m™),

where g;*(j\l) is Mn 2(5\1 +A2n_1)'2(§\1 —X1)—gs(3y).

The estimator )\1 denotes an improved (over 1) ap-
proximation to the posterior mean E()\;|y) in the

sense that E(\|y) = il +o(m~1) whereas E(\|y) =

31 +0(m~1). Note that A;, can be obtained from the
results of Tierney, Kass and Kadane (1989). The ex-
pression in (13) is a simplified version of the second
order approximation of Kass and Steffey; denote it
by KS-II*. Their first order (denote by KS-I) does not
include the term g;*()q) The approximation KS-II*
seems more convenient for term by term comparison
with the PR approximation (10) than the original
second order KS-II (not considered here).

From (7), (8), (10) and (13), one can compare the
Bayesian and frequentist approaches for large m
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when ) is unknown. The point estimates are iden-
tical or very similar depending on the choice of \;
for each approach but the associated measures of
uncertainty could be quite different. In addition to
the above modifications which rely on the §-method,
Singh, Stukel and Pfeffermann (1993) also obtain
a modification of the asymptotic Bayes method of
Hamilton (1986) which uses Monte Carlo integra-
tion (MCI) for evaluating the two terms of the pos-
terior variance given by (11) thus avoiding computa-
tion of partial derivatives. The MCI simply entails
generating \;-values from the approximate poste-
rior distribution of A\; which is given by N(};, V(1))
It is not difficult to show that the order of the ne-
glected terms in the Hamilton (H) approximation is
O(m~1) and not o(m~1). However, if the posterior

distribution of \; is approximated by N(\;, V(},)),
then the modified Hamilton (MH) approximation is
of the desired order. Singh, Stukel and Pfeffer-
mann (1993) report results of a Monte Carlo study
on the frequentist properties of various approxima-
tions. Empirically, it is found that the KS-I approx-
imation is biased downward, but KS-II* adds a pos-
itive term (similar to PR) and tends to be conser-
vative. The behaviour of the MH approximation is
quite similar to KS-II*, but H tends to be more bi-
ased downward than KS-I. The performance of the
PR approximation is found to be best overall with
respect to the frequentist properties, although other
approximations provide useful alternatives. In par-
ticular, Bayesian approximations KS-II* and MH
have the distinct advantage of having a dual inter-
pretation in both frequentist and Bayesian contexts.

Comment
Elizabeth A. Stasny

" Ghosh and Rao are to be congratulated for their
timely paper reviewing methods for small-area esti-
mation. My main complaint is that a paper such as
this was not available five years ago when I began
working on small-area estimation problems. I par-
ticularly enjoyed the historical perspective offered
in the demographics methods section of the paper;
I was sorry that section was so short since much of
the material described in that section is not readily
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It may be noted that if m is quite large, then there
will be hardly any difference between various ap-
proximations.

4. REMARKS

It is evident from the paper of Ghosh and Rao
that great advances have been made in the field of
small area estimation by both Bayesians and fre-
quentists. It is also evident from the present dis-
cussion that there may be quite a bit of agreement
between the two approaches. However, these ad-
vanced tools are not in widespread use, especially by
statistical agencies conducting large scale complex
surveys who face probably the greatest demand for
small area statistics. Perhaps, the reason for this is
the practitioner’s skepticism in modelling complex
survey data. Indeed, for complex surveys there is
very little by way of model validation and more so
for element-level modelling because of possible se-
lection bias [see section 4 of Ghosh and Rao and a
recent review by Pfeffermann (1993)]. There is no
doubt that the area of model validation for complex
survey data needs more research. This is also rec-
ognized by Ghosh and Rao and I would like to em-
phasize by noting that further work in this direction
will be a very valuable contribution.
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As the authors noted, there is a growing demand
for small-area estimates and a corresponding inter-
est in research on procedures for producing such
estimates. The widely publicized debate on adjust-
ing the U.S. population census for the undercount to
produce adjusted counts for states and large cities
has made many researchers focus on small area es-
timation problems related to the population census.
There are, however, other long-standing small-area
estimation programs. One of these is the USDA’s
program of county-level estimation of crop and live-



