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Interval Estimation for
a Binomial Proportion
Lawrence D. Brown, T. Tony Cai and Anirban DasGupta

Abstract. We revisit the problem of interval estimation of a binomial
proportion. The erratic behavior of the coverage probability of the stan-
dard Wald confidence interval has previously been remarked on in the
literature (Blyth and Still, Agresti and Coull, Santner and others). We
begin by showing that the chaotic coverage properties of the Wald inter-
val are far more persistent than is appreciated. Furthermore, common
textbook prescriptions regarding its safety are misleading and defective
in several respects and cannot be trusted.
This leads us to consideration of alternative intervals. A number of

natural alternatives are presented, each with its motivation and con-
text. Each interval is examined for its coverage probability and its length.
Based on this analysis, we recommend the Wilson interval or the equal-
tailed Jeffreys prior interval for small n and the interval suggested in
Agresti and Coull for larger n. We also provide an additional frequentist
justification for use of the Jeffreys interval.

Key words and phrases: Bayes, binomial distribution, confidence
intervals, coverage probability, Edgeworth expansion, expected length,
Jeffreys prior, normal approximation, posterior.

1. INTRODUCTION

This article revisits one of the most basic and
methodologically important problems in statisti-
cal practice, namely, interval estimation of the
probability of success in a binomial distribu-
tion. There is a textbook confidence interval for
this problem that has acquired nearly universal
acceptance in practice. The interval, of course, is
p̂ ± zα/2 n−1/2�p̂�1 − p̂��1/2, where p̂ = X/n is
the sample proportion of successes, and zα/2 is the
100�1 − α/2�th percentile of the standard normal
distribution. The interval is easy to present and
motivate and easy to compute. With the exceptions
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of the t test, linear regression, and ANOVA, its
popularity in everyday practical statistics is virtu-
ally unmatched. The standard interval is known as
the Wald interval as it comes from the Wald large
sample test for the binomial case.
So at first glance, one may think that the problem

is too simple and has a clear and present solution.
In fact, the problem is a difficult one, with unantic-
ipated complexities. It is widely recognized that the
actual coverage probability of the standard inter-
val is poor for p near 0 or 1. Even at the level of
introductory statistics texts, the standard interval
is often presented with the caveat that it should be
used only when n ·min�p�1−p� is at least 5 (or 10).
Examination of the popular texts reveals that the
qualifications with which the standard interval is
presented are varied, but they all reflect the concern
about poor coverage when p is near the boundaries.
In a series of interesting recent articles, it has

also been pointed out that the coverage proper-
ties of the standard interval can be erratically
poor even if p is not near the boundaries; see, for
instance, Vollset (1993), Santner (1998), Agresti and
Coull (1998), and Newcombe (1998). Slightly older
literature includes Ghosh (1979), Cressie (1980)
and Blyth and Still (1983). Agresti and Coull (1998)
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particularly consider the nominal 95% case and
show the erratic and poor behavior of the stan-
dard interval’s coverage probability for small n
even when p is not near the boundaries. See their
Figure 4 for the cases n = 5 and 10.
We will show in this article that the eccentric

behavior of the standard interval’s coverage prob-
ability is far deeper than has been explained or is
appreciated by statisticians at large. We will show
that the popular prescriptions the standard inter-
val comes with are defective in several respects and
are not to be trusted. In addition, we will moti-
vate, present and analyze several alternatives to the
standard interval for a general confidence level. We
will ultimately make recommendations about choos-
ing a specific interval for practical use, separately
for different intervals of values of n. It will be seen
that for small n (40 or less), our recommendation
differs from the recommendation Agresti and Coull
(1998) made for the nominal 95% case. To facili-
tate greater appreciation of the seriousness of the
problem, we have kept the technical content of this
article at a minimal level. The companion article,
Brown, Cai and DasGupta (1999), presents the asso-
ciated theoretical calculations on Edgeworth expan-
sions of the various intervals’ coverage probabili-
ties and asymptotic expansions for their expected
lengths.
In Section 2, we first present a series of exam-

ples on the degree of severity of the chaotic behav-
ior of the standard interval’s coverage probability.
The chaotic behavior does not go away even when
n is quite large and p is not near the boundaries.
For instance, when n is 100, the actual coverage
probability of the nominal 95% standard interval
is 0.952 if p is 0.106, but only 0.911 if p is 0.107.
The behavior of the coverage probability can be even
more erratic as a function of n. If the true p is 0.5,
the actual coverage of the nominal 95% interval is
0.953 at the rather small sample size n = 17, but
falls to 0.919 at the much larger sample size n = 40.
This eccentric behavior can get downright

extreme in certain practically important prob-
lems. For instance, consider defective proportions in
industrial quality control problems. There it would
be quite common to have a true p that is small. If
the true p is 0.005, then the coverage probability
of the nominal 95% interval increases monotoni-
cally in n all the way up to n = 591 to the level
0.945, only to drop down to 0.792 if n is 592. This
unlucky spell continues for a while, and then the
coverage bounces back to 0.948 when n is 953, but
dramatically falls to 0.852 when n is 954. Subse-
quent unlucky spells start off at n = 1279, 1583 and
on and on. It should be widely known that the cov-
erage of the standard interval can be significantly

lower at quite large sample sizes, and this happens
in an unpredictable and rather random way.
Continuing, also in Section 2 we list a set of com-

mon prescriptions that standard texts present while
discussing the standard interval. We show what
the deficiencies are in some of these prescriptions.
Proposition 1 and the subsequent Table 3 illustrate
the defects of these common prescriptions.
In Sections 3 and 4, we present our alterna-

tive intervals. For the purpose of a sharper focus
we present these alternative intervals in two cat-
egories. First we present in Section 3 a selected
set of three intervals that clearly stand out in
our subsequent analysis; we present them as our
“recommended intervals.” Separately, we present
several other intervals in Section 4 that arise as
clear candidates for consideration as a part of a
comprehensive examination, but do not stand out
in the actual analysis.
The short list of recommended intervals contains

the score interval, an interval recently suggested
in Agresti and Coull (1998), and the equal tailed
interval resulting from the natural noninforma-
tive Jeffreys prior for a binomial proportion. The
score interval for the binomial case seems to
have been introduced in Wilson (1927); so we call
it the Wilson interval. Agresti and Coull (1998)
suggested, for the special nominal 95% case, the
interval p̃±z0	025ñ−1/2�p̃�1−p̃��1/2, where ñ = n+4
and p̃ = �X + 2�/�n + 4�; this is an adjusted Wald
interval that formally adds two successes and
two failures to the observed counts and then uses
the standard method. Our second interval is the
appropriate version of this interval for a general
confidence level; we call it the Agresti–Coull inter-
val. By a slight abuse of terminology, we call our
third interval, namely the equal-tailed interval
corresponding to the Jeffreys prior, the Jeffreys
interval.
In Section 3, we also present our findings on the

performances of our “recommended” intervals. As
always, two key considerations are their coverage
properties and parsimony as measured by expected
length. Simplicity of presentation is also sometimes
an issue, for example, in the context of classroom
presentation at an elementary level. On considera-
tion of these factors, we came to the conclusion that
for small n (40 or less), we recommend that either
the Wilson or the Jeffreys prior interval should
be used. They are very similar, and either may be
used depending on taste. The Wilson interval has a
closed-form formula. The Jeffreys interval does not.
One can expect that there would be resistance to
using the Jeffreys interval solely due to this rea-
son. We therefore provide a table simply listing the
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limits of the Jeffreys interval for n up to 30 and
in addition also give closed form and very accurate
approximations to the limits. These approximations
do not need any additional software.
For larger n �n > 40�, the Wilson, the Jeffreys

and the Agresti–Coull interval are all very simi-
lar, and so for such n, due to its simplest form,
we come to the conclusion that the Agresti–Coull
interval should be recommended. Even for smaller
sample sizes, the Agresti–Coull interval is strongly
preferable to the standard one and so might be the
choice where simplicity is a paramount objective.
The additional intervals we considered are two

slight modifications of the Wilson and the Jeffreys
intervals, the Clopper–Pearson “exact” interval,
the arcsine interval, the logit interval, the actual
Jeffreys HPD interval and the likelihood ratio
interval. The modified versions of the Wilson and
the Jeffreys intervals correct disturbing downward
spikes in the coverages of the original intervals very
close to the two boundaries. The other alternative
intervals have earned some prominence in the liter-
ature for one reason or another. We had to apply a
certain amount of discretion in choosing these addi-
tional intervals as part of our investigation. Since
we wish to direct the main part of our conversation
to the three “recommended” intervals, only a brief
summary of the performances of these additional
intervals is presented along with the introduction
of each interval. As part of these quick summaries,
we indicate why we decided against including them
among the recommended intervals.
We strongly recommend that introductory texts

in statistics present one or more of these recom-
mended alternative intervals, in preference to the
standard one. The slight sacrifice in simplicity
would be more than worthwhile. The conclusions
we make are given additional theoretical support
by the results in Brown, Cai and DasGupta (1999).
Analogous results for other one parameter discrete
families are presented in Brown, Cai and DasGupta
(2000).

2. THE STANDARD INTERVAL

When constructing a confidence interval we usu-
ally wish the actual coverage probability to be close
to the nominal confidence level. Because of the dis-
crete nature of the binomial distribution we cannot
always achieve the exact nominal confidence level
unless a randomized procedure is used. Thus our
objective is to construct nonrandomized confidence
intervals for p such that the coverage probability
Pp�p ∈ CI� ≈ 1 − α where α is some prespecified
value between 0 and 1. We will use the notation

C�p�n� = Pp�p ∈ CI��0 < p < 1, for the coverage
probability.
A standard confidence interval for p based on nor-

mal approximation has gained universal recommen-
dation in the introductory statistics textbooks and
in statistical practice. The interval is known to guar-
antee that for any fixed p ∈ �0� 1��C�p�n� → 1− α
as n→ ∞.
Let φ�z� and ��z� be the standard normal density

and distribution functions, respectively. Throughout
the paper we denote κ ≡ zα/2 = �−1�1 − α/2�� p̂ =
X/n and q̂ = 1 − p̂. The standard normal approxi-
mation confidence interval CIs is given by

CIs = p̂± κ n−1/2�p̂q̂�1/2	(1)

This interval is obtained by inverting the accep-
tance region of the well known Wald large-sample
normal test for a general problem:

��θ̂− θ�/ŝe�θ̂�� ≤ κ�(2)

where θ is a generic parameter, θ̂ is the maximum
likelihood estimate of θ and ŝe�θ̂� is the estimated
standard error of θ̂. In the binomial case, we have
θ = p� θ̂ =X/n and ŝe�θ̂� = �p̂q̂�1/2n−1/2	
The standard interval is easy to calculate and

is heuristically appealing. In introductory statis-
tics texts and courses, the confidence interval CIs
is usually presented along with some heuristic jus-
tification based on the central limit theorem. Most
students and users no doubt believe that the larger
the number n, the better the normal approximation,
and thus the closer the actual coverage would be to
the nominal level 1−α. Further, they would believe
that the coverage probabilities of this method are
close to the nominal value, except possibly when n
is “small” or p is “near” 0 or 1. We will show how
completely both of these beliefs are false. Let us
take a close look at how the standard interval CIs
really performs.

2.1 Lucky n, Lucky p

An interesting phenomenon for the standard
interval is that the actual coverage probability
of the confidence interval contains nonnegligible
oscillation as both p and n vary. There exist some
“lucky” pairs �p�n� such that the actual coverage
probability C�p�n� is very close to or larger than
the nominal level. On the other hand, there also
exist “unlucky” pairs �p�n� such that the corre-
sponding C�p�n� is much smaller than the nominal
level. The phenomenon of oscillation is both in n,
for fixed p, and in p, for fixed n. Furthermore, dras-
tic changes in coverage occur in nearby p for fixed
n and in nearby n for fixed p. Let us look at five
simple but instructive examples.
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Fig. 1. Standard interval; oscillation phenomenon for fixed p = 0	2 and variable n = 25 to 100	

The probabilities reported in the following plots
and tables, as well as those appearing later in
this paper, are the result of direct probability
calculations produced in S-PLUS. In all cases
their numerical accuracy considerably exceeds the
number of significant figures reported and/or the
accuracy visually obtainable from the plots. (Plots
for variable p are the probabilities for a fine grid
of values of p, e.g., 2000 equally spaced values of p
for the plots in Figure 5.)

Example 1. Figure 1 plots the coverage prob-
ability of the nominal 95% standard interval for
p = 0	2. The number of trials n varies from 25 to
100. It is clear from the plot that the oscillation is
significant and the coverage probability does not
steadily get closer to the nominal confidence level
as n increases. For instance, C�0	2�30� = 0	946 and
C�0	2�98� = 0	928. So, as hard as it is to believe,
the coverage probability is significantly closer to
0.95 when n = 30 than when n = 98. We see that
the true coverage probability behaves contrary to
conventional wisdom in a very significant way.

