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a(a) = 0.05 for a = 0, 1 can be shown to have power
0.586. However, the power of the test depends heav-
ily on the value of A; when A = 0, the power 0.912
as opposed to a power of 0.259 when A = 1. Hence,
it may be desirable to decrease «(0) and increase
a(1). Since the ULR test has conditional level 0.033
when A = 0 and 0.067 when A = 1, the power of the
CLR test is maximized by taking «(0) = 0.033 and
a(1) = 0.067; under these choices the unconditional
and conditional tests are identical.

Now consider a test of the null hypothesis u =0
versus w > 0. In this case there does not exist a uni-
formly most powerful unconditional test. A reason-
able choice for a test statistic may be X, the MLE
of w. The test with level 0.05 that rejects the null
hypothesis for large values of X has power 0.294,
0.763 and 0.926 at alternatives u = 3,5 and 7, re-
spectively. The conditional test described previously
with a(0) = a(1) = 0.05 also rejects u = 0 for large
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Professors Liang and Zeger deserve congratula-
tions for yet another excellent contribution to the
statistical literature. My discussion will first elab-
orate on their Example 1.3, the analysis of teratol-
ogy (developmental toxicity) data, then outline some
needed extensions and further applications.

Teratology is a fascinating research area, not only
because it is such an important public health con-
cern, but also because the statistical problems that
arise in this context are so interesting. Due to the
limited availability of reliable epidemiological data,
controlled experiments in laboratory animals play
a critical role in the safety assessment and regu-
lation of substances with potential danger to the
developing human fetus. In .a typical study (de-
picted in Figure 1), pregnant dams (usually mice,
rats or sometimes rabbits) are randomized to a con-
trol group or one of three or four exposed groups.
Dams are exposed to the test substance during the
period of major organogenesis when the developing
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X and is uniformly most powerful among condi-
tional tests; this test has power 0.586, 0.754 and
0.877 at w = 3,5 and 7, respectively. Hence, which
test is more powerful depends on the alternative
under consideration. If the unconditional test had
been based on the statistic X /o4, then the condi-
tional and unconditional tests would be identical;
of course, there would still exist unconditional tests
with higher power for some alternatives.

The point of this discussion is that there is
nothing inherently inefficient about conditional in-
ference even when the properties are assessed un-
conditionally, although I agree with Reid that such
comparisons are typically not directly relevant.
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offspring are likely to be most sensitive to insult.
Just prior to normal delivery, the dams are sacri-
ficed and the uterine contents examined for defects.
A typical study might have 20 to 30 dams per group,
with anywhere from 1 to 20 offspring per litter.
Anyone familiar with the developmental toxicity
literature will be aware of the longstanding debate
over how to handle the so-called litter effect (or the
tendency of littermates to respond more similarly
than nonlittermates). The debate started in the
early 1970’s with papers in the toxicology journals
asking questions like “what are the sampling units”
in a teratology study. The paper cited by Profes-
sors Liang and Zeger (Weil, 1970) inspired an edito-
rial in the journal Teratology by Kalter (1974), com-
plaining that “statistics here has exceeded its role
as handmaiden” and suggesting that such consider-
ations are best left to the biologists! In response to
this editorial, Staples and Hasemen (1974) empha-
sized that a proper statistical analysis should use
all the fetus-specific information, but must allow for
possible correlation between littermates. Since then,
much attention has focussed on the development
of suitable statistical methods. Earlier suggestions
(e.g., Williams, 1975) recommended use of a beta-
binomial distribution, mainly because of its concep-
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FiG. 1. Chronological events in a developmental toxicity study.

tual simplicity and a certain biological appeal. Con-
sider a study with a control and I dose groups,
and let y,; denote the number of defects among
the n;; offspring born to animal j in dose group i,
i=0,...,I, j=1,..., N,. The beta-binomial dis-
tribution is derived by assuming that y,; comes from
a binomial(n;;, p;) distribution, where the response
probabilities p; follow a beta distribution with pa-
rameters «; and B; that depend on exposure group.
The corresponding marginal distribution for Y;; can
be obtained by integrating over this beta distribu-
tion to obtain