Example 2. Now consider the case of p = 0	5.
Since p = 0	5, conventional wisdom might suggest
to an unsuspecting user that all will be well if n is
about 20. We evaluate the exact coverage probabil-
ity of the 95% standard interval for 10 ≤ n ≤ 50.
In Table 1, we list the values of “lucky” n [defined
as C�p�n� ≥ 0	95] and the values of “unlucky” n
[defined for specificity as C�p�n� ≤ 0	92]. The con-
clusions presented in Table 2 are surprising. We

Table 1
Standard interval; lucky n and unlucky n for 10 ≤ n ≤ 50 and p = 0	5

Lucky n 17 20 25 30 35 37 42 44 49
C�0	5� n� 0.951 0.959 0.957 .957 0.959 0.953 0.956 0.951 0.956

Unlucky n 10 12 13 15 18 23 28 33 40
C�0	5� n� 0.891 0.854 0.908 0.882 0.904 0.907 0.913 0.920 0.919

note that when n = 17 the coverage probability
is 0.951, but the coverage probability equals 0.904
when n = 18. Indeed, the unlucky values of n arise
suddenly. Although p is 0.5, the coverage is still
only 0.919 at n = 40. This illustrates the inconsis-
tency, unpredictability and poor performance of the
standard interval.

Example 3. Now let us move p really close to
the boundary, say p = 0	005. We mention in the
introduction that such p are relevant in certain
practical applications. Since p is so small, now one
may fully expect that the coverage probability of
the standard interval is poor. Figure 2 and Table
2.2 show that there are still surprises and indeed
we now begin to see a whole new kind of erratic
behavior. The oscillation of the coverage probabil-
ity does not show until rather large n. Indeed, the
coverage probability makes a slow ascent all the
way until n = 591, and then dramatically drops to
0.792 when n = 592. Figure 2 shows that thereafter
the oscillation manifests in full force, in contrast
to Examples 1 and 2, where the oscillation started
early on. Subsequent “unlucky” values of n again
arise in the same unpredictable way, as one can see
from Table 2.2.

2.2 Inadequate Coverage

The results in Examples 1 to 3 already show that
the standard interval can have coverage noticeably
smaller than its nominal value even for values of n
and of np�1 − p� that are not small. This subsec-
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Table 2
Standard interval; late arrival of unlucky n for small p

Unlucky n 592 954 1279 1583 1876
C�0	005� n� 0.792 0.852 0.875 0.889 0.898

tion contains two more examples that display fur-
ther instances of the inadequacy of the standard
interval.

Example 4. Figure 3 plots the coverage probabil-
ity of the nominal 95% standard interval with fixed
n = 100 and variable p. It can be seen from Fig-
ure 3 that in spite of the “large” sample size, signifi-
cant change in coverage probability occurs in nearby
p. The magnitude of oscillation increases signifi-
cantly as p moves toward 0 or 1. Except for values
of p quite near p = 0	5, the general trend of this
plot is noticeably below the nominal coverage value
of 0	95.

Example 5. Figure 4 shows the coverage proba-
bility of the nominal 99% standard interval with n =
20 and variable p from 0 to 1. Besides the oscilla-
tion phenomenon similar to Figure 3, a striking fact
in this case is that the coverage never reaches the
nominal level. The coverage probability is always
smaller than 0.99, and in fact on the average the
coverage is only 0.883. Our evaluations show that
for all n ≤ 45, the coverage of the 99% standard
interval is strictly smaller than the nominal level
for all 0 < p < 1.

It is evident from the preceding presentation
that the actual coverage probability of the standard
interval can differ significantly from the nominal
confidence level for moderate and even large sam-
ple sizes. We will later demonstrate that there are
other confidence intervals that perform much better

Fig. 2. Standard interval; oscillation in coverage for small p	

in this regard. See Figure 5 for such a comparison.
The error in coverage comes from two sources: dis-
creteness and skewness in the underlying binomial
distribution. For a two-sided interval, the rounding
error due to discreteness is dominant, and the error
due to skewness is somewhat secondary, but still
important for even moderately large n. (See Brown,
Cai and DasGupta, 1999, for more details.) Note
that the situation is different for one-sided inter-
vals. There, the error caused by the skewness can
be larger than the rounding error. See Hall (1982)
for a detailed discussion on one-sided confidence
intervals.
The oscillation in the coverage probability is

caused by the discreteness of the binomial dis-
tribution, more precisely, the lattice structure of
the binomial distribution. The noticeable oscil-
lations are unavoidable for any nonrandomized
procedure, although some of the competing proce-
dures in Section 3 can be seen to have somewhat
smaller oscillations than the standard procedure.
See the text of Casella and Berger (1990) for intro-
ductory discussion of the oscillation in such a
context.
The erratic and unsatisfactory coverage prop-

erties of the standard interval have often been
remarked on, but curiously still do not seem to
be widely appreciated among statisticians. See, for
example, Ghosh (1979), Blyth and Still (1983) and
Agresti and Coull (1998). Blyth and Still (1983) also
show that the continuity-corrected version still has
the same disadvantages.

2.3 Textbook Qualifications

The normal approximation used to justify the
standard confidence interval for p can be signifi-
cantly in error. The error is most evident when the
true p is close to 0 or 1. See Lehmann (1999). In
fact, it is easy to show that, for any fixed n, the
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Fig. 3. Standard interval; oscillation phenomenon for fixed n = 100 and variable p	

confidence coefficient C�p�n� → 0 as p → 0 or 1.
Therefore, most major problems arise as regards
coverage probability when p is near the boundaries.
Poor coverage probabilities for p near 0 or 1 are

widely remarked on, and generally, in the popu-
lar texts, a brief sentence is added qualifying when
to use the standard confidence interval for p. It
is interesting to see what these qualifications are.
A sample of 11 popular texts gives the following
qualifications:
The confidence interval may be used if:

1. np�n�1− p� are ≥ 5 (or 10);
2. np�1− p� ≥ 5 (or 10);
3. np̂� n�1− p̂� are ≥ 5 (or 10);
4. p̂± 3

√
p̂�1− p̂�/n does not contain 0 or 1;

5. n quite large;
6. n ≥ 50 unless p is very small.

It seems clear that the authors are attempting to
say that the standard interval may be used if the
central limit approximation is accurate. These pre-
scriptions are defective in several respects. In the
estimation problem, (1) and (2) are not verifiable.
Even when these conditions are satisfied, we see,
for instance, from Table 1 in the previous section,
that there is no guarantee that the true coverage
probability is close to the nominal confidence level.

Fig. 4. Coverage of the nominal 99% standard interval for fixed n = 20 and variable p.

For example, when n = 40 and p = 0	5, one has
np = n�1 − p� = 20 and np�1 − p� = 10, so clearly
either of the conditions (1) and (2) is satisfied. How-
ever, from Table 1, the true coverage probability in
this case equals 0.919 which is certainly unsatisfac-
tory for a confidence interval at nominal level 0.95.
The qualification (5) is useless and (6) is patently

misleading; (3) and (4) are certainly verifiable, but
they are also useless because in the context of fre-
quentist coverage probabilities, a data-based pre-
scription does not have a meaning. The point is that
the standard interval clearly has serious problems
and the influential texts caution the readers about
that. However, the caution does not appear to serve
its purpose, for a variety of reasons.
Here is a result that shows that sometimes the

qualifications are not correct even in the limit as
n→ ∞.

Proposition 1. Let γ > 0. For the standard con-
fidence interval,

lim
n→∞ inf

p�np�n�1−p�≥γ
C�p�n�(3)

≤ P�aγ < Poisson�γ� ≤ bγ��
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Fig. 5. Coverage probability for n = 50.

Table 3
Standard interval; bound (3) on limiting minimum coverage

when np�n�1− p� ≥ γ

� 5 7 10

lim
n→∞ inf

p�np�n�1−p�≥γ
C�p�n� 0.875 0.913 0.926

where aγ and bγ are the integer parts of

�κ2 + 2γ ± κ
√
κ2 + 4γ�/2�

where the − sign goes with aγ and the + sign with bγ.

The proposition follows from the fact that the
sequence of Bin�n� γ/n� distributions converges
weakly to the Poisson(γ) distribution and so the
limit of the infimum is at most the Poisson proba-
bility in the proposition by an easy calculation.
Let us use Proposition 1 to investigate the validity

of qualifications (1) and (2) in the list above. The
nominal confidence level in Table 3 below is 0.95.

Table 4
Values of λx for the modified lower bound for the Wilson interval

1 − � x = 1 x = 2 x = 3

0.90 0.105 0.532 1.102
0.95 0.051 0.355 0.818
0.99 0.010 0.149 0.436

It is clear that qualification (1) does not work at
all and (2) is marginal. There are similar problems
with qualifications (3) and (4).

3. RECOMMENDED ALTERNATIVE INTERVALS

From the evidence gathered in Section 2, it seems
clear that the standard interval is just too risky.
This brings us to the consideration of alternative
intervals. We now analyze several such alternatives,
each with its motivation. A few other intervals are
also mentioned for their theoretical importance.
Among these intervals we feel three stand out in
their comparative performance. These are labeled
separately as the “recommended intervals”.

3.1 Recommended Intervals

3.1.1 The Wilson interval. An alternative to the
standard interval is the confidence interval based
on inverting the test in equation (2) that uses the
null standard error �pq�1/2n−1/2 instead of the esti-
mated standard error �p̂q̂�1/2n−1/2. This confidence
interval has the form

CIW = X+ κ2/2
n+ κ2

± κn1/2

n+ κ2
�p̂q̂+ κ2/�4n��1/2	(4)

This interval was apparently introduced by Wilson
(1927) and we will call this interval the Wilson
interval.
The Wilson interval has theoretical appeal. The

interval is the inversion of the CLT approximation
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to the family of equal tail tests of H0� p = p0.
Hence, one accepts H0 based on the CLT approx-
imation if and only if p0 is in this interval. As
Wilson showed, the argument involves the solution
of a quadratic equation; or see Tamhane and Dunlop
(2000, Exercise 9.39).

3.1.2 The Agresti–Coull interval. The standard
interval CIs is simple and easy to remember. For
the purposes of classroom presentation and use in
texts, it may be nice to have an alternative that has
the familiar form p̂ ± z

√
p̂�1− p̂�/n, with a better

and new choice of p̂ rather than p̂ =X/n. This can
be accomplished by using the center of the Wilson
region in place of p̂. Denote X̃ = X + κ2/2 and
ñ = n+ κ2. Let p̃ = X̃/ñ and q̃ = 1− p̃. Define the
confidence interval CIAC for p by

CIAC = p̃± κ�p̃q̃�1/2ñ−1/2	(5)

Both the Agresti–Coull and the Wilson interval are
centered on the same value, p̃. It is easy to check
that the Agresti–Coull intervals are never shorter
than the Wilson intervals. For the case when α =
0	05, if we use the value 2 instead of 1.96 for κ,
this interval is the “add 2 successes and 2 failures”
interval in Agresti and Coull (1998). For this rea-
son, we call it the Agresti–Coull interval. To the
best of our knowledge, Samuels and Witmer (1999)
is the first introductory statistics textbook that rec-
ommends the use of this interval. See Figure 5 for
the coverage of this interval. See also Figure 6 for
its average coverage probability.

3.1.3 Jeffreys interval. Beta distributions are the
standard conjugate priors for binomial distributions
and it is quite common to use beta priors for infer-
ence on p (see Berger, 1985).
SupposeX ∼ Bin�n�p� and suppose p has a prior

distribution Beta�a1� a2�; then the posterior distri-
bution of p is Beta�X + a1� n − X + a2�. Thus a
100�1− α�% equal-tailed Bayesian interval is given
by

�B�α/2�X+ a1� n−X+ a2��
B�1− α/2�X+ a1� n−X+ a2���

where B�α�m1�m2� denotes the α quantile of a
Beta�m1�m2� distribution.
The well-known Jeffreys prior and the uniform

prior are each a beta distribution. The noninforma-
tive Jeffreys prior is of particular interest to us.
Historically, Bayes procedures under noninforma-
tive priors have a track record of good frequentist
properties; see Wasserman (1991). In this problem

the Jeffreys prior is Beta�1/2�1/2� which has the
density function

f�p� = π−1p−1/2�1− p�−1/2	
The 100�1−α�% equal-tailed Jeffreys prior interval
is defined as

CIJ = �LJ�x��UJ�x���(6)

where LJ�0� = 0�UJ�n� = 1 and otherwise

LJ�x� = B�α/2�X+ 1/2� n−X+ 1/2��(7)

UJ�x� = B�1− α/2�X+ 1/2� n−X+ 1/2�	(8)

The interval is formed by taking the central 1 − α
posterior probability interval. This leaves α/2 poste-
rior probability in each omitted tail. The exception
is for x = 0�n� where the lower (upper) limits are
modified to avoid the undesirable result that the
coverage probability C�p�n� → 0 as p→ 0 or 1.
The actual endpoints of the interval need to be

numerically computed. This is very easy to do using
softwares such as Minitab, S-PLUS or Mathematica.
In Table 5 we have provided the limits for the case
of the Jeffreys prior for 7 ≤ n ≤ 30.
The endpoints of the Jeffreys prior interval are

the α/2 and 1−α/2 quantiles of the Beta�x+1/2� n−
x + 1/2� distribution. The psychological resistance
among some to using the interval is because of the
inability to compute the endpoints at ease without
software.
We provide two avenues to resolving this problem.

One is Table 5 at the end of the paper. The second
is a computable approximation to the limits of the
Jeffreys prior interval, one that is computable with
just a normal table. This approximation is obtained
after some algebra from the general approximation
to a Beta quantile given in page 945 in Abramowitz
and Stegun (1970).
The lower limit of the 100�1 − α�% Jeffreys prior

interval is approximately

x+ 1/2
n+ 1+ �n− x+ 1/2��e2ω − 1� �(9)

where

ω = κ
√
4p̂q̂/n+ �κ2 − 3�/�6n2�

4p̂q̂

+ �1/2− p̂��p̂q̂�κ2 + 2� − 1/n�
6n�p̂q̂�2 	

The upper limit may be approximated by the same
expression with κ replaced by −κ in ω. The simple
approximation given above is remarkably accurate.
Berry (1996, page 222) suggests using a simpler nor-
mal approximation, but this will not be sufficiently
accurate unless np̂�1− p̂� is rather large.
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Table 5
95% Limits of the Jeffreys prior interval

x n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

0 0 0.292 0 0.262 0 0.238 0 0.217 0 0.200 0 0.185
1 0.016 0.501 0.014 0.454 0.012 0.414 0.011 0.381 0.010 0.353 0.009 0.328
2 0.065 0.648 0.056 0.592 0.049 0.544 0.044 0.503 0.040 0.467 0.036 0.436
3 0.139 0.766 0.119 0.705 0.104 0.652 0.093 0.606 0.084 0.565 0.076 0.529
4 0.234 0.861 0.199 0.801 0.173 0.746 0.153 0.696 0.137 0.652 0.124 0.612
5 0.254 0.827 0.224 0.776 0.200 0.730 0.180 0.688
6 0.270 0.800 0.243 0.757

x n = 13 n = 14 n = 15 n = 16 n = 17 n = 18

0 0 0.173 0 0.162 0 0.152 0 0.143 0 0.136 0 0.129
1 0.008 0.307 0.008 0.288 0.007 0.272 0.007 0.257 0.006 0.244 0.006 0.232
2 0.033 0.409 0.031 0.385 0.029 0.363 0.027 0.344 0.025 0.327 0.024 0.311
3 0.070 0.497 0.064 0.469 0.060 0.444 0.056 0.421 0.052 0.400 0.049 0.381
4 0.114 0.577 0.105 0.545 0.097 0.517 0.091 0.491 0.085 0.467 0.080 0.446
5 0.165 0.650 0.152 0.616 0.140 0.584 0.131 0.556 0.122 0.530 0.115 0.506
6 0.221 0.717 0.203 0.681 0.188 0.647 0.174 0.617 0.163 0.589 0.153 0.563
7 0.283 0.779 0.259 0.741 0.239 0.706 0.222 0.674 0.207 0.644 0.194 0.617
8 0.294 0.761 0.272 0.728 0.254 0.697 0.237 0.668
9 0.303 0.746 0.284 0.716

x n = 19 n = 20 n = 21 n = 22 n = 23 n = 24

0 0 0.122 0 0.117 0 0.112 0 0.107 0 0.102 0 0.098
1 0.006 0.221 0.005 0.211 0.005 0.202 0.005 0.193 0.005 0.186 0.004 0.179
2 0.022 0.297 0.021 0.284 0.020 0.272 0.019 0.261 0.018 0.251 0.018 0.241
3 0.047 0.364 0.044 0.349 0.042 0.334 0.040 0.321 0.038 0.309 0.036 0.297
4 0.076 0.426 0.072 0.408 0.068 0.392 0.065 0.376 0.062 0.362 0.059 0.349
5 0.108 0.484 0.102 0.464 0.097 0.446 0.092 0.429 0.088 0.413 0.084 0.398
6 0.144 0.539 0.136 0.517 0.129 0.497 0.123 0.478 0.117 0.461 0.112 0.444
7 0.182 0.591 0.172 0.568 0.163 0.546 0.155 0.526 0.148 0.507 0.141 0.489
8 0.223 0.641 0.211 0.616 0.199 0.593 0.189 0.571 0.180 0.551 0.172 0.532
9 0.266 0.688 0.251 0.662 0.237 0.638 0.225 0.615 0.214 0.594 0.204 0.574
10 0.312 0.734 0.293 0.707 0.277 0.681 0.263 0.657 0.250 0.635 0.238 0.614
11 0.319 0.723 0.302 0.698 0.287 0.675 0.273 0.653
12 0.325 0.713 0.310 0.690

x n = 25 n = 26 n = 27 n = 28 n = 29 n = 30

0 0 0.095 0 0.091 0 0.088 0 0.085 0 0.082 0 0.080
1 0.004 0.172 0.004 0.166 0.004 0.160 0.004 0.155 0.004 0.150 0.004 0.145
2 0.017 0.233 0.016 0.225 0.016 0.217 0.015 0.210 0.015 0.203 0.014 0.197
3 0.035 0.287 0.034 0.277 0.032 0.268 0.031 0.259 0.030 0.251 0.029 0.243
4 0.056 0.337 0.054 0.325 0.052 0.315 0.050 0.305 0.048 0.295 0.047 0.286
5 0.081 0.384 0.077 0.371 0.074 0.359 0.072 0.348 0.069 0.337 0.067 0.327
6 0.107 0.429 0.102 0.415 0.098 0.402 0.095 0.389 0.091 0.378 0.088 0.367
7 0.135 0.473 0.129 0.457 0.124 0.443 0.119 0.429 0.115 0.416 0.111 0.404
8 0.164 0.515 0.158 0.498 0.151 0.482 0.145 0.468 0.140 0.454 0.135 0.441
9 0.195 0.555 0.187 0.537 0.180 0.521 0.172 0.505 0.166 0.490 0.160 0.476
10 0.228 0.594 0.218 0.576 0.209 0.558 0.201 0.542 0.193 0.526 0.186 0.511
11 0.261 0.632 0.250 0.613 0.239 0.594 0.230 0.577 0.221 0.560 0.213 0.545
12 0.295 0.669 0.282 0.649 0.271 0.630 0.260 0.611 0.250 0.594 0.240 0.578
13 0.331 0.705 0.316 0.684 0.303 0.664 0.291 0.645 0.279 0.627 0.269 0.610
14 0.336 0.697 0.322 0.678 0.310 0.659 0.298 0.641
15 0.341 0.690 0.328 0.672
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Fig. 6. Comparison of the average coverage probabilities. From top to bottom: the Agresti–Coull interval CIAC� the Wilson interval CIW�
the Jeffreys prior interval CIJ and the standard interval CIs. The nominal confidence level is 0	95	

In Figure 5 we plot the coverage probability of the
standard interval, the Wilson interval, the Agresti–
Coull interval and the Jeffreys interval for n = 50
and α = 0	05.

3.2 Coverage Probability

In this and the next subsections, we compare the
performance of the standard interval and the three
recommended intervals in terms of their coverage
probability and length.
Coverage of the Wilson interval fluctuates accept-

ably near 1 − α, except for p very near 0 or 1. It
might be helpful to consult Figure 5 again. It can
be shown that, when 1− α = 0	95,

lim
n→∞ inf

γ≥1
C

(
γ

n
� n

)
= 0	92�

lim
n→∞ inf

γ≥5
C

(
γ

n
� n

)
= 0	936

and

lim
n→∞ inf

γ≥10
C

(
γ

n
� n

)
= 0	938

for the Wilson interval. In comparison, these three
values for the standard interval are 0.860, 0.870,
and 0.905, respectively, obviously considerably
smaller.
The modification CIM−W presented in Section

4.1.1 removes the first few deep downward spikes
of the coverage function for CIW. The resulting cov-
erage function is overall somewhat conservative for
p very near 0 or 1. Both CIW and CIM−W have the
same coverage functions away from 0 or 1.
The Agresti–Coull interval has good minimum

coverage probability. The coverage probability of
the interval is quite conservative for p very close
to 0 or 1. In comparison to the Wilson interval it
is more conservative, especially for small n. This
is not surprising because, as we have noted, CIAC
always contains CIW as a proper subinterval.

The coverage of the Jeffreys interval is quali-
tatively similar to that of CIW over most of the
parameter space �0�1�. In addition, as we will see
in Section 4.3, CIJ has an appealing connection to
the mid-P corrected version of the Clopper–Pearson
“exact” intervals. These are very similar to CIJ,
over most of the range, and have similar appealing
properties. CIJ is a serious and credible candidate
for practical use. The coverage has an unfortunate
fairly deep spike near p = 0 and, symmetrically,
another near p = 1. However, the simple modifica-
tion of CIJ presented in Section 4.1.2 removes these
two deep downward spikes. The modified Jeffreys
interval CIM−J performs well.
Let us also evaluate the intervals in terms of their

average coverage probability, the average being over
p. Figure 6 demonstrates the striking difference in
the average coverage probability among four inter-
vals: the Agresti–Coull interval, the Wilson interval
the Jeffreys prior interval and the standard inter-
val. The standard interval performs poorly. The
interval CIAC is slightly conservative in terms of
average coverage probability. Both the Wilson inter-
val and the Jeffreys prior interval have excellent
performance in terms of the average coverage prob-
ability; that of the Jeffreys prior interval is, if
anything, slightly superior. The average coverage
of the Jeffreys interval is really very close to the
nominal level even for quite small n. This is quite
impressive.
Figure 7 displays the mean absolute errors,∫ 1

0 �C�p�n� − �1 − α��dp, for n = 10 to 25, and
n = 26 to 40. It is clear from the plots that among
the four intervals, CIW�CIAC and CIJ are com-
parable, but the mean absolute errors of CIs are
significantly larger.

3.3 Expected Length

Besides coverage, length is also very important
in evaluation of a confidence interval. We compare
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Fig. 7. The mean absolute errors of the coverage of the standard �solid�� the Agresti–Coull �dashed�� the Jeffreys �+� and the Wilson
�dotted� intervals for n = 10 to 25 and n = 26 to 40	

both the expected length and the average expected
length of the intervals. By definition,

Expected length

= En�p�length�CI��

=
n∑

x=0
�U�x�n� −L�x�n��

(
n
x

)
px�1− p�n−x�

where U and L are the upper and lower lim-
its of the confidence interval CI, respectively.
The average expected length is just the integral∫ 1
0 En�p�length(CI)�dp.
We plot in Figure 8 the expected lengths of the

four intervals for n = 25 and α = 0	05. In this case,
CIW is the shortest when 0	210 ≤ p ≤ 0	790, CIJ is
the shortest when 0	133 ≤ p ≤ 0	210 or 0	790 ≤ p ≤
0	867, and CIs is the shortest when p ≤ 0	133 or p ≥
0	867. It is no surprise that the standard interval is
the shortest when p is near the boundaries. CIs is
not really in contention as a credible choice for such
values of p because of its poor coverage properties
in that region. Similar qualitative phenomena hold
for other values of n.
Figure 9 shows the average expected lengths of

the four intervals for n = 10 to 25 and n = 26 to

Fig. 8. The expected lengths of the standard �solid�� the Wilson �dotted�� the Agresti–Coull �dashed� and the Jeffreys �+� intervals for
n = 25 and α = 0	05.

40. Interestingly, the comparison is clear and con-
sistent as n changes. Always, the standard interval
and the Wilson interval CIW have almost identical
average expected length; the Jeffreys interval CIJ is
comparable to the Wilson interval, and in fact CIJ
is slightly more parsimonious. But the difference is
not of practical relevance. However, especially when
n is small, the average expected length of CIAC is
noticeably larger than that of CIJ and CIW. In fact,
for n till about 20, the average expected length of
CIAC is larger than that of CIJ by 0.04 to 0.02, and
this difference can be of definite practical relevance.
The difference starts to wear off when n is larger
than 30 or so.

4. OTHER ALTERNATIVE INTERVALS

Several other intervals deserve consideration,
either due to their historical value or their theoret-
ical properties. In the interest of space, we had to
exercise some personal judgment in deciding which
additional intervals should be presented.

4.1 Boundary modification

The coverage probabilities of the Wilson interval
and the Jeffreys interval fluctuate acceptably near
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Fig. 9. The average expected lengths of the standard �solid�� the Wilson �dotted�� the Agresti–Coull �dashed� and the Jeffreys �+�
intervals for n = 10 to 25 and n = 26 to 40.

1−α for p not very close to 0 or 1. Simple modifica-
tions can be made to remove a few deep downward
spikes of their coverage near the boundaries; see
Figure 5.