Pr(Y;j =y, | ny)
1) _ (nij) B(a; + y;j, B + 15 — ¥ij)
Yy B(a;, B;) ’
where B(q;, B;) = I'(e;)T(B;)/T(a; + B;). Rather
than modelling the «; and B; directly, it has been

common (Williams, 1975) to reparametrize in terms
of the beta mean,

i
a; +B;’
and an additional parameter ¢; = 1/(a; + B; + 1)
related to the variance of p;,

Var(p;) = (1 — )¢,

and also corresponding to the correlation between
two littermates. As will be discussed presently, ¢;
may or may not change with exposure group. Af-
ter reparametrizing in this way, one can charac-
terize the exposure effect through a suitable dose—
response function on wu;, for example,

@) pi = h(6o + 6,d}?),

where h(-) is a cdf. The most familiar example of
a logistic model corresponds to A(x) = exp(x)/(1+
exp(x)) and 6, = 1. A particularly popular choice
(corresponding to the one-hit model used in car-
cinogenesis) is h(x) = 1 — exp(—x). Regardless of
the choice for A(-), most applications in develop-
mental toxicity require the additional flexibility af-
forded by the “shape” parameter 6,. Some authors
(see Krewski and Zhu, 1994) favor the inclusion of

E(p;) = =

litter size (n;;) as an additional covariate modifying
the expected response rate for a specific litter.

Consider now the topic addressed by Professors
Liang and Zeger, namely, estimation of the param-
eters of interest (0,, 6; and 6,) in the presence of
the nuisance parameters ¢, ..., ¢;. As discussed in
their paper, likelihood-based estimation is problem-
atic. For one thing, the beta-binomial distribution
has a computationally awkward form:

P(Y;; = vi)

_ (ni,-) [h%o (i + k) TT3%g™ ™ (1 = i + k)

Yij [MhZy (1+ k)

with u; defined as above and 7n; = ¢,;/(1 + ¢;).
Clearly, this distribution does not belong to the ex-
ponential family, nor does it yield low-dimensional
sufficient statistics for the unknown parameters.
Hence, conditional likelihood approaches will not
work. Nor are marginal likelihood approaches use-
ful, since it is difficult to find a suitable prior dis-
tribution on the nuisance parameters ¢;. In spite
of these problems, a number of authors have used
maximum likelihood based on the beta-binomial dis-
tribution to fit dose-response models to develop-
mental toxicity data. Chen and Kodell (1989), for
example, fit a three-parameter model of the form (2)
with A(x) = 1 —exp(—x), allowing a separate ¢; for
each dose group. As cautioned by Kupper, Portier,
Hogan and Yamamoto (1986), it is crucial to allow
¢ to change with dose when fitting a beta-binomial
distribution to teratology data, since, otherwise, es-
timators of the parameters of interest may be seri-
ously biased.

In a spirit similar to that conveyed by Liang
and Zeger, Williams (1988) suggested in response to
Kupper et al. that bias caused by mismodelling the
correlation can be largely avoided by using quasi-
likelihood rather than maximum likelihood to fit a
model with the beta-binomial mean and variance
structure. He described a simple iterative algorithm
(Williams, 1982) to fit such a model in standard sta-
tistical packages (he suggested GLIM). In fact, his
proposal corresponds to fitting equation (4.1) from
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Liang and Zeger, with a common ¢ estimated from
the model deviance, divided by the degrees of free-
dom remaining after estimating the mean parame-
ters. Quasilikelihood and estimating equations work
well for the beta-binomial distribution because the
moments take a particularly simple form:

[E(Yij) =N
and
Var(Y;;) = nypi(1— )1+ ¢i(ny; — D).

Clearly, the function g; = g;(y;, 0) = (y;; — n;jum;)
has expected value 0. Hence the estimating equa-
tion (4.1) from Liang and Zeger takes the form

g=zlj%‘7_“’ (i — nijmi) o
5151 90 nyjp (1 — py)[1 + ¢i(ny; — 1)]

The particular form of g will depend on the function
h(-) linking the mean response rate to exposure and
other covariates. For the logistic model, for example,

: ; (yij — nijmni)
_ g L
g=22 | d [T+ ¢i(ny — D]
=u 0,d;* log(d;)

=z

Note that these equations depend on the unknown
nuisance parameters ¢;,i =0, ..., I. Since alterna-
tive “pivotal” or “information unbiased” g-functions

are not readily apparent, it it useful to appeal to
the argument of Liang and Zeger that estimation of
the nuisance parameters will have relatively little
impact on the solution to g = 0.