4.1.1 Modified Wilson interval. The lower bound
of the Wilson interval is formed by inverting a CLT
approximation. The coverage has downward spikes
when p is very near 0 or 1. These spikes exist for all
n and α. For example, it can be shown that, when
1− α = 0	95 and p = 0	1765/n,

lim
n→∞Pp�p ∈ CIW� = 0	838

and when 1 − α = 0	99 and p = 0	1174/n�
limn→∞ Pp�p ∈ CIW� = 0	889	 The particular
numerical values �0	1174�0	1765� are relevant only
to the extent that divided by n, they approximate
the location of these deep downward spikes.
The spikes can be removed by using a one-sided

Poisson approximation for x close to 0 or n. Suppose
we modify the lower bound for x = 1� 	 	 	 � x∗. For a
fixed 1 ≤ x ≤ x∗, the lower bound of CIW should be

Fig. 10. Coverage probability for n = 50 and p ∈ �0�0	15�. The plots are symmetric about p = 0	5 and the coverage of the modified intervals
�solid line� is the same as that of the corresponding interval without modification �dashed line� for p ∈ �0	15�0	85�.

replaced by a lower bound of λx/n where λx solves

e−λ�λ0/0!+λ1/1!+· · ·+λx−1/�x−1�!� = 1−α	(10)

A symmetric prescription needs to be followed to
modify the upper bound for x very near n. The value
of x∗ should be small. Values which work reasonably
well for 1− α = 0	95 are

x∗ = 2 for n < 50 and x∗ = 3 for 51 ≤ n ≤ 100+.
Using the relationship between the Poisson and

χ2 distributions,

P�Y ≤ x� = P�χ22�1+x� ≤ 2λ�
where Y ∼ Poisson�λ�, one can also formally
express λx in (10) in terms of the χ2 quantiles:
λx = �1/2�χ22x� α� where χ22x� α denotes the 100αth
percentile of the χ2 distribution with 2x degrees of
freedom. Table 4 gives the values of λx for selected
values of x and α.
For example, consider the case 1 − α = 0	95 and

x = 2. The lower bound of CIW is ≈ 0	548/�n +
4�. The modified Wilson interval replaces this by a
lower bound of λ/n where λ = �1/2�χ24�0	05. Thus,
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Fig. 11. Coverage probability of other alternative intervals for n = 50.

from a χ2 table, for x = 2 the new lower bound is
0	355/n.
We denote this modified Wilson interval by

CIM−W. See Figure 10 for its coverage.

4.1.2 Modified Jeffreys interval. Evidently, CIJ
has an appealing Bayesian interpretation, and,
its coverage properties are appealing again except
for a very narrow downward coverage spike fairly
near 0 and 1 (see Figure 5). The unfortunate down-
ward spikes in the coverage function result because
UJ�0� is too small and symmetrically LJ�n� is too
large. To remedy this, one may revise these two
specific limits as

UM−J�0� = pl and LM−J�n� = 1− pl�

where pl satisfies �1 − pl�n = α/2 or equivalently
pl = 1− �α/2�1/n.
We also made a slight, ad hoc alteration of LJ�1�

and set

LM−J�1� = 0 and UM−J�n− 1� = 1	

In all other cases, LM−J = LJ and UM−J = UJ.
We denote the modified Jeffreys interval by CIM−J.
This modification removes the two steep down-
ward spikes and the performance of the interval is
improved. See Figure 10.

4.2 Other intervals

4.2.1 The Clopper–Pearson interval. The Clopper–
Pearson interval is the inversion of the equal-tail
binomial test rather than its normal approxima-
tion. Some authors refer to this as the “exact”
procedure because of its derivation from the bino-
mial distribution. If X = x is observed, then
the Clopper–Pearson (1934) interval is defined by
CICP = �LCP�x��UCP�x��, where LCP�x� and UCP�x�
are, respectively, the solutions in p to the equations

Pp�X ≥ x� = α/2 and Pp�X ≤ x� = α/2	

It is easy to show that the lower endpoint is the α/2
quantile of a beta distribution Beta�x�n − x + 1�,
and the upper endpoint is the 1− α/2 quantile of a
beta distribution Beta�x + 1� n − x�. The Clopper–
Pearson interval guarantees that the actual cov-
erage probability is always equal to or above the
nominal confidence level. However, for any fixed p,
the actual coverage probability can be much larger
than 1−α unless n is quite large, and thus the confi-
dence interval is rather inaccurate in this sense. See
Figure 11. The Clopper–Pearson interval is waste-
fully conservative and is not a good choice for prac-
tical use, unless strict adherence to the prescription
C�p�n� ≥ 1−α is demanded. Even then, better exact
methods are available; see, for instance, Blyth and
Still (1983) and Casella (1986).



114 L. D. BROWN, T. T. CAI AND A. DASGUPTA

4.2.2 The arcsine interval. Another interval is
based on a widely used variance stabilizing trans-
formation for the binomial distribution [see, e.g.,
Bickel and Doksum, 1977: T�p̂� = arcsin�p̂1/2��	
This variance stabilization is based on the delta
method and is, of course, only an asymptotic one.
Anscombe (1948) showed that replacing p̂ by
p̌ = �X + 3/8�/�n + 3/4� gives better variance
stabilization; furthermore

2n1/2�arcsin�p̌1/2� − arcsin�p1/2�� →N�0�1�
as n→ ∞.

This leads to an approximate 100�1−α�% confidence
interval for p,

CIArc =
[
sin2�arcsin�p̌1/2� − 1

2κn
−1/2��

sin2�arcsin�p̌1/2� + 1
2κn

−1/2�
]
	

(11)

See Figure 11 for the coverage probability of this
interval for n = 50. This interval performs reason-
ably well for p not too close to 0 or 1. The coverage
has steep downward spikes near the two edges; in
fact it is easy to see that the coverage drops to zero
when p is sufficiently close to the boundary (see
Figure 11). The mean absolute error of the coverage
of CIArc is significantly larger than those of CIW,
CIAC and CIJ. We note that our evaluations show
that the performance of the arcsine interval with
the standard p̂ in place of p̌ in (11) is much worse
than that of CIArc.

4.2.3 The logit interval. The logit interval is
obtained by inverting a Wald type interval for the
log odds λ = log� p

1−p�; (see Stone, 1995). The MLE
of λ (for 0 < X < n) is

λ̂ = log
(

p̂

1− p̂

)
= log

(
X

n−X

)
�

which is the so-called empirical logit transform. The
variance of λ̂, by an application of the delta theorem,
can be estimated by

V̂ = n

X�n−X� 	

This leads to an approximate 100�1−α�% confidence
interval for λ,

CI�λ� = �λl� λu� = �λ̂− κV̂1/2� λ̂+ κV̂1/2�	(12)

The logit interval for p is obtained by inverting the
interval (12),

CILogit =
[

eλl

1+ eλl
�

eλu

1+ eλu

]
	(13)

The interval (13) has been suggested, for example,
in Stone (1995, page 667). Figure 11 plots the cov-
erage of the logit interval for n = 50. This interval
performs quite well in terms of coverage for p away
from 0 or 1. But the interval is unnecessarily long;
in fact its expected length is larger than that of the
Clopper–Pearson exact interval.

Remark. Anscombe (1956) suggested that λ̂ =
log� X+1/2

n−X+1/2� is a better estimate of λ; see also Cox
and Snell (1989) and Santner and Duffy (1989). The
variance of Anscombe’s λ̂ may be estimated by

V̂ = �n+ 1��n+ 2�
n�X+ 1��n−X+ 1� 	

A new logit interval can be constructed using the
new estimates λ̂ and V̂. Our evaluations show that
the new logit interval is overall shorter than CILogit
in (13). But the coverage of the new interval is not
satisfactory.

4.2.4 The Bayesian HPD interval. An exact
Bayesian solution would involve using the HPD
intervals instead of our equal-tails proposal. How-
ever, HPD intervals are much harder to compute
and do not do as well in terms of coverage proba-
bility. See Figure 11 and compare to the Jeffreys’
equal-tailed interval in Figure 5.

4.2.5 The likelihood ratio interval. Along with
the Wald and the Rao score intervals, the likeli-
hood ratio method is one of the most used methods
for construction of confidence intervals. It is con-
structed by inversion of the likelihood ratio test
which accepts the null hypothesis H0� p = p0 if
−2 log�2n� ≤ κ2, where 2n is the likelihood ratio

2n = L�p0�
supp L�p�

= pX0 �1− p0�n−X
�X/n�X�1−X/n�n−X �

L being the likelihood function. See Rao (1973).
Brown, Cai and DasGupta (1999) show by analyt-
ical calculations that this interval has nice proper-
ties. However, it is slightly harder to compute. For
the purpose of the present article which we view as
primarily directed toward practice, we do not fur-
ther analyze the likelihood ratio interval.

4.3 Connections between Jeffreys Intervals
and Mid-P Intervals

The equal-tailed Jeffreys prior interval has some
interesting connections to the Clopper–Pearson
interval. As we mentioned earlier, the Clopper–
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Pearson interval CICP can be written as

CICP = �B�α/2�X�n−X+ 1��
B�1− α/2�X+ 1� n−X��	

It therefore follows immediately that CIJ is always
contained in CICP. Thus CIJ corrects the conserva-
tiveness of CICP.
It turns out that the Jeffreys prior interval,

although Bayesianly constructed, has a clear and
convincing frequentist motivation. It is thus no sur-
prise that it does well from a frequentist perspec-
tive. As we now explain, the Jeffreys prior interval
CIJ can be regarded as a continuity corrected
version of the Clopper–Pearson interval CICP.
The interval CICP inverts the inequality Pp�X ≤

L�p�� ≤ α/2 to obtain the lower limit and similarly
for the upper limit. Thus, for fixed x, the upper limit
of the interval for p, UCP�x�, satisfies

PUCP�x��X ≤ x� ≤ α/2�(14)

and symmetrically for the lower limit.
This interval is very conservative; undesirably so

for most practical purposes. A familiar proposal to
eliminate this over-conservativeness is to instead
invert

Pp�X≤L�p�−1�+�1/2�Pp�X=L�p��=α/2�(15)

This amounts to solving

�1/2��PUCP�x��X ≤ x− 1�
+PUCP�x��X ≤ x�� = α/2�

(16)

which is the same as

Umid-P�X� = �1/2�B�1− α/2�x�n− x+ 1�
+ �1/2�B�1− α/2�x+ 1� n− x�

(17)

and symmetrically for the lower endpoint. These
are the “Mid-P Clopper-Pearson” intervals. They are
known to have good coverage and length perfor-
mance. Umid-P given in (17) is a weighted average
of two incomplete Beta functions. The incomplete
Beta function of interest, B�1−α/2�x�n−x+ 1�, is
continuous and monotone in x if we formally treat
x as a continuous argument. Hence the average of
the two functions defining Umid-P is approximately
the same as the value at the halfway point, x+1/2.
Thus

Umid-P�X�≈B�1−α/2�x+1/2�n−x+1/2�=UJ�x��
exactly the upper limit for the equal-tailed Jeffreys
interval. Similarly, the corresponding approximate
lower endpoint is the Jeffreys’ lower limit.
Another frequentist way to interpret the Jeffreys

prior interval is to say that UJ�x� is the upper

limit for the Clopper–Pearson rule with x−1/2 suc-
cesses and LJ�x� is the lower limit for the Clopper–
Pearson rule with x + 1/2 successes. Strawderman
and Wells (1998) contains a valuable discussion of
mid-P intervals and suggests some variations based
on asymptotic expansions.

5. CONCLUDING REMARKS

Interval estimation of a binomial proportion is a
very basic problem in practical statistics. The stan-
dard Wald interval is in nearly universal use. We
first show that the performance of this standard
interval is persistently chaotic and unacceptably
poor. Indeed its coverage properties defy conven-
tional wisdom. The performance is so erratic and
the qualifications given in the influential texts
are so defective that the standard interval should
not be used. We provide a fairly comprehensive
evaluation of many natural alternative intervals.
Based on this analysis, we recommend the Wilson
or the equal-tailed Jeffreys prior interval for small
n�n ≤ 40). These two intervals are comparable in
both absolute error and length for n ≤ 40, and we
believe that either could be used, depending on
taste.
For larger n, the Wilson, the Jeffreys and the

Agresti–Coull intervals are all comparable, and the
Agresti–Coull interval is the simplest to present.
It is generally true in statistical practice that only
those methods that are easy to describe, remember
and compute are widely used. Keeping this in mind,
we recommend the Agresti–Coull interval for prac-
tical use when n ≥ 40. Even for small sample sizes,
the easy-to-present Agresti–Coull interval is much
preferable to the standard one.
We would be satisfied if this article contributes

to a greater appreciation of the severe flaws of the
popular standard interval and an agreement that it
deserves not to be used at all. We also hope that
the recommendations for alternative intervals will
provide some closure as to what may be used in
preference to the standard method.
Finally, we note that the specific choices of the

values of n, p and α in the examples and figures
are artifacts. The theoretical results in Brown, Cai
and DasGupta (1999) show that qualitatively sim-
ilar phenomena as regarding coverage and length
hold for general n and p and common values of
the coverage. (Those results there are asymptotic
as n → ∞, but they are also sufficiently accurate
for realistically moderate n.)
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APPENDIX

Table A.1
95% Limits of the modified Jeffreys prior interval

x n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

0 0 0.410 0 0.369 0 0.336 0 0.308 0 0.285 0 0.265
1 0 0.501 0 0.454 0 0.414 0 0.381 0 0.353 0 0.328
2 0.065 0.648 0.056 0.592 0.049 0.544 0.044 0.503 0.040 0.467 0.036 0.436
3 0.139 0.766 0.119 0.705 0.104 0.652 0.093 0.606 0.084 0.565 0.076 0.529
4 0.234 0.861 0.199 0.801 0.173 0.746 0.153 0.696 0.137 0.652 0.124 0.612
5 0.254 0.827 0.224 0.776 0.200 0.730 0.180 0.688
6 0.270 0.800 0.243 0.757

x n = 13 n = 14 n = 15 n = 16 n = 17 n = 18

0 0 0.247 0 0.232 0 0.218 0 0.206 0 0.195 0 0.185
1 0 0.307 0 0.288 0 0.272 0 0.257 0 0.244 0 0.232
2 0.033 0.409 0.031 0.385 0.029 0.363 0.027 0.344 0.025 0.327 0.024 0.311
3 0.070 0.497 0.064 0.469 0.060 0.444 0.056 0.421 0.052 0.400 0.049 0.381
4 0.114 0.577 0.105 0.545 0.097 0.517 0.091 0.491 0.085 0.467 0.080 0.446
5 0.165 0.650 0.152 0.616 0.140 0.584 0.131 0.556 0.122 0.530 0.115 0.506
6 0.221 0.717 0.203 0.681 0.188 0.647 0.174 0.617 0.163 0.589 0.153 0.563
7 0.283 0.779 0.259 0.741 0.239 0.706 0.222 0.674 0.207 0.644 0.194 0.617
8 0.294 0.761 0.272 0.728 0.254 0.697 0.237 0.668
9 0.303 0.746 0.284 0.716

x n = 19 n = 20 n = 21 n = 22 n = 23 n = 24

0 0 0.176 0 0.168 0 0.161 0 0.154 0 0.148 0 0.142
1 0 0.221 0 0.211 0 0.202 0 0.193 0 0.186 0 0.179
2 0.022 0.297 0.021 0.284 0.020 0.272 0.019 0.261 0.018 0.251 0.018 0.241
3 0.047 0.364 0.044 0.349 0.042 0.334 0.040 0.321 0.038 0.309 0.036 0.297
4 0.076 0.426 0.072 0.408 0.068 0.392 0.065 0.376 0.062 0.362 0.059 0.349
5 0.108 0.484 0.102 0.464 0.097 0.446 0.092 0.429 0.088 0.413 0.084 0.398
6 0.144 0.539 0.136 0.517 0.129 0.497 0.123 0.478 0.117 0.461 0.112 0.444
7 0.182 0.591 0.172 0.568 0.163 0.546 0.155 0.526 0.148 0.507 0.141 0.489
8 0.223 0.641 0.211 0.616 0.199 0.593 0.189 0.571 0.180 0.551 0.172 0.532
9 0.266 0.688 0.251 0.662 0.237 0.638 0.225 0.615 0.214 0.594 0.204 0.574
10 0.312 0.734 0.293 0.707 0.277 0.681 0.263 0.657 0.250 0.635 0.238 0.614
11 0.319 0.723 0.302 0.698 0.287 0.675 0.273 0.653
12 0.325 0.713 0.310 0.690

x n = 25 n = 26 n = 27 n = 28 n = 29 n = 30

0 0 0.137 0 0.132 0 0.128 0 0.123 0 0.119 0 0.116
1 0 0.172 0 0.166 0 0.160 0 0.155 0 0.150 0 0.145
2 0.017 0.233 0.016 0.225 0.016 0.217 0.015 0.210 0.015 0.203 0.014 0.197
3 0.035 0.287 0.034 0.277 0.032 0.268 0.031 0.259 0.030 0.251 0.029 0.243
4 0.056 0.337 0.054 0.325 0.052 0.315 0.050 0.305 0.048 0.295 0.047 0.286
5 0.081 0.384 0.077 0.371 0.074 0.359 0.072 0.348 0.069 0.337 0.067 0.327
6 0.107 0.429 0.102 0.415 0.098 0.402 0.095 0.389 0.091 0.378 0.088 0.367
7 0.135 0.473 0.129 0.457 0.124 0.443 0.119 0.429 0.115 0.416 0.111 0.404
8 0.164 0.515 0.158 0.498 0.151 0.482 0.145 0.468 0.140 0.454 0.135 0.441
9 0.195 0.555 0.187 0.537 0.180 0.521 0.172 0.505 0.166 0.490 0.160 0.476
10 0.228 0.594 0.218 0.576 0.209 0.558 0.201 0.542 0.193 0.526 0.186 0.511
11 0.261 0.632 0.250 0.613 0.239 0.594 0.230 0.577 0.221 0.560 0.213 0.545
12 0.295 0.669 0.282 0.649 0.271 0.630 0.260 0.611 0.250 0.594 0.240 0.578
13 0.331 0.705 0.316 0.684 0.303 0.664 0.291 0.645 0.279 0.627 0.269 0.610
14 0.336 0.697 0.322 0.678 0.310 0.659 0.298 0.641
15 0.341 0.690 0.328 0.672
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Comment
Alan Agresti and Brent A. Coull

In this very interesting article, Professors Brown,
Cai and DasGupta (BCD) have shown that discrete-
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ness can cause havoc for much larger sample sizes
that one would expect. The popular (Wald) confi-
dence interval for a binomial parameter p has been
known for some time to behave poorly, but readers
will surely be surprised that this can happen for
such large n values.
Interval estimation of a binomial parameter is

deceptively simple, as there are not even any nui-
sance parameters. The gold standard would seem
to be a method such as the Clopper–Pearson, based
on inverting an “exact” test using the binomial dis-
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Fig. 1. A Comparison of mean expected lengths for the nominal 95% Jeffreys �J�� Wilson �W�� Modified Jeffreys �M-J�� Modified Wilson
�M-W�� and Agresti–Coull �AC� intervals for n = 5�6�7�8�9.

tribution rather than an approximate test using
the normal. Because of discreteness, however, this
method is too conservative. A more practical, nearly
gold standard for this and other discrete problems
seems to be based on inverting a two-sided test
using the exact distribution but with the mid-P
value. Similarly, with large-sample methods it is
better not to use a continuity correction, as other-
wise it approximates exact inference based on an
ordinary P-value, resulting in conservative behav-
ior. Interestingly, BCD note that the Jeffreys inter-
val (CIJ) approximates the mid-P value correction
of the Clopper–Pearson interval. See Gart (1966)
for related remarks about the use of 1

2 additions
to numbers of successes and failures before using
frequentist methods.

1. METHODS FOR ELEMENTARY
STATISTICS COURSES

It’s unfortunate that the Wald interval for p
is so seriously deficient, because in addition to
being the simplest interval it is the obvious one
to teach in elementary statistics courses. By con-
trast, the Wilson interval (CIW) performs surpris-
ingly well even for small n. Since it is too com-
plex for many such courses, however, our motiva-
tion for the “Agresti–Coull interval” (CIAC) was to
provide a simple approximation for CIW. Formula
(4) in BCD shows that the midpoint p̃ for CIW is
a weighted average of p̂ and 1/2 that equals the
sample proportion after adding z2α/2 pseudo obser-
vations, half of each type; the square of the coef-
ficient of zα/2 is the same weighted average of the
variance of a sample proportion when p = p̂ and
when p = 1/2, using ñ = n+ z2α/2 in place of n. The
CIAC uses the CIW midpoint, but its squared coef-
ficient of zα/2 is the variance p̃q̃/ñ at the weighted

average p̃ rather than the weighted average of the
variances. The resulting interval p̃ ± zα/2�p̃q̃/ñ�1/2
is wider than CIW (by Jensen’s inequality), in par-
ticular being conservative for p near 0 and 1 where
CIW can suffer poor coverage probabilities.
Regarding textbook qualifications on sample size

for using the Wald interval, skewness considera-
tions and the Edgeworth expansion suggest that
guidelines for n should depend on p through �1 −
2p�2/�p�1−p��. See, for instance, Boos and Hughes-
Oliver (2000). But this does not account for the
effects of discreteness, and as BCD point out, guide-
lines in terms of p are not verifiable. For elemen-
tary course teaching there is no obvious alternative
(such as t methods) for smaller n, so we think it is
sensible to teach a single method that behaves rea-
sonably well for all n, as do the Wilson, Jeffreys and
Agresti–Coull intervals.

2. IMPROVED PERFORMANCE WITH
BOUNDARY MODIFICATIONS

BCD showed that one can improve the behavior
of the Wilson and Jeffreys intervals for p near 0
and 1 by modifying the endpoints for CIW when
x = 1�2� n − 2� n − 1 (and x = 3 and n − 3 for
n > 50) and for CIJ when x = 0�1� n − 1� n. Once
one permits the modification of methods near the
sample space boundary, other methods may per-
form decently besides the three recommended in
this article.
For instance, Newcombe (1998) showed that when

0 < x < n the Wilson interval CIW and the Wald
logit interval have the same midpoint on the logit
scale. In fact, Newcombe has shown (personal com-
munication, 1999) that the logit interval necessarily
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Fig. 2. A comparison of expected lengths for the nominal 95% Jeffreys �J��Wilson �W��Modified Jeffreys �M-J��Modified Wilson �M-W��
and Agresti–Coull �AC� intervals for n = 5.

contains CIW. The logit interval is the uninforma-
tive one [0�1] when x = 0 or x = n, but substitut-
ing the Clopper–Pearson limits in those cases yields
coverage probability functions that resemble those
for CIW and CIAC, although considerably more con-
servative for small n. Rubin and Schenker (1987)
recommended the logit interval after 1

2 additions to
numbers of successes and failures, motivating it as a
normal approximation to the posterior distribution
of the logit parameter after using the Jeffreys prior.
However, this modification has coverage probabili-
ties that are unacceptably small for p near 0 and 1
(See Vollset, 1993). Presumably some other bound-
ary modification will result in a happy medium. In
a letter to the editor about Agresti and Coull (1998),
Rindskopf (2000) argued in favor of the logit inter-
val partly because of its connection with logit mod-
eling. We have not used this method for teaching
in elementary courses, since logit intervals do not
extend to intervals for the difference of proportions
and (like CIW and CIJ) they are rather complex for
that level.
For practical use and for teaching in more

advanced courses, some statisticians may prefer the
likelihood ratio interval, since conceptually it is sim-
ple and the method also applies in a general model-
building framework. An advantage compared to the
Wald approach is its invariance to the choice of
scale, resulting, for instance, both from the origi-
nal scale and the logit. BCD do not say much about
this interval, since it is harder to compute. However,
it is easy to obtain with standard statistical soft-
ware (e.g., in SAS, using the LRCI option in PROC
GENMOD for a model containing only an intercept
term and assuming a binomial response with logit
or identity link function). Graphs in Vollset (1993)

suggest that the boundary-modified likelihood ratio
interval also behaves reasonably well, although con-
servative for p near 0 and 1.
For elementary course teaching, a disadvantage

of all such intervals using boundary modifications
is that making exceptions from a general, simple
recipe distracts students from the simple concept
of taking the estimate plus and minus a normal
score multiple of a standard error. (Of course, this
concept is not sufficient for serious statistical work,
but some over simplification and compromise is nec-
essary at that level.) Even with CIAC, instructors
may find it preferable to give a recipe with the
same number of added pseudo observations for all
α, instead of z2α/2. Reasonably good performance
seems to result, especially for small α, from the
value 4 ≈ z20	025 used in the 95% CIAC interval (i.e.,
the “add two successes and two failures” interval).
Agresti and Caffo (2000) discussed this and showed
that adding four pseudo observations also dramat-
ically improves the Wald two-sample interval for
comparing proportions, although again at the cost of
rather severe conservativeness when both parame-
ters are near 0 or near 1.

3. ALTERNATIVE WIDTH COMPARISON

In comparing the expected lengths of the
three recommended intervals, BCD note that the
comparison is clear and consistent as n changes,
with the average expected length being noticeably
larger for CIAC than CIJ and CIW. Thus, in their
concluding remarks, they recommend CIJ and CIW
for small n. However, since BCD recommend mod-
ifying CIJ and CIW to eliminate severe downward
spikes of coverage probabilities, we believe that a
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more fair comparison of expected lengths uses the
modified versions CIM−J and CIM−W. We checked
this but must admit that figures analogous to
the BCD Figures 8 and 9 show that CIM−J and
CIM−W maintain their expected length advantage
over CIAC, although it is reduced somewhat.
However, when n decreases below 10, the results

change, with CIM−J having greater expected width
than CIAC and CIM−W. Our Figure 1 extends the
BCD Figure 9 to values of n < 10, showing how the
comparison differs between the ordinary intervals
and the modified ones. Our Figure 2 has the format
of the BCD Figure 8, but for n = 5 instead of 25.
Admittedly, n = 5 is a rather extreme case, one for
which the Jeffreys interval is modified unless x = 2
or 3 and the Wilson interval is modified unless x = 0
or 5, and for it CIAC has coverage probabilities that
can dip below 0.90. Thus, overall, the BCD recom-
mendations about choice of method seem reasonable
to us. Our own preference is to use the Wilson inter-
val for statistical practice and CIAC for teaching in
elementary statistics courses.