To illustrate the impact of estimating nuisance
parameters on the estimation of the parameters of
interest, maximum likelihood and estimating equa-
tions were both used to fit a dose-response model
to the same data reported by Chen and Kodell
(1989). The data were from a study of an indus-
trial plasticizer, DEHP, and included a control and
four dose groups exposed to (0.44, 0.091, 0.191 and
0.292 g/kg). The study contained a total of 131 dams
with an average of 12 offspring per litter (range 1
to 19). All models were fitted using the S-PLUS
function nlminb. The beta-binomial model can be
easily fitted using this function along with a user-
defined function to calculate the log-likelihood. Es-
timating equations can also be easily solved with
nlminb along with a user-defined function to calcu-
late the inner product of the estimating equations.
An advantage of this approach is that it easily al-
lows for nonlinear mean functions, such as the one
specified in (2). Other approaches based on lineariz-
ing approximations are possible (see Ryan, 1992a).
Figure 2 provides a graphical representation of the
data, with each dot corresponding to the response
rate for a particular litter, while the crosses show
the overall response rate within each dose group.
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FIG. 2. Observed and predicted response rates—DEHP data.
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The lines shown in the figure correspond to various
fitted values, to be discussed presently. The full data
set can be found in Chen and Kodell (1989). Table 1
shows the results of fitting a dose-response model
of the form (2), using the logistic function for A(x).

The results in Table 1 show that, under the maxi-
mum likelihood approach, the estimated parameters
characterizing the mean response rate change sub-
stantially, according to whether or not ¢ is allowed
to change with dose group. In contrast, estimates
based on the estimating equations, while affected to
a degree, do not change so dramatically. Further in-
sight can be gained by examining the fitted lines in
Figure 2, corresponding to the four model fits sum-
marized in Table 1. This conclusion accords with the
results of Liang and Hanfelt (1994), who addressed
similar questions for the analysis of teratology data,
though without the “power parameter,” 6,, and only
for the two group case.

SOME OTHER ISSUES

The question of how to handle correlated binary
data is one of the simpler ones that arises in the
context of developmental toxicology. The remainder
of this discussion focuses on some other more com-
plicated issues where further work is needed.

Testing for and quantifying dose response is but
the first step in the complex process of quantitative
risk assessment. Another important step is the cal-
culation of a “benchmark dose,” defined by Crump
(1984) as a lower confidence limit on the dose that
corresponds to a specified increased risk above back-
ground. Suppose, for example, that the mean re-
sponse rate has the following functional relationship
to dose (d):

w(d) = 1 — exp[ (6, + 6,d")].

It follows that the dose level corresponding to a g%
increased risk above background will be

—log(1 — (q/100)exp(6,)) \ /*
EDq:( 0, : ) ‘

One could argue that if the ED, is really the quan-
tity of interest, then the nuisance parameters in-
clude not only the ¢;’s, but also the 6’s. Hence, an
important and useful question is how to estimate
ED,, while minimizing any bias caused by simul-
taneous estimation of the remaining nuisance pa-
rameters. While the class of models defined at (2)
is widely used in practice, it can be difficult to ap-
ply and often encounters convergence problems. The
main problem is the relatively high correlation be-
tween the estimates of 6; and 6,. The results in the
table illustrated this point because the estimated
values of 6; and 6, vary considerably, yet the fit-
ted dose-response curves are all reasonably similar.
Better methods are clearly needed.

Another problem related to estimation of the ED,,
is that regulators are interested in a lower con-
fidence bound on this quantity. In the likelihood-
based setting, most people prefer the use of a
likelihood-based confidence interval since, in gen-
eral, these will have better coverage properties (see
Chen and Kodell, 1989). Unfortunately, there is no
analogue of a likelihood-based confidence interval
presently available for estimation based on esti-
mating equations. Development of such approaches
would be very useful.