4. EXTENSIONS

Other than near-boundary modifications, another
type of fine-tuning that may help is to invert a test
permitting unequal tail probabilities. This occurs
naturally in exact inference that inverts a sin-
gle two-tailed test, which can perform better than
inverting two separate one-tailed tests (e.g., Sterne,
1954; Blyth and Still, 1983).

Finally, we are curious about the implications of
the BCD results in a more general setting. How
much does their message about the effects of dis-
creteness and basing interval estimation on the
Jeffreys prior or the score test rather than the Wald
test extend to parameters in other discrete distri-
butions and to two-sample comparisons? We have
seen that interval estimation of the Poisson param-
eter benefits from inverting the score test rather
than the Wald test on the count scale (Agresti and
Coull, 1998).
One would not think there could be anything

new to say about the Wald confidence interval
for a proportion, an inferential method that must
be one of the most frequently used since Laplace
(1812, page 283). Likewise, the confidence inter-
val for a proportion based on the Jeffreys prior
has received attention in various forms for some
time. For instance, R. A. Fisher (1956, pages 63–
70) showed the similarity of a Bayesian analysis
with Jeffreys prior to his fiducial approach, in a dis-
cussion that was generally critical of the confidence
interval method but grudgingly admitted of limits
obtained by a test inversion such as the Clopper–
Pearson method, “though they fall short in logical
content of the limits found by the fiducial argument,
and with which they have often been confused, they
do fulfil some of the desiderata of statistical infer-
ences.” Congratulations to the authors for brilliantly
casting new light on the performance of these old
and established methods.

Comment
George Casella

1. INTRODUCTION

Professors Brown, Cai and DasGupta (BCD) are
to be congratulated for their clear and imaginative
look at a seemingly timeless problem. The chaotic
behavior of coverage probabilities of discrete confi-
dence sets has always been an annoyance, result-
ing in intervals whose coverage probability can be
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vastly different from their nominal confidence level.
What we now see is that for the Wald interval, an
approximate interval, the chaotic behavior is relent-
less, as this interval will not maintain 1 − α cover-
age for any value of n. Although fixes relying on
ad hoc rules abound, they do not solve this funda-
mental defect of the Wald interval and, surprisingly,
the usual safety net of asymptotics is also shown
not to exist. So, as the song goes, “Bye-bye, so long,
farewell” to the Wald interval.
Now that the Wald interval is out, what is in?

There are probably two answers here, depending
on whether one is in the classroom or the consult-
ing room.
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Fig. 1. Coverage probabilities of the Blyth-Still interval �upper� and Agresti-Coull interval �lower� for n = 100 and 1− α = 0	95.

2. WHEN YOU SAY 95%	 	 	

In the classroom it is (still) valuable to have a
formula for a confidence intervals, and I typically
present the Wilson/score interval, starting from
the test statistic formulation. Although this doesn’t
have the pleasing p̂ ± something, most students
can understand the logic of test inversion. More-
over, the fact that the interval does not have a
symmetric form is a valuable lesson in itself; the
statistical world is not always symmetric.
However, one thing still bothers me about this

interval. It is clearly not a 1 − α interval; that is,
it does not maintain its nominal coverage prob-
ability. This is a defect, and one that should not
be compromised. I am uncomfortable in present-
ing a confidence interval that does not maintain its

stated confidence; when you say 95% you should
mean 95%!
But the fix here is rather simple: apply the “con-

tinuity correction” to the score interval (a technique
that seems to be out of favor for reasons I do not
understand). The continuity correction is easy to
justify in the classroom using pictures of the nor-
mal density overlaid on the binomial mass func-
tion, and the resulting interval will now maintain
its nominal level. (This last statement is not based
on analytic proof, but on numerical studies.) Anyone
reading Blyth (1986) cannot help being convinced
that this is an excellent approximation, coming at
only a slightly increased effort.
One other point that Blyth makes, which BCD do

not mention, is that it is easy to get exact confi-
dence limits at the endpoints. That is, forX = 0 the
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lower bound is 0 and for X = 1 the lower bound is
1− �1− α�1/n [the solution to P�X = 0� = 1− α].

3. USE YOUR TOOLS

The essential message that I take away from the
work of BCD is that an approximate/formula-based
approach to constructing a binomial confidence
interval is bound to have essential flaws. However,
this is a situation where brute force computing will
do the trick. The construction of a 1 − α binomial
confidence interval is a discrete optimization prob-
lem that is easily programmed. So why not use the
tools that we have available? If the problem will
yield to brute force computation, then we should
use that solution.
Blyth and Still (1983) showed how to compute

exact intervals through numerical inversion of
tests, and Casella (1986) showed how to compute
exact intervals by refining conservative intervals.

So for any value of n and α, we can compute an
exact, shortest 1 − α confidence interval that will
not display any of the pathological behavior illus-
trated by BCD. As an example, Figure 1 shows the
Agresti–Coull interval along with the Blyth–Still
interval for n = 100 and 1 − α = 0	95. While
the Agresti–Coull interval fails to maintain 0	95
coverage in the middle p region, the Blyth–Still
interval always maintains 0	95 coverage. What is
more surprising, however, is that the Blyth–Still
interval displays much less variation in its cov-
erage probability, especially near the endpoints.
Thus, the simplistic numerical algorithm produces
an excellent interval, one that both maintains its
guaranteed coverage and reduces oscillation in the
coverage probabilities.
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Comment
Chris Corcoran and Cyrus Mehta

We thank the authors for a very accessible
and thorough discussion of this practical prob-
lem. With the availability of modern computa-
tional tools, we have an unprecedented opportu-
nity to carefully evaluate standard statistical pro-
cedures in this manner. The results of such work
are invaluable to teachers and practitioners of
statistics everywhere. We particularly appreciate
the attention paid by the authors to the gener-
ally oversimplified and inadequate recommenda-
tions made by statistical texts regarding when to
use normal approximations in analyzing binary
data. As their work has plainly shown, even in
the simple case of a single binomial proportion,
the discreteness of the data makes the use of
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some asymptotic procedures tenuous, even when the
underlying probability lies away from the boundary
or when the sample size is relatively large.
The authors have evaluated various confidence

intervals with respect to their coverage properties
and average lengths. Implicit in their evaluation
is the premise that overcoverage is just as bad as
undercoverage. We disagree with the authors on this
fundamental issue. If, because of the discreteness of
the test statistic, the desired confidence level cannot
be attained, one would ordinarily prefer overcover-
age to undercoverage. Wouldn’t you prefer to hire
a fortune teller whose track record exceeds expec-
tations to one whose track record is unable to live
up to its claim of accuracy? With the exception of
the Clopper–Pearson interval, none of the intervals
discussed by the authors lives up to its claim of
95% accuracy throughout the range of p. Yet the
authors dismiss this interval on the grounds that
it is “wastefully conservative.” Perhaps so, but they
do not address the issue of how the wastefulness is
manifested.
What penalty do we incur for furnishing confi-

dence intervals that are more truthful than was
required of them? Presumably we pay for the conser-
vatism by an increase in the length of the confidence
interval. We thought it would be a useful exercise
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Fig. 1. Actual coverage probabilities for BSC and LR intervals
as a function of p�n = 50�	 Compare to author’s Figures 5� 10
and 11.

to actually investigate the magnitude of this penalty
for two confidence interval procedures that are guar-
anteed to provide the desired coverage but are not
as conservative as Clopper–Pearson. Figure 1 dis-
plays the true coverage probabilities for the nominal
95% Blyth–Still–Casella (see Blyth and Still, 1983;
Casella, 1984) confidence interval (BSC interval)
and the 95% confidence interval obtained by invert-
ing the exact likelihood ratio test (LR interval; the
inversion follows that shown by Aitken, Anderson,
Francis and Hinde, 1989, pages 112–118).
There is no value of p for which the coverage of the

BSC and LR intervals falls below 95%. Their cover-
age probabilities are, however, much closer to 95%
than would be obtained by the Clopper–Pearson pro-
cedure, as is evident from the authors’ Figure 11.
Thus one could say that these two intervals are uni-
formly better than the Clopper–Pearson interval.
We next investigate the penalty to be paid for the

guaranteed coverage in terms of increased length of
the BSC and LR intervals relative to the Wilson,
Agresti–Coull, or Jeffreys intervals recommended
by the authors. This is shown by Figure 2.

In fact the BSC and LR intervals are actually
shorter than Agresti–Coull for p < 0	2 or p > 0	8,
and shorter than the Wilson interval for p < 0	1
and p > 0	9. The only interval that is uniformly
shorter than BSC and LR is the Jeffreys interval.
Most of the time the difference in lengths is negligi-
ble, and in the worst case (at p = 0	5) the Jeffreys
interval is only shorter by 0.025 units. Of the three
asymptotic methods recommended by the authors,
the Jeffreys interval yields the lowest average prob-
ability of coverage, with significantly greater poten-
tial relative undercoverage in the �0	05�0	20� and
�0	80�0	95� regions of the parameter space. Consid-
ering this, one must question the rationale for pre-
ferring Jeffreys to either BSC or LR.
The authors argue for simplicity and ease of com-

putation. This argument is valid for the teaching of
statistics, where the instructor must balance sim-
plicity with accuracy. As the authors point out, it is
customary to teach the standard interval in intro-
ductory courses because the formula is straight-
forward and the central limit theorem provides a
good heuristic for motivating the normal approxi-
mation. However, the evidence shows that the stan-
dard method is woefully inadequate. Teaching sta-
tistical novices about a Clopper–Pearson type inter-
val is conceptually difficult, particularly because
exact intervals are impossible to compute by hand.
As the Agresti–Coull interval preserves the confi-
dence level most successfully among the three rec-
ommended alternative intervals, we believe that
this feature when coupled with its straightforward
computation (particularly when α = 0	05) makes
this approach ideal for the classroom.
Simplicity and ease of computation have no role

to play in statistical practice. With the advent
of powerful microcomputers, researchers no longer
resort to hand calculations when analyzing data.
While the need for simplicity applies to the class-
room, in applications we primarily desire reliable,
accurate solutions, as there is no significant dif-
ference in the computational overhead required by
the authors’ recommended intervals when compared
to the BSC and LR methods. From this perspec-
tive, the BSC and LR intervals have a substantial
advantage relative to the various asymptotic inter-
vals presented by the authors. They guarantee cov-
erage at a relatively low cost in increased length.
In fact, the BSC interval is already implemented in
StatXact (1998) and is therefore readily accessible to
practitioners.
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Fig. 2. Expected lengths of BSC and LR intervals as a function of p compared� respectively� to Wilson� Agresti–Coull and Jeffreys

intervals �n = 25�. Compare to authors’ Figure 8	

Comment
Malay Ghosh

This is indeed a very valuable article which brings
out very clearly some of the inherent difficulties
associated with confidence intervals for parame-
ters of interest in discrete distributions. Professors
Brown, Cai and Dasgupta (henceforth BCD) are
to be complimented for their comprehensive and
thought-provoking discussion about the “chaotic”
behavior of the Wald interval for the binomial pro-
portion and an appraisal of some of the alternatives
that have been proposed.
My remarks will primarily be confined to the

discussion of Bayesian methods introduced in this
paper. BCD have demonstrated very clearly that the

Malay Ghosh is Distinguished Professor, Depart-
ment of Statistics, University of Florida, Gainesville,
Florida 32611-8545 �e-mail: ghoshm@stat.ufl.edu�.

modified Jeffreys equal-tailed interval works well
in this problem and recommend it as a possible con-
tender to the Wilson interval for n ≤ 40.
There is a deep-rooted optimality associated with

Jeffreys prior as the unique first-order probability
matching prior for a real-valued parameter of inter-
est with no nuisance parameter. Roughly speak-
ing, a probability matching prior for a real-valued
parameter is one for which the coverage probability
of a one-sided Baysian credible interval is asymp-
totically equal to its frequentist counterpart. Before
giving a formal definition of such priors, we pro-
vide an intuitive explanation of why Jeffreys prior
is a matching prior. To this end, we begin with
the fact that if X1� 	 	 	 �Xn are iid N�θ�1�, then
�Xn = �n

i=1Xi/n is the MLE of θ. With the uni-
form prior π�θ� ∝ c (a constant), the posterior of θ
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isN� �Xn�1/n�. Accordingly, writing zα for the upper
100α% point of the N�0�1� distribution,

P�θ ≤ �Xn + zαn
−1/2� �Xn�

= 1− α = P�θ ≤ �Xn + zαn
−1/2�θ�

and this is an example of perfect matching. Now
if θ̂n is the MLE of θ, under suitable regular-
ity conditions, θ̂n�θ is asymptotically (as n → ∞)
N�θ� I−1�θ��, where I�θ� is the Fisher Information
number. With the transformation g�θ� = ∫ θ

I1/2�t�,
by the delta method, g�θ̂n� is asymptotically
N�g�θ��1�. Now, intuitively one expects the uniform
prior π�θ� ∝ c as the asymptotic matching prior for
g�θ�. Transforming back to the original parameter,
Jeffreys prior is a probability matching prior for θ.
Of course, this requires an invariance of probability
matching priors, a fact which is rigorously estab-
lished in Datta and Ghosh (1996). Thus a uniform
prior for arcsin�θ1/2�, where θ is the binomial pro-
portion, leads to Jeffreys Beta (1/2, 1/2) prior for θ.
When θ is the Poisson parameter, the uniform prior
for θ1/2 leads to Jeffreys’ prior θ−1/2 for θ.
In a more formal set-up, let X1� 	 	 	 �Xn be iid

conditional on some real-valued θ. Let θ1−απ �X1� 	 	 	 �
Xn� denote a posterior �1−α�th quantile for θ under
the prior π. Then π is said to be a first-order prob-
ability matching prior if

P�θ ≤ θ1−απ �X1� 	 	 	 �Xn��θ�
= 1− α+ o�n−1/2�	(1)

This definition is due to Welch and Peers (1963)
who showed by solving a differential equation that
Jeffreys prior is the unique first-order probability
matching prior in this case. Strictly speaking, Welch
and Peers proved this result only for continuous
distributions. Ghosh (1994) pointed out a suitable
modification of criterion (1) which would lead to the
same conclusion for discrete distributions. Also, for
small and moderate samples, due to discreteness,
one needs some modifications of Jeffreys interval as
done so successfully by BCD.
This idea of probability matching can be extended

even in the presence of nuisance parameters.
Suppose that θ = �θ1� 	 	 	 � θp�T, where θ1 is the par-
ameter of interest, while �θ2� 	 	 	 � θp�T is the nui-
sance parameter. Writing I�θ� = ��Ijk�� as the
Fisher information matrix, if θ1 is orthogonal to
�θ2� 	 	 	 � θp�T in the sense of Cox and Reid (1987),
that is, I1k = 0 for all k = 2� 	 	 	 � p, extending
the previous intuitive argument, π�θ� ∝ I

1/2
11 �θ�

is a probability matching prior. Indeed, this prior

belongs to the general class of first-order probabil-
ity matching priors

π�θ� ∝ I
1/2
11 �θ�h�θ2� 	 	 	 � θp�

as derived in Tibshirani (1989). Here h�·� is an arbi-
trary function differentiable in its arguments.
In general, matching priors have a long success

story in providing frequentist confidence intervals,
especially in complex problems, for example, the
Behrens–Fisher or the common mean estimation
problems where frequentist methods run into dif-
ficulty. Though asymptotic, the matching property
seems to hold for small and moderate sample sizes
as well for many important statistical problems.
One such example is Garvan and Ghosh (1997)
where such priors were found for general disper-
sion models as given in Jorgensen (1997). It may
be worthwhile developing these priors in the pres-
ence of nuisance parameters for other discrete cases
as well, for example when the parameter of interest
is the difference of two binomial proportions, or the
log-odds ratio in a 2× 2 contingency table.
Having argued so strongly in favor of matching

priors, I wonder, though, whether there is any spe-
cial need for such priors in this particular problem of
binomial proportions. It appears that any Beta (a� a)
prior will do well in this case. As noted in this paper,
by shrinking the MLE X/n toward the prior mean
1/2, one achieves a better centering for the construc-
tion of confidence intervals. The two diametrically
opposite priors Beta (2, 2) (symmetric concave with
maximum at 1/2 which provides the Agresti–Coull
interval) and Jeffreys prior Beta (1/2�1/2) (symmet-
ric convex with minimum at 1/2) seem to be equally
good for recentering. Indeed, I wonder whether any
Beta �α�β� prior which shrinks the MLE toward
the prior mean α/�α + β� becomes appropriate for
recentering.
The problem of construction of confidence inter-

vals for binomial proportions occurs in first courses
in statistics as well as in day-to-day consulting.
While I am strongly in favor of replacing Wald inter-
vals by the new ones for the latter, I am not quite
sure how easy it will be to motivate these new inter-
vals for the former. The notion of shrinking can be
explained adequately only to a few strong students
in introductory statistics courses. One possible solu-
tion for the classroom may be to bring in the notion
of continuity correction and somewhat heuristcally
ask students to work with �X+ 1

2 � n−X+ 1
2� instead

of �X�n − X�. In this way, one centers around
�X+ 1

2�/�n+ 1� a la Jeffreys prior.
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Comment
Thomas J. Santner

I thank the authors for their detailed look at
a well-studied problem. For the Wald binomial p
interval, there has not been an appreciation of
the long persistence (in n) of p locations having
substantially deficient achieved coverage compared
with the nominal coverage. Figure 1 is indeed a
picture that says a thousand words. Similarly, the
asymptotic lower limit in Theorem 1 for the mini-
mum coverage of the Wald interval is an extremely
useful analytic tool to explain this phenomenon,
although other authors have given fixed p approx-
imations of the coverage probability of the Wald
interval (e.g., Theorem 1 of Ghosh, 1979).
My first set of comments concern the specific bino-

mial problem that the authors address and then the
implications of their work for other important dis-
crete data confidence interval problems.
The results in Ghosh (1979) complement the cal-

culations of Brown, Cai and DasGupta (BCD) by
pointing out that the Wald interval is “too long” in
addition to being centered at the “wrong” value (the
MLE as opposed to a Bayesian point estimate such
is used by the Agresti–Coull interval). His Table 3
lists the probability that the Wald interval is longer
than the Wilson interval for a central set of p val-
ues (from 0.20 to 0.80) and a range of sample sizes
n from 20 to 200. Perhaps surprisingly, in view of
its inferior coverage characteristics, the Wald inter-
val tends to be longer than the Wilson interval
with very high probability. Hence the Wald interval
is both too long and centered at the wrong place.
This is a dramatic effect of the skewness that BCD
mention.
When discussing any system of intervals, one

is concerned with the consistency of the answers
given by the interval across multiple uses by a
single researcher or by groups of users. Formally,
this is the reason why various symmetry properties
are required of confidence intervals. For example,
in the present case, requiring that the p interval
�L�X��U�X�� satisfy the symmetry property

�L�x��U�x�� = �1−L�n− x��1−U�n− x��(1)

for x ∈ �0� 	 	 	 � n� shows that investigators who
reverse their definitions of success and failure will

Thomas J. Santner is Profesor, Ohio State Univer-
sity, 404 Cockins Hall, 1958 Neil Avenue, Columbus,
Ohio 43210 �e-mail: tjs@stat.ohio-state.edu�.

be consistent in their assessment of the likely values
for p. Symmetry (1) is the minimal requirement of a
binomial confidence interval. The Wilson and equal-
tailed Jeffrey intervals advocated by BCD satisfy
the symmetry property (1) and have coverage that
is centered (when coverage is plotted versus true p)
about the nominal value. They are also straightfor-
ward to motivate, even for elementary students, and
simple to compute for the outcome of interest.
However, regarding p confidence intervals as the

inversion of a family of acceptance regions corre-
sponding to size α tests of H0� p = p0 versus
HA� p �= p0 for 0 < p0 < 1 has some sub-
stantial advantages. Indeed, Brown et al. mention
this inversion technique when they remark on the
desirable properties of intervals formed by invert-
ing likelihood ratio test acceptance regions of H0
versus HA. In the binomial case, the acceptance
region of any reasonable test of H0� p = p0 is of
the form �Lp0

� 	 	 	 �Up0
�. These acceptance regions

invert to intervals if and only if Lp0
and Up0

are
nondecreasing in p0 (otherwise the inverted p con-
fidence set can be a union of intervals). Of course,
there are many families of size α tests that meet
this nondecreasing criterion for inversion, includ-
ing the very conservative test used by Clopper and
Pearson (1934). For the binomial problem, Blyth and
Still (1983) constructed a set of confidence intervals
by selecting among size α acceptance regions those
that possessed additional symmetry properties and
were “small” (leading to short confidence intervals).
For example, they desired that the interval should
“move to the right” as x increases when n is fixed
and should “move the left” as n increases when x
is fixed. They also asked that their system of inter-
vals increase monotonically in the coverage proba-
bility for fixed x and n in the sense that the higher
nominal coverage interval contain the lower nomi-
nal coverage interval.
In addition to being less intuitive to unsophisti-

cated statistical consumers, systems of confidence
intervals formed by inversion of acceptance regions
also have two other handicaps that have hindered
their rise in popularity. First, they typically require
that the confidence interval (essentially) be con-
structed for all possible outcomes, rather than
merely the response of interest. Second, their rather
brute force character means that a specialized com-
puter program must be written to produce the
acceptance sets and their inversion (the intervals).
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Fig. 1. Coverage of nominal 95% symmetric Duffy–Santner p intervals for n = 20 �bottom panel� and n = 50 �top panel�	

However, the benefits of having reasonably short
and suitably symmetric confidence intervals are suf-
ficient that such intervals have been constructed for
several frequently occurring problems of biostatis-
tics. For example, Jennison and Turnbull (1983) and
Duffy and Santner (1987) present acceptance set–
inversion confidence intervals (both with available
FORTRAN programs to implement their methods)
for a binomial p based on data from a multistage
clinical trial; Coe and Tamhane (1989) describe a
more sophisticated set of repeated confidence inter-
vals for p1 − p2 also based on multistage clinical
trial data (and give a SAS macro to produce the
intervals). Yamagami and Santner (1990) present
an acceptance set–inversion confidence interval and
FORTRAN program for p1 − p2 in the two-sample
binomial problem. There are other examples.
To contrast with the intervals whose coverages

are displayed in BCD’s Figure 5 for n = 20 and
n = 50, I formed the multistage intervals of Duffy
and Santner that strictly attain the nominal con-
fidence level for all p. The computation was done
naively in the sense that the multistage FORTRAN
program by Duffy that implements this method
was applied using one stage with stopping bound-

aries arbitrarily set at �a� b� = �0�1� in the nota-
tion of Duffy and Santner, and a small adjustment
was made to insure symmetry property (1). (The
nonsymmetrical multiple stage stopping boundaries
that produce the data considered in Duffy and Sant-
ner do not impose symmetry.) The coverages of these
systems are shown in Figure 1. To give an idea of
computing time, the n = 50 intervals required less
than two seconds to compute on my 400 Mhz PC.
To further facilitate comparison with the intervals
whose coverage is displayed in Figure 5 of BCD,
I computed the Duffy and Santner intervals for a
slightly lower level of coverage, 93.5%, so that the
average coverage was about the desired 95% nomi-
nal level; the coverage of this system is displayed
in Figure 2 on the same vertical scale and com-
pares favorably. It is possible to call the FORTRAN
program that makes these intervals within SPLUS
which makes for convenient data analysis.
I wish to mention that are a number of other

small sample interval estimation problems of con-
tinuing interest to biostatisticians that may well
have very reasonable small sample solutions based
on analogs of the methods that BCD recommend.
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Fig. 2. Coverage of nominal 93	5% symmetric Duffy–Santner p intervals for n = 50.

Most of these would be extremely difficult to han-
dle by the more brute force method of inverting
acceptance sets. The first of these is the problem
of computing simultaneous confidence intervals for
p0 − pi�1 ≤ i ≤ T that arises in comparing a con-
trol binomial distribution with T treatment ones.
The second concerns forming simultaneous confi-
dence intervals for pi − pj, the cell probabilities
of a multinomial distribution. In particular, the
equal-tailed Jeffrey prior approach recommended by
the author has strong appeal for both of these prob-
lems.
Finally, I note that the Wilson intervals seem

to have received some recommendation as the

method of choice in other elementary texts. In his
introductory texts, Larson (1974) introduces the
Wilson interval as the method of choice although
he makes the vague, and indeed false, statement, as
BCD show, that the user can use the Wald interval if
“n is large enough.” One reviewer of Santner (1998),
an article that showed the coverage virtues of the
Wilson interval compared with Wald-like intervals
advocated by another author in the magazine Teach-
ing Statistics (written for high school teachers) com-
mented that the Wilson method was the “standard”
method taught in the U.K.

Rejoinder
Lawrence D. Brown, T. Tony Cai and Anirban DasGupta

We deeply appreciate the many thoughtful and
constructive remarks and suggestions made by the
discussants of this paper. The discussion suggests
that we were able to make a convincing case that
the often-used Wald interval is far more problem-

atic than previously believed. We are happy to see
a consensus that the Wald interval deserves to
be discarded, as we have recommended. It is not
surprising to us to see disagreement over the spe-
cific alternative(s) to be recommended in place of
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this interval. We hope the continuing debate will
add to a greater understanding of the problem, and
we welcome the chance to contribute to this debate.