One of the most challenging and interesting as-
pects of analyzing developmental toxicity data is the
complex nature of the outcomes of interest. While
our discussion so far has assumed a binary out-
come indicating whether or not each fetus is de-
fective, reality is more complex. Figure 3 illustrates
some of the outcomes measured in a typical exper-
iment: offspring may die early in gestation and be
resorbed; they may die later and be recorded as a
fetal death; they may survive and develop any of
several different malformation types, or they may
have low birth weight. Finding ways to capture
the effects of exposure on this multivariate out-
come, as well as adjusting for intralitter correla-
tion provides a rich source of interesting statistical
problems. To characterize the effects of exposure on
death and malformation, several authors have sug-

TABLE 1
Model fitting for DEHP data

Maximum likelihood

Estimating equation

Common ¢ Dose-specific ¢

Common ¢ Dose-specific ¢

Estimator (se) Estimator (se)

Estimator (se) Estimator (se)

0o -1.64 (0.165)  —-1.90 (0.179)
0y 66.31 (29.727) 62.87 (28.964)
0 1.95 (0.315) 1.88 (0.312)

¢ 0.19

(19, 0.01, 0.09, 0.38, 0.26)

—1.83 0.122) -2.13 (0.243)

38.03 (8.764) 4291 (19.182)

1.60 (0.164) 1.59 (0.320)
0.19 (0.50, 0, 0.11, 0.41, 0.24)
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FIG. 3. Fetal outcomes in developmental toxicity studies

gested formulating the problem in terms of a tri-
nomial outcome (dead, malformed, normal). Chen,
Kodell, Howe and Gaylor (1991) suggest a paramet-
ric approach based on a Dirichlet trinomial distribu-

Rejoinder
N. Reid -

1. INTRODUCTION

Criticisms of non-Bayesian conditional inference

fall roughly into one of two categories: foundational

and practical. The foundational criticisms of condi-
tioning revolve around whether or not conditioning
should be a basic statistical principle, on a similar
footing to, for example, sufficiency. Practical criti-
cism of conditioning tends to concentrate more on
the fact that models arising in applications tend
to be complex and not often readily amenable to
a textbook treatment of conditioning or marginal-
izing. As well, in many practical settings questions
about modelling or sampling, such as whether or
not observations are independent, are more crucial
than questions of whether to use a first-order or
higher-order approximation.

tion. Ryan (1992b), Catalano, Scharfstein and Ryan
(1994), Zhu, Krewski and Ross (1994) and Krewski
and Zhu (1994) use estimating equations. In gen-
eral, the best approach for the analysis of correlated
multinomial data is not well established. There are
several different ways to set up either paramet-
ric approaches or estimating equations, but there
has not been any systematic study or comparison
of the various approaches. Finding ways to ana-
lyze dose effects on fetal weight and malformation
status is another interesting challenge. In general,
there are few methods available for the analysis of
multivariate data involving a mixture of discrete
and continuous outcomes. Methods for clustered
data of this kind are virtually nonexistent, although
Catalano and Ryan (1992) and Catalano et al. (1993)
suggest one approach based on conditional estimat-
ing equations. Theoretically, there is no reason why
marginal estimating equations could not be con-
structed for such data. However, there has been lit-
tle work on this topic.
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A third aspect of the discussion, closely related
to these, is the claim that a Bayesian approach ad-
dresses both these criticisms, by being logically co-
herent as well as practically straightforward. In ad-
dition, it automatically conditions on all the data;
what could be more conditional than that? A re-
lated, somewhat more technical, part of this debate
is the extent to which Bayesian and non-Bayesian
solutions to a problem can be made to agree.

In this paper I tried to emphasize techniques of
conditional inference, rather than the philosophy
of conditional inference. However, this is a paper
on conditional inference in the theory of statistics,
not in the practice of statistics. A paper which ex-
plored to what extent conditional ideas could be
used in “real” applications would have a very dif-
ferent focus. It might perhaps come to a negative