A. It seems that the primary source of disagree-
ment is based on differences in interpretation
of the coverage goals for confidence intervals.
We will begin by presenting our point of view
on this fundamental issue.
We will then turn to a number of other issues,
as summarized in the following list:

B. Simplicity is important.
C. Expected length is also important.
D. Santner’s proposal.
E. Should a continuity correction be used?
F. The Wald interval also performs poorly in

other problems.
G. The two-sample binomial problem.
H. Probability-matching procedures.
I. Results from asymptotic theory.

A. Professors Casella, Corcoran and Mehta come
out in favor of making coverage errors always fall
only on the conservative side. This is a traditional
point of view. However, we have taken a different
perspective in our treatment. It seems more consis-
tent with contemporary statistical practice to expect
that a γ% confidence interval should cover the true
value approximately γ% of the time. The approxi-
mation should be built on sound, relevant statisti-
cal calculations, and it should be as accurate as the
situation allows.
We note in this regard that most statistical mod-

els are only felt to be approximately valid as repre-
sentations of the true situation. Hence the result-
ing coverage properties from those models are at
best only approximately accurate. Furthermore, a
broad range of modern procedures is supported
only by asymptotic or Monte-Carlo calculations, and
so again coverage can at best only be approxi-
mately the nominal value. As statisticians we do
the best within these constraints to produce proce-
dures whose coverage comes close to the nominal
value. In these contexts when we claim γ% cover-
age we clearly intend to convey that the coverage is
close to γ%, rather than to guarantee it is at least
γ%.
We grant that the binomial model has a some-

what special character relative to this general dis-
cussion. There are practical contexts where one can
feel confident this model holds with very high preci-
sion. Furthermore, asymptotics are not required in
order to construct practical procedures or evaluate
their properties, although asymptotic calculations
can be useful in both regards. But the discrete-
ness of the problem introduces a related barrier

to the construction of satisfactory procedures. This
forces one to again decide whether γ% should mean
“approximately γ%,” as it does in most other con-
temporary applications, or “at least γ%” as can
be obtained with the Blyth–Still procedure or the
Cloppe–Pearson procedure. An obvious price of the
latter approach is in its decreased precision, as mea-
sured by the increased expected length of the inter-
vals.
B. All the discussants agree that elementary

motivation and simplicity of computation are impor-
tant attributes in the classroom context. We of
course agree. If these considerations are paramount
then the Agresti–Coull procedure is ideal. If the
need for simplicity can be relaxed even a little, then
we prefer the Wilson procedure: it is only slightly
harder to compute, its coverage is clearly closer to
the nominal value across a wider range of values of
p, and it can be easier to motivate since its deriva-
tion is totally consistent with Neyman–Pearson the-
ory. Other procedures such as Jeffreys or the mid-P
Clopper–Pearson interval become plausible competi-
tors whenever computer software can be substituted
for the possibility of hand derivation and computa-
tion.
Corcoran and Mehta take a rather extreme posi-

tion when they write, “Simplicity and ease of com-
putation have no role to play in statistical practice
[italics ours].” We agree that the ability to perform
computations by hand should be of little, if any, rel-
evance in practice. But conceptual simplicity, parsi-
mony and consistency with general theory remain
important secondary conditions to choose among
procedures with acceptable coverage and precision.
These considerations will reappear in our discus-

sion of Santner’s Blyth–Still proposal. They also
leave us feeling somewhat ambivalent about the
boundary-modified procedures we have presented in
our Section 4.1. Agresti and Coull correctly imply
that other boundary corrections could have been
tried and that our choice is thus somewhat ad hoc.
(The correction to Wilson can perhaps be defended
on the principle of substituting a Poisson approx-
imation for a Gaussian one where the former is
clearly more accurate; but we see no such funda-
mental motivation for our correction to the Jeffreys
interval.)
C. Several discussants commented on the pre-

cision of various proposals in terms of expected
length of the resulting intervals. We strongly con-
cur that precision is the important balancing crite-
rion vis-á-vis coverage. We wish only to note that
there exist other measures of precision than inter-
val expected length. In particular, one may investi-
gate the probability of covering wrong values. In a
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charming identity worth noting, Pratt (1961) shows
the connection of this approach to that of expected
length. Calculations on coverage of wrong values of
p in the binomial case will be presented in Das-
Gupta (2001). This article also discusses a number
of additional issues and presents further analytical
calculations, including a Pearson tilting similar to
the chi-square tilts advised in Hall (1983).
Corcoran and Mehta’s Figure 2 compares average

length of three of our proposals with Blyth–Still and
with their likelihood ratio procedure. We note first
that their LB procedure is not the same as ours.
Theirs is based on numerically computed exact per-
centiles of the fixed sample likelihood ratio statistic.
We suspect this is roughly equivalent to adjustment
of the chi-squared percentile by a Bartlett correc-
tion. Ours is based on the traditional asymptotic
chi-squared formula for the distribution of the like-
lihood ratio statistic. Consequently, their procedure
has conservative coverage, whereas ours has cov-
erage fluctuating around the nominal value. They
assert that the difference in expected length is “neg-
ligible.” How much difference qualifies as negligible
is an arguable, subjective evaluation. But we note
that in their plot their intervals can be on aver-
age about 8% or 10% longer than Jeffreys or Wilson
intervals, respectively. This seems to us a nonneg-
ligible difference. Actually, we suspect their prefer-
ence for their LR and BSC intervals rests primarily
on their overriding preference for conservativity in
coverage whereas, as we have discussed above, our
intervals are designed to attain approximately the
desired nominal value.
D. Santner proposes an interesting variant of the

original Blyth–Still proposal. As we understand it,

he suggests producing nominal γ% intervals by con-
structing the γ∗% Blyth–Still intervals, with γ∗%
chosen so that the average coverage of the result-
ing intervals is approximately the nominal value,
γ%. The coverage plot for this procedure compares
well with that for Wilson or Jeffreys in our Figure 5.
Perhaps the expected interval length for this proce-
dure also compares well, although Santner does not
say so. However, we still do not favor his proposal.
It is conceptually more complicated and requires a
specially designed computer program, particularly if
one wishes to compute γ∗% with any degree of accu-
racy. It thus fails with respect to the criterion of sci-
entific parsimony in relation to other proposals that
appear to have at least competitive performance
characteristics.
E. Casella suggests the possibility of perform-

ing a continuity correction on the score statistic
prior to constructing a confidence interval. We do
not agree with this proposal from any perspec-
tive. These “continuity-corrected Wilson” intervals
have extremely conservative coverage properties,
though they may not in principle be guaranteed to
be everywhere conservative. But even if one’s goal,
unlike ours, is to produce conservative intervals,
these intervals will be very inefficient at their nor-
mal level relative to Blyth–Still or even Clopper–
Pearson. In Figure 1 below, we plot the coverage
of the Wilson interval with and without a conti-
nuity correction for n = 25 and α = 0	05, and
the corresponding expected lengths. It is seems
clear that the loss in precision more than neutral-
izes the improvements in coverage and that the
nominal coverage of 95% is misleading from any
perspective.

Fig. 1. Comparison of the coverage probabilities and expected lengths of the Wilson �dotted� and continuity-corrected Wilson �solid�
intervals for n = 25 and α = 0	05.
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Fig. 2. Comparison of the systematic coverage biases. The y-axis is nSn�p�	 From top to bottom: the systematic coverage biases of the
Agresti–Coull� Wilson� Jeffreys� likelihood ratio and Wald intervals� with n = 50 and α = 0	05.

F. Agresti and Coull ask if the dismal perfor-
mance of the Wald interval manifests itself in
other problems, including nordiscrete cases. Indeed
it does. In other lattice cases such as the Poisson
and negative binomial, both the considerable neg-
ative coverage bias and inefficiency in length per-
sist. These features also show up in some continu-
ous exponential family cases. See Brown, Cai and
DasGupta (2000b) for details.
In the three important discrete cases, the bino-

mial, Poisson and negative binomial, there is in fact
some conformity in regard to which methods work
well in general. Both the likelihood ratio interval
(using the asymptotic chi-squared limits) and the
equal-tailed Jeffreys interval perform admirably in
all of these problems with regard to coverage and
expected length. Perhaps there is an underlying the-
oretical reason for the parallel behavior of these
two intervals constructed from very different foun-
dational principles, and this seems worth further
study.
G. Some discussants very logically inquire about

the situation in the two-sample binomial situation.
Curiously, in a way, the Wald interval in the two-
sample case for the difference of proportions is less
problematic than in the one-sample case. It can
nevertheless be somewhat improved. Agresti and
Caffo (2000) present a proposal for this problem,
and Brown and Li (2001) discuss some others.
H. The discussion by Ghosh raises several inter-

esting issues. The definition of “first-order proba-
bility matching” extends in the obvious way to any
set of upper confidence limits; not just those cor-
responding to Bayesian intervals. There is also an
obvious extension to lower confidence limits. This

probability matching is a one-sided criterion. Thus
a family of two-sided intervals �Ln�Un� will be first-
order probability matching if

Prp�p ≤ Ln� = α/2+ o�n−1/2� = Prp�p ≥ Un�	
As Ghosh notes, this definition cannot usefully
be literally applied to the binomial problem here,
because the asymptotic expansions always have a
discrete oscillation term that is O�n−1/2�. However,
one can correct the definition.
One way to do so involves writing asymptotic

expressions for the probabilities of interest that can
be divided into a “smooth” part, S, and an “oscil-
lating” part, Osc, that averages to O�n−3/2� with
respect to any smooth density supported within (0,
1). Readers could consult BCD (2000a) for more
details about such expansions. Thus, in much gen-
erality one could write

Prp�p ≤ Ln�
= α/2+SLn

�p� +OscLn
�p� +O�n−1��(1)

where SLn
�p� = O�n−1/2�, and OscLn

�p� has the
property informally described above. We would then
say that the procedure is first-order probability
matching if SLn

�p� = o�n−1/2�, with an analogous
expression for the upper limit, Un.
In this sense the equal-tail Jeffreys procedure

is probability matching. We believe that the mid-
P Clopper–Pearson intervals also have this asymp-
totic property. But several of the other proposals,
including the Wald, the Wilson and the likelihood
ratio intervals are not first-order probability match-
ing. See Cai (2001) for exact and asymptotic calcula-
tions on one-sided confidence intervals and hypoth-
esis testing in the discrete distributions.
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The failure of this one-sided, first-order property,
however, has no obvious bearing on the coverage
properties of the two-sided procedures considered
in the paper. That is because, for any of our proce-
dures,

SLn
�p� +SUn

�p� = 0+O�n−1��(2)

even when the individual terms on the left are only
O�n−1/2�. All the procedures thus make compensat-
ing one-sided errors, to O�n−1�, even when they are
not accurate to this degree as one-sided procedures.
This situation raises the question as to whether

it is desirable to add as a secondary criterion for
two-sided procedures that they also provide accu-
rate one-sided statements, at least to the probabil-
ity matchingO�n−1/2�. While Ghosh argues strongly
for the probability matching property, his argument
does not seem to take into account the cancellation
inherent in (2). We have heard some others argue in
favor of such a requirement and some argue against
it. We do not wish to take a strong position on
this issue now. Perhaps it depends somewhat on the
practical context—if in that context the confidence
bounds may be interpreted and used in a one-sided
fashion as well as the two-sided one, then perhaps
probability matching is called for.
I. Ghosh’s comments are a reminder that asymp-

totic theory is useful for this problem, even though
exact calculations here are entirely feasible and con-
venient. But, as Ghosh notes, asymptotic expres-
sions can be startingly accurate for moderate
sample sizes. Asymptotics can thus provide valid
insights that are not easily drawn from a series of
exact calculations. For example, the two-sided inter-
vals also obey an expression analogous to (1),

Prp�Ln ≤ p ≤ Un�(3)

= 1− α+Sn�p� +Oscn�p� +O�n−3/2�	
The term Sn�p� is O�n−1� and provides a useful
expression for the smooth center of the oscillatory
coverage plot. (See Theorem 6 of BCD (2000a) for
a precise justification.) The following plot for n =
50 compares Sn�p� for five confidence procedures.
It shows how the Wilson, Jeffreys and chi-
squared likelihood ratio procedures all have cover-
age that well approximates the nominal value, with
Wilson being slightly more conservative than the
other two.
As we see it our article articulated three primary

goals: to demonstrate unambiguously that the Wald
interval performs extremely poorly; to point out that
none of the common prescriptions on when the inter-
val is satisfactory are correct and to put forward
some recommendations on what is to be used in its
place. On the basis of the discussion we feel gratified

that we have satisfactorily met the first two of these
goals. As Professor Casella notes, the debate about
alternatives in this timeless problem will linger on,
as it should. We thank the discussants again for a
lucid and engaging discussion of a number of rel-
evant issues. We are grateful for the opportunity
to have learned so much from these distinguished
colleagues.
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